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Abstract

Argument mining is often addressed by
a pipeline method where segmentation of
text into argumentative units is conducted
first and proceeded by an argument com-
ponent identification task. In this research,
we apply a token-level classification to iden-
tify claim and premise tokens from a new
corpus of argumentative essays written by
middle school students. To this end, we
compare a variety of state-of-the-art mod-
els such as discrete features and deep learn-
ing architectures (e.g., BiLSTM networks
and BERT-based architectures) to identify
the argument components. We demon-
strate that a BERT-based multi-task learn-
ing architecture (i.e., token and sentence
level classification) adaptively pretrained
on a relevant unlabeled dataset obtains the
best results.

1 Introduction

Computational argument mining focuses on
subtasks such as identifying the Argumentative
Discourse Units (ADUs) (Peldszus and Stede,
2013), their nature (i.e., claim or premise),
and the relation (i.e., support/attack) between
them (Ghosh et al., 2014; Wacholder et al.,
2014; Stab and Gurevych, 2014, 2017; Stede
and Schneider, 2018; Nguyen and Litman, 2018;
Lawrence and Reed, 2020). Argumentation is
essential in academic writing as it enhances
the logical reasoning, as well as, critical think-
ing capacities of students (Ghosh et al., 2020).
Thus, in recent times, argument mining has
been used to assess students’ writing skills in es-
say scoring and provide feedback on the writing
(Song et al., 2014; Somasundaran et al., 2016;
Wachsmuth et al., 2016; Zhang and Litman,
2020).

⇤Work performed during internship at ETS

Should Artificial Sweeteners be Banned in America?

Diet soda , sugar - free gum, and low - calorie sweeten-
ers are what most people see as a way to sweeten up a
day without the calories.

Despite the lack of calories, artificial sweeteners have
multiple negative health e↵ects.

Over the past century, science has made it possible to
replicate food with fabricated alternatives that simplify
weight loss.

Although many thought these new replacements would
benefit overall health, there are more negative e↵ects
on manufactured food than the food they replaced.

Artificial sweeteners have a huge impact on current
day society.

Legends: B-Claim I-Claim B-Premise I-Premise O-Arg

Figure 1: Excerpt from an annotated essay with
Claim Premise segments in BIO notation

While argument mining literature has ad-
dressed students writing in the educational con-
text, so far, it has primarily addressed college
level writing (Blanchard et al., 2013; Persing
and Ng, 2015; Beigman Klebanov et al., 2017;
Eger et al., 2017) except for a very few ones
(Attali and Burstein, 2006; Lugini et al., 2018;
Correnti et al., 2020). Instead, in this paper,
we concentrate on identifying arguments from
essays written by middle school students. To
this end, we perused a new corpus of 145 ar-
gumentative essays written by middle school
students to identify the argument components.
These essays are obtained from an Educational
app - Writing Mentor - that operates as a
Google-docs Add-on.1

Normally, research that investigates college

1https://mentormywriting.org
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students writing in the context of argument
mining apply a pipeline of subtasks to first de-
tect arguments at the token-level text units and
subsequently classify the text units to argument
components (Stab and Gurevych, 2017). How-
ever, middle school student essays are vastly dif-
ferent from college students’ writing (detailed
in Section 3). We argue they are more di�cult
to analyze through the pipeline approach due
to run-on sentences, unsupported claims, and
the presence of several claims in a sentence.
Thus, instead of segmenting the text into
argumentative/non-argumentative units first,
we conduct a token-level classification task to
identify the type of the argument component
(e.g., B/I tokens from claims and premises)
directly by joining the first and the second
subtask in a single task. Figure 1 presents an
excerpt from an annotated essay with their
corresponding gold annotations of claims (e.g.,
“Diet soda . . . the calories”) and premises (e.g.,
“there are . . . replaced”). The legends represent
the tokens by the standard BIO notations.

We propose a detailed experimental setup to
identify the argument components using both
feature-based machine learning techniques and
deep learning models. For the former, we used
several structural, lexical, and syntactic fea-
tures in a sequence classification framework
using the Conditional Random Field (CRF)
classifier (La↵erty et al., 2001). For the latter,
we employ a BiLSTM network and, finally, a
transformer architecture - BERT (Devlin et al.,
2019) with its pretrained and task-specific fine-
tuned models. We achieve the best result from
a particular BERT architecture (7.5% accu-
racy improvement over the discrete features)
that employs a joint multitask learning objec-
tive with an uncertainty-based weighting of
two task-specific losses: (a) the main task of
token-level sequence classification, and (b) the
auxiliary task of sentence classification (i.e.,
whether a sentence contains argument or not).
We make the dataset (student essays) from our
research publicly available.2

