
Multi-modal Intent Classification for Assistive Robots with Large-scale
Naturalistic Datasets

Karun Mathew ♣0 Venkata S Aditya Tarigoppula♦♥ Lea Frermann♠

♣Newline Structures Pvt Ltd.
♦Department of Biomedical Engineering, The University of Melbourne

♥ARC Training Centre in Cognitive Computing for Medical Technologies
♠School of Computing and Information Systems, The University of Melbourne

karunmatthew@live.in aditya.tarigoppula@gmail.com lfrermann@unimelb.edu.au

Abstract

Recent years have brought a tremendous
growth in assistive robots/prosthetics for peo-
ple with partial or complete loss of upper limb
control. These technologies aim to help the
users with various reaching and grasping tasks
in their daily lives such as picking up an ob-
ject and transporting it to a desired location;
and their utility critically depends on the ease
and effectiveness of communication between
the user and robot. One of the natural ways
of communicating with assistive technologies
is through verbal instructions. The meaning
of natural language commands depends on the
current configuration of the surrounding envi-
ronment and needs to be interpreted in this
multi-modal context, as accurate interpretation
of the command is essential for a successful
execution of the user’s intent by an assistive
device. The research presented in this paper
demonstrates how large-scale situated natural
language datasets can support the development
of robust assistive technologies. We lever-
aged a navigational dataset comprising > 25k
human-provided natural language commands
covering diverse situations. We demonstrated
a way to extend the dataset in a task-informed
way and use it to develop multi-modal intent
classifiers for pick and place tasks. Our best
classifier reached > 98% accuracy in a 16-way
multi-modal intent classification task, suggest-
ing high robustness and flexibility.

1 Introduction

Paralysis is a loss of motor function to varying de-
grees of severity often resulting in severely reduced
or complete loss of upper and/or lower limb control.
Such impairments reduce the quality of life for mil-
lions of people affected by paralysis (Armour et al.,
2016) and increase their dependence upon others
to perform day-to-day activities including self- or

0Work done while at Melbourne University.
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Figure 1: High-level overview of our intent classifier.
The system receives visual information extracted from
the environment together with a natural language task
command as input; and uses this to predicts the intent
as a suitable sequence of actions necessary to execute
the command. Visual scene parsing and cross-modal
entity linking are not tackled in this work.

object locomotion and object manipulation tasks
like reaching, picking up an object and moving it
to a desired location (pick and place). Assistive de-
vices can compensate for some of the impairments
provided that they can accurately infer and exe-
cute user intents. Most assistive devices currently
in use rely on manual control (e.g., wheelchairs
controlled with joysticks), and cannot understand
natural language user commands or map them to
potentially complex sequences of actions. More-
over, they do not perceptively account for the sur-
rounding environment they are interacting with and
as a consequence require a more detailed user input.
Therefore, recent developments have focused on
Intelligent Assistive Devices (IAD), that combine
traditional assistive devices with advanced sensors
and artificial intelligence, aiming for an accurate
inference of a user’s intent in the context of a multi-
modal representation of the environment (Barry
et al., 1994).

The utility of the IAD depends critically on the
efficiency and effectiveness of the communication
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with the user. One of the natural ways of instructing
the IAD is through verbal communication. It is
important to recognize that a majority of patients
suffering a loss of limb control retain the ability to
speak, albeit impaired in some cases. Modern voice
controlled IADs such as wheelchairs (Hou et al.,
2020; Umchid et al., 2018), smart home appliances
and assistive anthropomorphic robots (Pulikottil
et al., 2018a; John et al., 2020) are still limited to
a pre-defined set of instructions that the user can
choose from. This requires the user to explicitly
dictate each individual action leading to the final
goal rather than just stating the desired goal alone
and off-loading the decision making to perform
any required sequence of actions to accomplish the
user’s intent. Consider the example in Figure 1,
where a robotic assistant situated in a complex and
dynamic environment is given a verbal instruction
“Pick up the book”. While the need of a “pick”
action is evident from the language command alone,
possible additional actions (navigate to the book’s
location, or to turn around to face the book) depend
on the agent and book’s location, thus requiring an
interpretation of the natural language command in
the context of the surrounding environment.

