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Abstract

This paper describes XMU’s two systems sub-
mitted to the simultaneous translation evalua-
tion at the 2nd automatic simultaneous trans-
lation workshop, which are for Zh->En text-
to-text translation and Zh->En speech-to-text
translation. In both systems, our translation
model is based on Transformer. To translate
streaming text, we use an adaptive policy to
split the text into appropriate segments and
translate them monotonically. Our speech-to-
text system is a pipeline system, in which the
MT component is exactly the same as our text-
to-text system.

1 Introduction

Simultaneous translation refers to translating the
message from the speaker to the audience in real-
time without interrupting the speaker. It is widely
used in many scenarios such as international con-
ferences and business negotiations. Simultaneous
machine translation is a challenging task and has
become an increasingly popular research field in
recent years.

There have been some researches on simulta-
neous translation of speech input (Niehues et al.,
2018; Ma et al., 2020b,c; Ren et al., 2020), and
some researches focused on text translation (Ari-
vazhagan et al., 2019; Zhang et al., 2020; Ma et al.,
2020a).

In this paper, we describe our two systems sub-
mitted to the simultaneous translation evaluation at
the 2nd automatic simultaneous translation work-
shop, which are for Zh->En text-to-text transla-
tion and Zh->En speech-to-text translation. We
build our systems with the state-of-the-art method
(Zhang et al., 2020), and verify the effectiveness of
this method.

2 Text-to-text Track

In this section, we describe our system submitted to
Zh->En text-to-text simultaneous translation track.

The main idea of this system is how human in-
terpreters work. While listening to speakers, hu-
man interpreters constantly translate text segments
that are appropriate to translate without waiting for
more words, and meanwhile making the translation
grammatically tolerable. Text segments considered
appropriate to translate usually have clear and def-
inite meaning, because the translation of such a
segment is not likely to be changed by subsequent
text. The authors of Zhang et al. (2020) refered to
such segments Meaningful Units (MU) and gived
MUs a precise difinition. See Table 1 for an illus-
tration.

Our system works like a human interpreter de-
scribed above and is composed of an MU classi-
fication model and a machine translation model.
Once a segment is classified to be an MU by the
MU classifier, the MT model uses forced decoding
with previous translation as the prefix to translate
the segment, as shown in Table 1.

2.1 Machine translation

Our machine translation model is implemented
with FAIRSEQ1 (Ott et al., 2019).

Data and preprocessing. The data we use are
CWMT192 (9.1M parallel sentences pairs) and the
simultaneous translation corpus (39K parallel sen-
tences pairs) provided by the organizer of the work-
shop.

We do the following steps to preprocess the data.

• Filtering. The sentence pairs whose English
sentence is longer than 120 words are filtered
out.

∗ Corresponding author.
1https://github.com/pytorch/fairseq
2http://mteval.cipsc.org.cn:81/agreement/description



20

Source: 牛顿 || 发现 了 || 牛顿 运动 定律
Newton discover tense particle Newton motion law

Simul. Interpretation: Newton || discovered || Newton’s laws of motion

Table 1: An illustration of how a human interpreter work. The source sentence is splited to three MUs (separated
by "||"), and an interpreter translates the MUs in order and makes them form a grammatically correct sentence.

• There are a few punctuation marks, numbers
and letters in the data which are in full width.
They are converted to half width characters.

• There are a few Chinese characters in the data
which are traditional characters. They are con-
verted to simplified ones.

• Chinese segmentation. All Chinese sentences
are segmented with Jieba Chinese Segmenta-
tion Tool3.

• English tokenization. All English sentences
are tokenized and truecased with Moses4.

• Byte-pair-encoding (BPE) (Sennrich et al.,
2016). Both Chinese and English data are
encoded by BPE with Subword-NMT5. The
number of merge operations for each language
is set to 30K.

Modeling and training. Our translation model’s
architecture is base Transformer (Vaswani et al.,
2017). We use Adam optimizer (Kingma and Ba,
2015) to optimize the loss. We use weight decay
of 1e−4 and dropout with probability of 0.2 for
regularization. Label smoothing with ε of 0.1 is
applied to our model. During inference, we set
beam size to 20.

Our model is first pretrained on CWMT and
then finetuned on the the training set of the Baidu
Speech Translation Corpus (Zhang et al., 2021).
We set learning rate to 5e−4 in the pretraining stage
and 3e−5 in the fine-tuning stage. The learning rate
is linearly increased for the first 4000 training steps,
and is decreased following an inverse squareroot
schedule.

2.2 MU classifier

Modeling and training. The MU classifier is a
binary classifier. Given a source word sequence
x = {x1, x2, ..., xn}, the MU classifier determines
whether x ends with an MU, and if so the MT

3https://github.com/fxsjy/jieba
4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt

x xf (m = 2) c
牛顿 || 发现 了 1
牛顿 ||发现 了牛顿 0
牛顿 ||发现 了 || 牛顿 运动 1
牛顿 ||发现 了 ||牛顿 运动 定律 0

Table 2: MU samples for the MU classifier. "||" is a
symbol to separate MUs. c = 1 means that x ends with
an MU, otherwise not.

will translate x with forced decoding. The in-
put of the classifier is x and m "future" words
xf = {xn+1, xn+2, ..., xn+m}, where m is a hy-
perparameter. The outputs are the probabilities of
two classes p(c = 1) and p(c = 0), which mean x
ends with an MU or not. x will be classified into
class 1 if p(c = 1) > t, where t is a threshold set
based on experience. Obviously, we can control the
latency of simultaneous translation by modifying
m. Later in experiments, it will be shown that we
can also control the latency by modifying t. In our
system, m is always set to 2.