2 Related Work

The majority of the prior work on argument
mining addressed the problems of argument

2https://github.com/EducationalTestingService/
argument-component-essays

segmentation, component, and relation identifi-
cation modeled in a pipeline of subtasks (Peld-
szus and Stede, 2015; Stab and Gurevych, 2017;
Potash et al., 2017; Niculae et al., 2017) except
a few research (Schulz et al., 2019). However,
most of the research assumes the availability
of segmented argumentative units and do the
subsequent tasks such as the classification of
argumentative component types (Biran and
Rambow, 2011; Stab and Gurevych, 2014; Park
and Cardie, 2014), argument relations (Ghosh
et al., 2016; Nguyen and Litman, 2016), and ar-
gument schemes (Hou and Jochim, 2017; Feng
and Hirst, 2011).

Previous work on argument segmentation
includes approaches that model the task as a
sentence classification to argumentative or non-
argumentative sentences (Moens et al., 2007;
Palau and Moens, 2009; Mochales and Moens,
2011; Rooney et al., 2012; Lippi and Torroni,
2015; Ajjour et al., 2017; Chakrabarty et al.,
2019), or by defining heuristics to identify argu-
mentative segment boundaries (Madnani et al.,
2012; Persing and Ng, 2015; Al-Khatib et al.,
2016). Although we conduct segmentation, we
focus on the token-level classification to directly
identify the argument component’s type. This
setup is related to Schulz et al. (2018) where au-
thors analyzed students’ diagnostic reasoning
skills via token level identification. Our joint
model using BERT is similar to (Eger et al.,
2017). However, we set the main task as the
token-level classification where the auxiliary
task of argumentative sentence identification
assists the main task to attain a better perfor-
mance.

As stated earlier, most of the research on
argumentative writing in an educational con-
text focuses on identifying argument structures
(i.e., argument components and their relations)
(Persing and Ng, 2016; Nguyen and Litman,
2016) as well as to predict essays scores from
features derived from the essays (e.g., number
of claims and premises, number of supported
claims, number of dangling claims) (Ghosh
et al., 2016). Related investigations have also
examined the challenge of scoring a certain di-
mension of essay quality, such as relevance to
the prompt (Persing and Ng, 2014), opinions
and their targets (Farra et al., 2015), argument
strength (Persing and Ng, 2015) among others.
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Majority of the above research are conducted
in the context of college-level writing. For in-
stance, Nguyen and Litman (2018) investigated
argument structures in TOEFL11 corpus (Blan-
chard et al., 2013) which was also the main fo-
cus of (Ghosh et al., 2016). Beigman Klebanov
et al. (2017) and Persing and Ng (2015) ana-
lyzed writing of university students and Stab
and Gurevych (2017) used data from “essayfo-
rum.com”, where college entrance examination
is the largest forum. Although, writing quality
in essays by young writers has been addressed
(Attali and Burstein, 2006; Attali and Powers,
2008; Deane, 2014), identification of arguments
was not part of these studies. Computational
analysis of arguments from school students is in
infancy except for a few research (Lugini et al.,
2018; Afrin et al., 2020; Ghosh et al., 2020).
We believe our dataset (Section 3) will be use-
ful for researchers working at the intersection
of argument mining and education.

3 Data

We obtained a large number of English essays
(over 10K) through the Writing Mentor Educa-
tional App. This App is a Google Docs add-on
designed to provide instructional writing sup-
port, especially for academic writing. The add-
on provides students to write argumentative or
narrative essays and receive feedback on their
writings. We selected a subset of 145 argumen-
tative essays for the annotation purpose. Es-
says were either self-labeled as “argumentative”
or annotators identified their argumentative
nature from the titles (e.g., “Should Artificial
Sweeteners be Banned in America ?”).3 Essays
covered various social issues related to climate
change, veteran care, e↵ects of wars, whether
sharks are dangerous or not, etc. We denote
this corpus as ARG2020 in the remaining sec-
tions of the paper. We employed three expert
annotators (with academic and professional
background in Linguistics and Education) to
identify the argument components. The anno-
tators were instructed to read sentences from
the essays and identify the claims (defined as,
“a potentially arguable statement that indicates
a person is arguing for or arguing against some-

3Other metadata reveal that middle school students
write these essays. However, we did not use any such
information while annotating the essays.

thing. Claims are not clarification or elabo-
ration statements.”) that the argument is in
reference to. Next, once the claims are iden-
tified, the annotators annotated the premises
(defined as, “reasons given by either for sup-
porting or attacking the claims making those
claims more than mere assertions”).4 Earlier re-
search has addressed college level writing, and
even such resources are scarce except for a few
corpora (Stab and Gurevych, 2017) (denoted
as SG2017 in this paper). On the contrary,
ARG2020 is based on middle school students
writing, which di↵ers from college level writing
SG2017 in several aspects briefly discussed in
the next paragraph.