In this paper, we present a step towards bridg-
ing this gap by drawing on large, data resources,
state of the art language understanding and intent
classification methods. We develop a classifier that
takes a higher-order task command contextualized
in the current environment as input and derives the
necessary set of sub-actions (intents) required to
achieve the goal intended by the user. We present a
scalable framework to develop such flexible natu-
ral language interfaces for IAD that execute ‘pick
and place’ tasks. Specifically, we leverage AL-
FRED (Shridhar et al., 2020), a large-scale natu-
ralistic data set for developing indoor navigation
systems, comprising diverse, crowd-sourced natu-
ral language commands and photo-realistic images,
and adapt it to the pick-and-place task (Section 3).
We augment the state-of-the-art natural language
intent classifier DIET (Bunk et al., 2020) with a vi-
sual processing component (Section 4). Evaluation
against simpler classifiers as well as exclusively
text-based classification scenarios shows the ad-
vantage of joint processing of visual and language
information, as well as the DIET architecture. The
use of large-scale naturalistic data allows to build
solutions that generalize beyond the confines of a
laboratory, are easily adaptable and have the po-

tential to improve the overall quality of life for the
user. This framework is part of a larger project
intended to develop a multi-modal (voice and brain
signal) prosthetic limb control.

In short, our contributions are:

• We show that task-related large-scale data sets
can effectively support the development as-
sistive technology. We augmented the AL-
FRED data set with anticipated scenarios of
human-assistive agent interaction, including
noisy and partially observed scenarios.

• We contribute a multi-modal extension of a
state-of-the-art natural language intent classi-
fier (DIET) with a visual component, which
lead to the overall best classification results.

• Our best performing model achieved 98% ac-
curacy in a 16-way classification task over
diverse user-generated commands, evidenc-
ing that our architecture supports flexible and
reliable intent classification.

2 Related Work

Our work is cross-disciplinary, covering both med-
ical robotics and (multi-modal) machine learning
and NLP for intent classification.

Intent classification is the task of mapping a nat-
ural language input to a set of actions that when ex-
ecuted help achieve the underlying goals of the user.
As an essential component of conversational sys-
tems, it has attracted much attention in the natural
language understanding community with methods
ranging from semantic parsing (Chen and Mooney,
2011) to more recent deep learning (Liu and Lane,
2016; Goo et al., 2018) and transfer learning ap-
proaches, with unsupervised pre-training (Liu et al.,
2019; Henderson et al., 2020). The on-line interac-
tive nature of dialogue applications makes model
efficiency a central objective. We build on the re-
cent DIET classifier (Dual Intent and Entity Trans-
former; (Bunk et al., 2020)) which achieves com-
petitive performance in intent classification, while
maintaining a lightweight architecture without the
need for a large pre-trained language models. DIET
was originally developed for language-based dia-
logue, and we extend the system with a vision un-
derstanding component and show that it generalizes
to a multi-modal task setup.



Visually grounded language understanding
addresses the analysis of verbal commands in the
context of the visual environment. Prior work
ranges from schematic representations of the en-
vironment avoiding the need for image analy-
sis (Chen and Mooney, 2011) over simplistic visual
environments (”block worlds” Bisk et al. (2016))
to complex outdoor navigation (Chen et al., 2019)).
The advance of deep learning methods for joint
visual and textual processing has lead to the de-
velopment of large-scale datasets which feature
both naturalisitic language as well as images (Bunk
et al., 2020; Chen et al., 2019; Puig et al., 2018).
We leverage a subset of the ALFRED dataset (Bunk
et al., 2020) which is a benchmark dataset for learn-
ing a mapping from natural language instructions
and egocentric (first person) vision to sequences of
actions for performing household tasks. The com-
mands in the ALFRED dataset are crowd-sourced
from humans, and as such are diverse and resem-
ble naturalistic language. The visual scenes are
complex and photo-realistic, and the dataset con-
tains tasks requiring the agent to execute com-
plex sequences of multiple, context-dependent ac-
tions to manipulate objects in an environment that
closely resembles the medical application scenario
addressed in this paper. We note that we do not ad-
dress the object recognition challenge in this work,
but assume access to the object locations, and train
intent classifiers to incorporate such information.