The MU classifier is based on a chinese BERT
(Devlin et al., 2019)6. We use the base model and
fine-tune it with a learning rate of 5e−4.

Generating MU samples. To build an MU clas-
sifier, we need to generate MU samples just like the
samples in Table 2. For each sentence of length N ,
we generate N −m examples for it, and every MU
sample is a triple < x, xf , c >. When we generate
examples, c is set to 1 if x ends with an MU, else it
is set to 0. In our system, we generate MU samples
for every sentence pairs in CWMT and the simul-
taneous translation corpus. Our MU samples are a
little different from the MU samples in Zhang et al.
(2020). In their work, the future words of a sample
can be less than m, but not in this paper. We do not
need training samples whose future words are less
than m, because during inference when the future
words are less than m, the sentence is already a
whole sentence and thus can be fed into MT.

We use the basic method proposed in Zhang et al.
(2020) to generate MU samples.

6https://github.com/649453932/Bert-Chinese-Text-
Classification-Pytorch
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3 Speech-to-text Track

In this section, we describe our system submitted
to Zh->En speech-to-text simultaneous translation
track.

This system is a pipeline of three stages: (1)
speech recognition, (2) punctuation restoration, and
(3) streaming machine translation. The third stage
is exactly the same as the system described in Sec-
tion 2. In other words, the system described in
Section 2 is a part of our speech-to-text system,
and therefore it will not be repeated in this section.
This section only describes the stage (1) and stage
(2).

3.1 Speech recognition

Instead of building a speech recognition model, we
use Baidu’s real time speech recognition service7.
In our system, We call the API of this service to
recognize streaming speech. It is important to note
that although the ASR does not output punctuation,
it separates different sentences, that is, the ASR
outputs are many segmented sentences instead of
one sentence.

3.2 Punctuation restoration

The recognition results of Baidu’s asr service do not
have punctuation, but the input of our MT model
needs punctuation. As a result we build a model
to restore the punctuation for every recognition re-
sult. We use a BERT-based (Devlin et al., 2019)
sequence labeling model (Chen and Shi, 2020) to
do punctuation restoration. This model labels ev-
ery Chinese character in a sentence, and for the
model we only consider four classes: comma, pe-
riod, question mark and no punctuation.

4 Experiments

In this section, we evaluate our two systems on
the development set of the Baidu Speech Transla-
tion Corpus (Zhang et al., 2021). The two used
metrics are case-sensitive detokenized BLEU (Pa-
pineni et al., 2002) and Consecutive Wait (CW)
(Neubig et al., 2017), for translation quality and
latency respectively. CW considers on how many
source words are waited for consecutively between
two target words, and thus larger CW means longer
latency. We use SacreBLEU (Post, 2018)to com-
pute BLEU scores.

7https://cloud.baidu.com/doc/SPEECH/s/2k5dllqxj
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Figure 1: Translation quality against latency of differ-
ent thresholds t. The rightmost point is not a result of
simultaneous translation, but a result got by translating
complete sentences.

4.1 Text-to-text track

We set the threshold t in the MU classifier to var-
ious values and get multiple results, as shown in
Figure 1. It is worth noting that the rightmost point
in Figure 1 is not a result of simultaneous transla-
tion. This result is got by translating every sentence
after it is finished, i.e., we get this result by trans-
lating whole sentences.

4.2 Speech-to-text track

The experimental results are shown in Figure 2.
Similarly, the rightmost point is not a result of
simultaneous translation. Because the speech in the
development set is difficult for ASR, the ASR does
not perform well, resulting in a character error rate
of 35.3%. The errors caused by ASR are brought
to MT, and thus the BLEU is much lower than in
the text-to-text track.

4.3 Analysis

From Figure 1 and Figure 2, we can observe that
the larger the threshold t is, the longer the latency
is. This is because the larger the threshold t is, the
longer the detected MUs are, which further leads to
longer waiting time between two translations. We
can also observe that the larger the threshold t is,
the higher the translation quality is. This is because
the larger the threshold t is, the more likely a de-
tected MU is a true MU and thus the translation of
the detected MU will not be changed by subsequent
incoming text. Table 3 is an illustration for this.
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Source: 好 ，让 我们 来看 下个 例子 。
okay let we look next example

Reference: Okay , let ’s look at the next example .
Simultaneous Translation (t = 0.7): OK , let ’s look at the next example .
Simultaneous Translation (t = 0.5): Okay , || let ’s look at the next example .
Simultaneous Translation (t = 0.3): Okay , || let ’s do it . || let ’s look at the next example .

Table 3: An illustration of text-to-text simultaneous translation with different threshold t. "||" is a symbol for
separating the translations of detected MUs.
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Figure 2: Translation quality against latency of differ-
ent thresholds t. The rightmost point is not a result of
simultaneous translation, but a result got by translating
complete sentences.

5 Conclusion

We have built two systems for text-to-text simulta-
neous translation and speech-to-text simultaneous
translation. The key of our systems is the basic
adaptive segmentation policy in Zhang et al. (2020).
With this policy, simultaneous translation can be
achieved without any modification to the MT com-
ponent, and the latency can be controlled.

In our future work, we would like to study how
to improve the cooperation of ASR and MT and
the performance of MU classification.
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