First, we notice that essays in SG2017 main-
tain distinct paragraphs such as the introduc-
tion (initiates the major claim in the essay),
the conclusion (summarizes the arguments),
and a few paragraphs in between that express
many claims and their premises. However, es-
says written by middle school students do not
always comply with such writing conventions
to keep a concrete introduction and conclu-
sion paragraph, rather, they write many short
paragraphs (7-8 paragraphs on average) per
essay while each paragraph contains multiple
claims. Second, in general, claims in college
essays in SG2017 are justified by one or mul-
tiple premises, whereas ARG2020 has many
unsupported claims. For instance, the excerpt
from the annotated essay in Figure 1 contains
two unsupported claims (e.g., “Diet soda, sugar
. . . without the calories” and “artificial sweet-
eners . . . health e↵ects”). Third, middle school
students often put opinions (e.g., “Sugar substi-
tutes produce sweet food without feeling guilty
consequences”) or matter-of-fact statements
(e.g., “Even canned food and dairy products
can be artificially sweetened”) that are not ar-
gumentative claims but structurally they are
identical to claims. Fourth, multiple claims
frequently appear in a single sentence that
are separated by discourse markers or commas.
Fifth, many essays contain run-on sentences
(e.g., “this is hard on the family, they have a
hard time adjusting”) that make the task of
parsing even tricky. We argue these reasons

4Definitions are from (Stab and Gurevych, 2017)
and Argument: Claims, Reasons, Evidence - Depart-
ment of Communication, University of Pittsburgh
(https://bit.ly/396Ap3H)
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Corpora Split Essays B-Claim I-Claim B-Premise I-Premise O-Arg Total
training 100 1,780 21,966 317 3,552 51,478 79,093

ARG2020 dev 10 171 1,823 32 371 4,008 6,405
test 35 662 8,207 92 1,018 14,987 24,966

Table 1: Token counts of each category in the training, dev, and test sets of ARG2020

make identifying argument claims and premises
from ARG2020 more challenging.

The annotators were presented with specific
guidelines and examples for annotation. We
conducted a pilot task first where all the three
annotators annotated ten essays and exchanged
their notes for calibration. Following that, we
continued pair-wise annotation tasks (30 es-
says for each pair of annotators), and finally,
individual annotators annotated the remaining
essays. Since the annotation task involves iden-
tifying each argumentative component’s words,
we have to account for fuzzy boundaries (e.g.,
in-claim vs. not-in-claim tokens) to measure
the IAA. We considered the Krippendor↵’s ↵
(Krippendor↵, 2004) metric to compute the
IAA. We measure the ↵ between each pair of
annotators and report the average. For claim
we have a modest agreement of 0.71 that is
comparable to (Stab and Gurevych, 2014) and
for premise, we have a high agreement of 0.90.
Out of the 145 essays from ARG2020 we

randomly assign 100 essays for training, 10
essays for dev, and the remaining 35 essays for
test. Table 1 represents the data statistics in
the standard BIO format. We find the number
of claims is almost six times the number of
premises showing that the middle school stu-
dents often fail to justify their proposed claims.
We keep identifying opinions and argumenta-
tive relations (support/attack) as future work.

4 Experimental Setup

Majority of the argumentation research first
segment the text in argumentative and non-
argumentative segments and then identify the
structures such as components and relations
(Stab and Gurevych, 2017). Petasis (2019)
mentioned that the granularity of computa-
tional approaches addressing the second task
of argument component identification is di-
verse because some approaches consider de-
tecting components at the clause level (e.g., ap-
proaches focused on the SG2017 corpus (Stab
and Gurevych, 2014, 2017; Ajjour et al., 2017;

Eger et al., 2017)) and others at the sentence
levels (Chakrabarty et al., 2019; Daxenberger
et al., 2017). We avoided both approaches for
the following two reasons. First, middle school
student essays often contain run-on sentences,
and it is unclear how to handle clause level
annotations because parsing might be inaccu-
rate. Second, around 62% of the premises in
the training set appears to be in the same sen-
tence as their claims. This makes sentence clas-
sification to either claim or premise impractical
(Figure 1 contains one such example). Thus,
instead of relying on the pipeline approach,
we tackle the problem by identifying argument
components from the token-level classification
akin to Schulz et al. (2019). Our unit of se-
quence tagging is a sentence, unlike a passage
(Eger et al., 2017). We apply a five-way token-
classification (or sequence tagging) task while
using the standard BIO notation for the claim
and premise tokens (See Table 1). Any token
that is not “B-Claim”, “I-Claim”, “B-Premise”,
or “I-Premise” is denoted as “O-Arg”. As ex-
pected, the number of “O-Arg” tokens is much
larger than the other categories (see Table 1).