Interfacing medical assistive technologies Tra-
ditional interfaces to assistive technologies in-
volved manipulating joysticks (House et al., 2009),
or verbal commands which are restricted to simple
templates. The latter include very simple templates
(”up”, ”down”, ”left”; Pulikottil et al. (2018b)),
or highly constrained training data sets based on
command templates produced by five human an-
notators (Stepputtis et al., 2020). In this paper, we
leverage natural commands produced by thousands
of crowd workers with the aim to produce a robust
intent classifier amenable to natural speech input.

3 Data

We leveraged and extended the ALFRED (Action
Learning From Realistic Environments and Direc-
tives) dataset of visually grounded language com-
mands (Shridhar et al., 2020), for training and test-
ing our intent classifier. ALFRED consists of more
than 8,000 sets of scenes with unique environmen-
tal layout with a fixed set of associated movable

and static objects. Each scene is paired with an
indoor navigation task, and contains three levels
of information: (1) positional information of the
agent and objects, (2) natural language descriptions
of the high-level task and low-level instructions to
achieve the goal, and (3) a sequence of discrete
actions to be performed by the agent to achieve the
goal. An example is shown in Figure 2.

The visual task information comprises the posi-
tional (x, y, z) co-ordinates of the agent (Agent
Information), and the positional information of
static and interactable objects in the environment
(Scene Information). The natural language anno-
tation includes a “high-level task” describing the
overall goal, as well as detailed low-level instruc-
tions (“low-level subtasks”) on how to achieve the
goal. Low level instructions were provided by at
least three human annotators through crowdsourc-
ing. Finally, each ALFRED task in the train and
validation set is augmented with an ”action plan”
listing the sequence of actions (or intents) such as
GoToLocation or PickUpObject required to
achieve the goal in the context of the scene config-
uration (Figure 2, bottom). Crowd workers were
prompted by these action plans, so that a gold-
standard utterance-intent alignment could be de-
rived from the data set.

3.1 ALFRED for intent classification

We utilized a subset of the dataset corresponding
to “pick and place” tasks, which is most relevant
to our target application of humanoid arm control.
We refer to the item that is to be picked up as
“target object” and the item on which the picked-up
object is to be placed as the “receptacle object”.
ALFRED contains around 3,000 different pick and
place tasks, involving 58 unique target objects and
26 receptacle objects across 120 indoor scenes.

Leveraging the ALFRED action plans, we
could map all “pick and place” language com-
mands to a combination of three unique sub-
actions: GoToLocation1, PickUpObject
and PutObject. GoToLocation actions re-
ferred to actions of the agent moving to a given
location. PickUpObject and PutObject cor-
responded to the action of picking up the target
object and placing the target object, respectively.
Note that a single natural language directive can
cover one or more atomic actions. We refer to com-

1in analogy to a lateral or vertical movement of the robotic
arm



Agent Information Agent {x: -2.50, y: 0.92, z: 2.50, rotation=0}

Scene Information

FloorPlan: FloorPlan214
Plate, {x: -0.31, y: 0.27, z: 5.99}
WateringCan, {x: -2.28, y: 0.45, z: 4.27}
KeyChain, {x: -4.31, y: 0.45, z: 6.73}
Box, {x: -2.40, y: 0.57, z: 4.57}
Laptop, {x: -2.49, y: 0.53, z: 0.79}
Vase, {x: -0.60, y: 1.46, z: 5.74}
WateringCan, {x: -2.40, y: 0.44, z: 3.83}

Language Information

High Level Task “Move the purple pillow from the couch to the black chair.”
Low Level Subtask 1 “Turn right and walk up to the couch.”
Low Level Subtask 2 “Pick up the purple pillow off of the couch.”
Low Level Subtask 3 “Turn around and walk across the room, then hand a left

and walk over to the black chair.”
Low Level Subtask 4 “Put the purple pillow on the black chair.”