We explore three separate machine learn-
ing approaches well-established for studying
token-based classification. First, we experi-
ment with the sequence classifier Conditional
Random Field (CRF) that exploits state-of-the-
art discrete features. Second, we implement
a BiLSTM network (with and without CRF)
based on the BERT embeddings. Finally, we
experiment with the fine-tuned BERT models
with/without multitask learning setting.

4.1 Feature-based Models

Akin to (Stab and Gurevych, 2017) we exper-
iment with three groups of discrete features:
structural, syntactic and lexico-syntactic with
some modifications. In addition, we experi-
ment with embedding features extracted from
the contextualized pre-trained language model
of BERT.
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Discrete Features For each token in a given
essay, we extract structural features that in-
clude token position (e.g., the relative and ab-
solute position of the token in the sentence,
paragraph and, essay from the beginning of the
essay) and punctuation features (e.g., whether
the token is, preceded, or succeeded by punc-
tuation). Such position features have shown
to be useful in identifying claims and premises
against sentences that do not contain any ar-
gument (Stab and Gurevych, 2017). We also
extract syntactic features for each token that
include part-of-speech tag of the token and
normalized length to the lowest common ances-
tor (LCA) of the token and its preceding (and
succeeding) token in the parse tree. In con-
trast with (Stab and Gurevych, 2017), we use
dependency parsing as the base for the syntac-
tic features rather than constituency parsing.
Finally, we extract lexico-syntactic features (de-
noted as lexSyn in Table 2) that include the
dependency relation governing the token in
the dependency parse tree and the token it-
self, plus its governing dependency relation as
another feature. This is also di↵erent than
(Stab and Gurevych, 2017) where the authors
used lexicalized-parse tree (Collins, 2003) to
generate their lexico-syntactic features. These
features are e↵ective in identifying the argu-
mentative discourse units. We also observed
that using dependency parse trees as a basis
for the lexico-syntactic features yields better
results than constituency parse trees in our
pilot experiments.

Embedding Features from BERT BERT
(Devlin et al., 2019), a bidirectional transformer
model, has achieved state-of-the-art perfor-
mance in many NLP tasks. BERT is initially
trained on the tasks of masked language model-
ing (MLM) and next sentence prediction (NSP)
over very large corpora of English Wikipedia
and BooksCorpus. During its training, a spe-
cial token “[CLS]” is added to the beginning of
each training instance, and the “[SEP]” tokens
are added to indicate the end of utterance(s)
and separate, in case of two utterances.

Pretrained BERT (“bert-base-uncased”) can
be used directly by extracting the token rep-
resentations’ embeddings. We use the average
embeddings of the top four layers as suggested
in Devlin et al. (2019). For tokens with more

than one word-piece when running BERT’s to-
kenizer, their final embeddings feature is the
average vector of all of their word-pieces. This
feature yields a 768D-long vector that we use
individually as well as in combination with the
other discrete features in our experiments. We
utilize the sklearn-crfsuite tool for our CRF
experiments.5

4.2 BiLSTM-CRF Models

To compare our models with standard sequence
tagging models for argument segmentation
(Petasis, 2019; Ajjour et al., 2019; Hua et al.,
2019), we experiment with the BiLSTM-CRF
sequence tagging model introduced by Ma and
Hovy (2016) using the flair library (Akbik et al.,
2019). We use the standard BERT (“bert-
base-uncased”) embeddings (768D) in the em-
bedding layer and projected to a single-layer
BiLSTM of 256D. BiLSTMs provide the con-
text to the token’s left and right, which proved
to be useful for sequence tagging tasks. We
train this model with and without a CRF de-
coder to see its e↵ect on this task. The CRF
layer considers both the output of the BiL-
STM layer and the other neighboring tokens’
labels, which improves the accuracy of the mod-
eling desired transitions between labels (Ma
and Hovy, 2016).

4.3 Transformers Fine-tuned Models

Pre-trained BERT can also be used for trans-
fer learning by fine-tuning on a downstream
task, i.e., claim and premise token identifica-
tion task where training instances are from
the labeled dataset ARG2020. We denote this
model as BERTbl. Besides fine-tuning with
the labeled data, we also experiment with a
multitask learning setting as well as conducted
adaptive pretraining (Gururangan et al., 2020),
that is continued pretraining on unlabeled cor-
pora that can be task and domain relevant. We
discuss the settings below.

Transformers Multitask Learning Mul-
titask learning aims to leverage useful infor-
mation in multiple related tasks to improve
the performance of each task (Caruana, 1997).
We treat the sequence labeling task of five-
way token-level argument classification as the
main task while we adopt the binary task

5https://sklearn-crfsuite.readthedocs.io
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of sentence-level argument identification (i.e.,
whether the candidate sentence contains an ar-
gument (Ghosh et al., 2020) as the auxiliary
task. Here, if any sentence in the candidate
essay contains claim or premise token(s), the
sentence is labeled as the positive category (i.e.,
argumentative), otherwise non-argumentative.
We hypothesize that this auxiliary task of iden-
tifying argumentative sentences in a multitask
setting could be useful for the main task of
token-level classification.

We deploy two classification heads - one for
each task - and the relevant gold labels are
passed to them. For the auxiliary task, the
learned representation for the “[CLS]” token
is passed to the classification head. The two
losses from these individual heads are added
and propagated back through the model. This
allows BERT to model the nuances of both
tasks and their interdependence simultaneously.
However, instead of simply adding the losses
from the two tasks, we employ dynamic weight-
ing of task-specific losses during the training
process, based on the homoscedastic uncer-
tainty of tasks, as proposed in Kendall et al.
(2018):

L =
X

t

1

2�2
t
Lt + log �2

t (1)

where Lt and �t depict the task-specific loss and
its variance (updated through backpropaga-
tion), respectively, over the training instances.
We denote this model as BERTmt.

Adaptive Pre-training Learning We
adaptively pretrained BERT over two un-
labeled corpora. First, we train on a task
relevant Reddit corpus of 5.5 million opinion-
ated claims that was released by Chakrabarty
et al. (2019). These claims are self-labeled by
the acronym: IMO/IMHO (in my (humble)
opinion), which is commonly used in Reddit.
We denote this model as BERTIMHO. Next,
we train on a task and domain relevant
corpus of around 10K essays that we obtained
originally (See section 3) from the Writing
Mentor App, excluding the annotated set of
ARG2020 essays. We denote this model as
BERTessay. Figure 2 displays the use of the
adaptive pretraining step (in orange block) and
the two classification heads (in green blocks)
employed for the multitask variation.

Pretrained BERT

Unlabeled 
domain & task 
relevant data 
(IMHO/Essay)

Adaptively Pretrained BERT

Adaptive 
Pretraining

Classification Head: 
Sentence 

(Arg/No-Arg) 
Classification 

Classification Head: 
Token Classification

Figure 2: BERT fine-tuning with adaptive pre-
training on unlabeled data from a relevant domain
followed by fine-tuning on the labeled dataset with
the multitask variation.

For brevity, the parameter tuning descrip-
tion for all the models and experiments - dis-
crete feature-based and deep-learning ones
(e.g., CRF, BiLSTM, BERT) is in the sup-
plemental material.

5 Results and Discussion

We present our experiments’ results using the
CRF, BiLSTM, and BERT models under dif-
ferent settings. We report the individual F1,
Accuracy, and Macro-F1 (abbrev. as “Acc.”
and “F1”) scores for all the categories in Table
2 and Table 3.

We apply the discrete features (structural,
syntactic, lexico-syntactic (“lexSyn”)) together
and individually to the CRF model. We ob-
serve the structural and syntactic features do
not perform well individually, especially in the
case of premise tokens (See Table 5 in Appendix
A.3) and therefore, we only report the results
of all discrete features (Discrete* in Table 2)
and individually only the performance of the
lexSyn features. Stab and Gurevych (2017)
noticed that structural features are e↵ective
to identify argument components, especially
from the introduction and conclusion sections
of the college level essays because they contain
few argumentatively relevant content. On the
contrary, as stated earlier, school student es-
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CRF
Features B-Claim I-Claim B-Premise I-Premise O-Arg Acc. F1
lexSyn .395 .530 .114 .176 .768 .673 .397
Discrete* .269 .504 0 .013 .695 .595 .296
Embeddings .401 .560 .048 .139 .769 .676 .384
Embeddings+lexSyn .482 .610 .134 .180 .764 .682 .434
Embeddings+Discrete* .434 .593 .055 .152 .762 .676 .399