Action Plan

Discrete Action 1 GoToLocation
Discrete Action 2 PickUpObject
Discrete Action 3 GoToLocation
Discrete Action 4 PutObject

Figure 2: Visual and Language information corresponding to a pick and place task in ALFRED, as well as the
associated Action Plan, i.e., sequence of actions (or intents), as provided in the the data set.

mands describing a single task as “single intent”
(“Pick up the keys.”), and commands describing
multiple tasks as “multi-intent” (“Bring the keys
from the chair to the table.””). Table 1 illustrates
the range of tasks and intents supported by the
original ALFRED dataset and resulting training in-
stances. In the original ALFRED data set, each
low-level instruction was associated with a single
intent (Table 1 middle).

We augmented high-level task descriptions with
intents by concatenating the actions of its associ-
ated low-level tasks (Table1 top). In addition, we
augmented the ALFRED tasks with additional di-
verse and relevant scenarios to our assistive agent
use case. First, we created partial tasks where the
agent was required to execute only parts of the
complete pick and place action sequence (e.g., only
move to, and pick up the object). We synthesized
these instances by concatenating all possible or-
dered subsequences of the low- level sub-tasks for a
scenario and concatenating their corresponding nat-
ural language commands. The resulting instances
were then treated as a single “multi-intent” direc-
tive (Table 1, bottom). Second, we randomized the
positions of the target and receptacle objects men-
tioned in the verbal commands to (1) far from the
agent, (2) near the agent or (3) near the receptacle.

Finally, we imposed physical constraints onto
the agent, resembling the characteristics of an as-
sistive robotic arm. In the original ALFRED, all
objects within a specific distance of the agent are

considered ‘pickable’. We introduced a thresh-
old (60 degrees) beyond which an object is un-
reachable and requires the agent to turn to the ob-
ject first. We introduced a corresponding new ac-
tion called RotateAgent that needed to be per-
formed before the PickUpObject. In addition,
we reduced the maximum reach distance of the
agent to 0.5 meters and updated ALFRED tasks
accordingly with GoToLocation actions before
PickUpObject where necessary. The resulting
dataset more realistically represented the physi-
cal constraints faced by real world entities, and
the actions to be taken to meet the necessary pre-
conditions to perform a task. We also handled cases
where visual features corresponding to a language
command were missing or irrelevant. For example,
the command “Take a step forward”, has a sin-
gle intent GoToLocation when considering the
natural language command alone. For such com-
mands, we generated multiple data instances with
randomized visual features to encourage the model
to be insensitive to an irrelevant input modality.

We divided our final dataset into non-
overlapping training, testing and validation sets
with no overlap in environments. We treated each
unique action combination observed in the data as
a distinct intent, leading to a total of 16 possible in-
tents that could be selected in response to a spoken
command.2 Table 2 summarizes our data set, full

2In addition to the 9 unique intents in Table 1, these
are {PickUpObject, PutObject}, {RotateAgent,
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1. ”Move a red pillow from the couch to a black chair.”

{GoToLocation,
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PutObject }
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2. ”Turn right and walk up to the couch.” {GoToLocation }

3. ”Pick up the red pillow off the couch.” {PickUpObject }

4. ”Turn around and walk. . . to the chair.” {GoToLocation }

5. ”Put the red pillow on the chair.” {PutObject }
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6.
”Turn right and walk up to the couch. Pick up the
red pillow off the couch.”

{GoToLocation,
PickUpObject }

7.
”Pick up the red pillow off the couch. Turn around
and walk . . . to the chair.”

{PickUpObject,
GoToLocation }

8.
”Turn around and walk . . . to the chair. Put the red
pillow on the chair.”

{GoToLocation,
PutObject }

9.
”Turn right and walk up to the couch. Pick up the
red pillow off the couch. Turn around and walk . . .
to the chair.”

{GoToLocation,
PickUpObject,
GoToLocation }

10.
”Pick up the red pillow off the couch. Turn around
and walk . . . to the chair. Put the red pillow on the
chair.”