BiLSTM
Setup B-Claim I-Claim B-Premise I-Premise O-Arg Acc. F1
BiLSTM .556 .680 .239 .438 .797 .735 .542
BiLSTM-CRF .558 .676 .199 .378 .789 .727 .520

BERT
Setup B-Claim I-Claim B-Premise I-Premise O-Arg Acc. F1
BERTbl .563 .674 .274 .425 .795 .728 .546
BERTblIMHO .571 .681 .304 .410 .795 .730 .540
BERTblessay .564 .676 .261 .406 .792 .747 .561
BERTmt .567 .685 .242 .439 .805 .741 .548
BERTmtIMHO .562 .684 .221 .413 .794 .731 .534
BERTmtessay .580 .702 .254 .427 .810 .752 .574

Table 2: F1 scores for Claim and Premise Token Detection on the test set. Underlined: highest Accu-
racy/F1 in group. Bold: highest Accuracy/F1 overall. *Discrete: includes structural, syntactic, and
lexSyn features.

says do not always comply with such writing
conventions. Table 2 displays that the lexSyn
feature independently performs better by al-
most 8% accuracy than the combination of
the other discourse features. This correlates
to the findings from prior work on SG2017
(Stab and Gurevych, 2017) where the lexSyn
features reached the highest F1 on a similar
corpus. Next, we augment the embedding fea-
tures from the BERT pre-trained model with
the discrete features and notice a marginal
improvement in the accuracy score (less than
1%) over the performance of lexSyn features.
This improvement is achieved from the higher
accuracy in detecting the claim terms (e.g., Em-
bedding+Discrete* achieves around 17% and
10%, an improvement over Discrete* features in
the case of B-Claim and I-Claim, respectively).
However, the accuracy of detecting the premise
tokens is still significantly low. We assume
that this could be due to the low frequency
of premises in the training set, which seems
to be more challenging for the CRF model to
learn useful patterns from the pre-trained em-
beddings. On the contrary, the O-Arg token
is the most frequent in the essays and that is
reflected in the overall high accuracy scores for
the O-Arg tokens (i.e., over 76% on average).

The overall performance(s) improve when
we apply the BiLSTM networks on the test

data. Accuracy improves by 5.3% in the case
of BiLSTM against the Embeddings+lexSyn
features. However, results do not improve when
we augment the CRF classifier on top of the
LSTM networks (BiLSTM-CRF). Instead, the
performance drops by 0.8% accuracy (See Ta-
ble 2). On related research, Petasis (2019)
have conducted extensive experiments with
the BiLSTM-CRF architecture with various
types of embeddings and demonstrated that
only the specific combination of embeddings
(e.g., GloVe+Flair+BERT) achieves higher per-
formance than BiLSTM-only architecture, but
we leave such experiments for future work.

In the case of BERT based experiments,
we observe BERTbl, obtains an accuracy of
73% that is comparable to the BiLSTM perfor-
mance. In terms of the individual categories,
we observe BERTbl achieves around 7.5% im-
provement over the BiLSTM-CRF classifier
for the B-Premise tokens. We also observe
that the two adaptive-pretrained models (e.g.,
BERTIMHO and BERTessay) perform better
than the BERTbl where BERTessay achieves the
best accuracy of 74.7%, a 2% improvement over
BERTbl. Although BERTIMHO was trained
on a much larger corpus than BERTessay, we
assume since BERTessay was trained on a do-
main relevant corpus it achieves the highest F1.
Likewise, in the case of multitask models, we
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observe BERTmt performs better than BERTbl

by 1.3%. This shows that using argumentative
sentence identification as an auxiliary task is
beneficial for token-level classification. With re-
gards to the adaptive-pretrained models, akin
to the BERTbl based experiments, we observe
BERTmtessay perform best by achieving the
highest accuracy over 75%.

Argument Segmentation We choose the
five-way token-level classification of argument
component over the standard pipeline approach
because the standard level of granularity (sen-
tence or clause-based) is not applicable to our
training data. In order to test the benefit of
the five-way token-level classification, we also
compare it against the traditional approach
of segmentation of argumentative units into
argumentative and non-argumentative tokens.
We again follow the standard BIO notation
for a three-way token classification setup (B-
Arg, I-Arg, and O-Arg) for argument segmenta-
tion. In this setup, the B-Claim and B-Premise
classes are merged into B-Arg, and I-Claim and
I-Premise are merged into I-Arg, while the O-
Arg class remains unchanged. The results of
all of our models on this task are shown in
Table 3. We notice similar patterns (except
for BERTmtIMHO that performs better than
BERTmt this time) in this three-way classifi-
cation task as we saw in the five-way classi-
fication. The best model remains to be the
BERTmtessay with 77.3% accuracy, which is an
improvement of 2-3% over the BiLSTM and
other BERT-based architecture.

In summary, we have two main observations
from Table 2 and Table 3. First, the best
model in Table 3 reports only about 3% im-
provement over the result from Table 2 which
shows that the five-way token-level classifica-
tion is comparable against the standard task of
argument segmentation. Second, the accuracy
of the argument segmentation task is much
lower than the accuracy of college-level essay
corpus SG2017 (Stab and Gurevych, 2017) re-
ported accuracy of 89.5%). This supports the
challenges of analyzing middle school student
essays.

5.1 Qualitative Analysis

Since we have explored three separate machine
learning approaches with a variety of experi-

CRF
Features B-Arg I-Arg O-Arg Acc. F1
lexSyn .385 .518 .768 .683 .557
Discrete .288 .493 .710 .625 .497
Embeddings .379 .596 .767 .699 .581
Emb+lexSyn .468 .622 .768 .708 .619
Emb+Discrete .381 .599 .767 .699 .582

BiLSTM
Setup B-Arg I-Arg O-Arg Acc. F1
BiLSTM .546 .730 .792 .759 .689
BiLSTM-CRF .553 .707 .793 .752 .684

BERT
Setup B-Arg I-Arg O-Arg Acc. F1
BERTbl .567 .698 .795 .750 .687
BERTblIMHO .558 .717 .778 .744 .684
BERTblessay .567 .707 .795 .754 .690
BERTmt .555 .702 .803 .758 .688
BERTmtIMHO .568 .719 .804 .764 .700
BERTmtessay .563 .735 .811 .773 .710

Table 3: F1 scores for Argument Token Detection
on the test set. Underlined: highest Accuracy/F1
in group. Bold: highest Accuracy/F1 overall.

ments, we analyze the results obtained from
the BERTmtessay model that has performed the
best (Table 2). According to the confusion ma-
trix, there are three major sources of errors: (a)
around 2500 “O-Arg” tokens are wrongly clas-
sified as “I-Claim” (b) 2162 “I-Claim” tokens
are wrongly classified as “O-Arg”, and (c) 273
“I-Premise” tokens are erroneously classified as
“I-Claim”. Here, (a) and (b) are not surpris-
ing given these are the two categories with the
largest number of tokens. For (c) we looked
at a couple of examples, such as “because of
[Walmart ’s goal of saving money]premise, [cus-
tomers see value in Walmart that is absent from
other retailers]claim”. Here, the premise tokens
are wrongly classified as O-Arg tokens. This is
probably because the premise appears before
the claim, which is uncommon in our training
set. We notice some of the other sources of
errors, and we discuss them as follows:

non-arguments classified as arguments:
This error occurs often, but it is more challeng-
ing for opinions or hypothetical examples that
resemble arguments but are not necessarily ar-
guments. For instance, the opinion “that actu-
ally makes me feel good afterward . . . ” and the
hypothetical example “Next , you will not be
eating due to your lack of money” are similar
to an argument, and the classifier erroneously
classifies them as claim. In the future, we plan



218

to include the labeled opinions during training
to investigate how the model(s) handle opinions
vs. arguments during the classification.

missing multiple-claims from a sentence:
In many examples, we observe multiple claims
appear in a single sentence, such as: “[Some
coral can recover from this]claim though [for
most it is the final straw .]claim”. During pre-
diction, the model predicts the first claim cor-
rectly but then starts the second claim with an
“I-Claim” label, which is an impossible tran-
sition from “Arg-O” (i.e., does not enforce
well-formed spans). Besides, the model starts
the second claim wrongly at the word “most”
rather than “for”. This indicates the model’s
inability to distinguish discourse markers such
as “though” as potential separators between ar-
gument components. This could be explained
by the fact that markers such as “though” or
“because” are frequently part of an argument
claim. Such as, in “[those games do not seem
as violent even though they are at the same
level]claim”, “though” is labeled as “I-Claim’.

investigating run-on sentences: Some
sentences contain multiple claims, which are
written as one sentence via a comma-splice
run-on such as “[Humans in today ’s world do
not care about the consequences]claim, [only
the money they may gain .]claim” which has
two claims in the gold annotations but it was
predicted as one long claim by our best model.
Another example is “[The oceans are also an-
other dire need in today’s environment]claim,
each day becoming more filled with trash and
plastics.”, in which the claim is predicted cor-
rectly in addition to another predicted claim
starting at the word “each”. The model tends
to over predicts claims when a comma comes
in the middle of the sentence followed by a
noun. However, in the former example, the
adverb “only” that has a “B-Claim” label fol-
lows the comma rather than the more frequent
nouns. Such instances add more complexity to
understand and model argument structures in
middle school student writing.

e↵ect of the multitask learning: We ex-
amined the impact of multitask learning and
notice two characteristics. First, as expected,
the multitask model can identify claims and
premises that are missed by the single task

model(s), such as: “[many more negative ef-
fects that come with social media . . . ”]claim”
that was correctly identified by the multitask
model. Second, the clever handling of the
back-propagation helps the multitask model
to reduce false positives to be more precise.
Many non-argumentative sentences, such as:
“internet’s social networks help teens find com-
munities . . . ” and opinions, such as: “take
$1.3 billion o↵ $11.3 billion the NCAA makes
and give it to players” are wrongly classified as
claims by the single task models but are cor-
rectly classified as non-argumentative by the
multitask model.

6 Conclusion

We conduct a token-level classification task to
identify the type of the argument component
tokens (e.g., claims and premises) by combin-
ing the argument segmentation and component
identification in one single task. We perused
a new corpus collected from essays written by
middle school students. W Our findings show
that a multitask BERT performs the best with
an absolute gain of 7.5% accuracy over the dis-
crete features. We also conducted an in-depth
comparison against the standard segmentation
step (i.e., classifying the argumentative vs. non-
argumentative units) and proposed a thorough
qualitative analysis.

Middle school student essays often contain
run-on sentences or unsupported claims that
make the task of identifying argument com-
ponents much harder. We achieve the best
performance using a multitask framework with
an adaptive pretrained model, and we plan to
continue to augment other tasks (e.g., opinion
and stance identification) under a similar mul-
titask framework (Eger et al., 2017). We plan
to generate personalized feedback for the stu-
dents (e.g., which are the supported claims in
the essay?) that is useful in automated writing
assistance.
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A Appendix

A.1 Parameter Tuning

CRF experiment: For the CRF model, we
search over the two regularization parameters
c1 and c2 by sampling from exponential distri-
butions with 0.5 scale for c1 and 0.05 scale for
c2 using a 3 cross-validation over 50 iterations,
which takes about 20 minutes of run-time. The
final values are 0.8 for c1 and 0.05 for c2 for the
best CRF model that uses LexSyn and BERT
embeddings features.

BiLSTM experiment: For BiLSTM net-
works based experiments we searched the hyper
parameters over the dev set. Particularly we
experimented with di↵erent mini-batch size
(e.g., 16, 32), dropout value (e.g., 0.1, 0.3, 0.5,
0.7), number of epochs (e.g., 40, 50, 100 with
early stopping), hidden state of sized-vectors
(256). Embeddings were generated using BERT
(“bert-base-uncased”) (768 dimensions). After
tuning we use the following hyper-parameters
for the test set: mini-batch size of 32, number
of epochs = 100 (stop between 30-40 epochs),
and dropout value of 0.1. The model has one
BiLSTM layer with size 256 of the hidden layer.

BERT based models: We use the dev par-
tition for hyperparameter tuning (batch size
of 8, 16, 32, 48), run for 3,5,6 epochs, learning
rate of 3e-5) and optimized networks with the
Adam optimizer. The training partitions were
fine-tuned for 5 epochs with batch size = 16.
Each training epoch took between 08:46 ⇠ 9
minutes over a K-80 GPU with 48GB vRAM.

A.2 Results of Discourse Feature
Groups

We show below the results of using each of the
three feature groups individually: structural,
syntactic and lexical-syntactic. As mentioned
in the results section of the paper, we can
see below that the structural and syntactic
features do not do well when used individually.
Therefore, they were excluded from further

Features Structural Syntactic LexSyn All Discrete
B-claim .294 .218 .395 .269
I-claim .461 .390 .530 .504
B-premise 0 0 .114 0
I-premise .018 .009 .176 .013
O-Arg .655 .745 .768 .695
Accuracy .560 .625 .673 .595
Macro F1 .285 .272 .397 .296

Table 4: Accuracy and F1 scores for Claim and
Premise Token Detection on the test set for each
group of the discrete features in the CRF model.

experimentation with BERT embeddings. Only
the LexSyn features were tested individually
with the embeddings.