{PickUpObject,
GoToLocation,
PutObject }

11.
”Turn right and walk up to the couch. Pick up the
red pillow off the couch. Turn around and walk . . .
to the chair. Put the red pillow on the chair.”

{GoToLocation,
PickUpObject,
GoToLocation,
PutObject }

Table 1: Example high level multi-intent (1.), low-level single-intent (2.–5.) and low-level multi-intent (6.–7.)
tasks of type ‘pick and place’. The model receives language commands (left col) together with relevant visual
information, and predicts an intent (right col). Top/middle are from the original ALFRED dataset. Bottom instances
from data augmentation.



train valid test

# Commands 104,669 24,612 25,109
Percentage 70% 15% 15%

Table 2: Final data set statistics.

data set statistics are in Table 5 in the appendix.

4 Models

Our intent classification model took vector repre-
sentations of the language command and visual
context as input and predicted the underlying in-
tent as one of 16 classes. We briefly describe the
representation schemes for scene and language in-
put. Afterwards, we present our proposed model,
which extended a state-of-the-art language intent
classifier to handle both visual and language input.

4.1 Visual Features

The visual data corresponding to a task instance
in ALFRED dataset included the agent and object
position information (Figure 2, Agent and Scene
information). We represented the visual informa-
tion of each task as a 4-dimensional vector with
elements corresponding to (i) The L2 (Euclidean)
distance between agent and target object, (ii) L2 dis-
tance between agent and receptacle object, (iii) L2
distance between target and receptacle object and
(iv) the angle between the target object and the
direction the agent is facing initially.

4.2 Language Features

We transformed the language command to pre-
trained word embeddings (Pennington et al., 2014;
Kenton and Toutanova, 2019; Peters et al., 2018).
Specifically, we use Tok2Vec embeddings provided
by SpaCy.3 We mapped each word in an input com-
mand to its corresponding embedding and obtained
a representation for the entire command by averag-
ing the word embeddings. Following (Bunk et al.,
2020) we augment the embeddings with word- and
character-level n-grams.

PickUpObject}, {RotateAgent,PutObject},
{GoToLocation, PickUpObject, PutObject},
{RotateAgent, PickUpObject, PutObject},
{RotateAgent, PickUpObject, GoToLocation},
{RotateAgent, PickUpObject, GoToLocation,
PutObject}

3https://spacy.io/usage/
embeddings-transformers

4.3 The DIET Intent Classifier
DIET is a state of the art, natural language intent
classification architecture developed for dialogue
understanding tasks (Bunk et al., 2020). DIET
classifiers are attractive for application to assistive
technologies because they can be trained rapidly
and work well even with small datasets. The DIET
classifier represents natural language inputs as de-
scribed above (Sec 4.2). This input representation
is passed through a neural network transformer ar-
chitecture (Vaswani et al., 2017) which is a state-of-
the-art architecture for computing contextualized
representations of input sequences. DIET is opti-
mized to maximize the similarity between the final
representation of the verbal command and an em-
bedded representation of the true intent. We follow
their optimization procedure, and at test time we
predicted the intent with the closest predicted em-
bedding to the gold label. We used the official
implementation, with default parameters.4

4.4 Multi-modal DIET
We extended the DIET classifier to a multi-modal
model (DIET-M) which predicted intents based on
language and scene features. The language input
was encoded exactly as in the original model. We
then concatenated the output of the transformer
along with the 4-dimensional numerical visual fea-
tures and passed the result first through a 10%
dropout layer, followed by two feed-forward layers
of sizes 256 and 128 and finally through an output
layer of size 40 to obtain a combined visual and
language representation. ReLU was used as the
activation function for all the feed-forward layers.
This joint embedded representation was then used
to identify the intents following DIET’s original
training objective, as described above.

5 Experiments

We present a series of experiments which assesses
the impact of model complexity, multi-modal infor-
mation as well as our data augmentation on final
intent classification performance. This work fo-
cuses on robust multi-modal intent classification,
and as such our experiments assume that the en-
tity recognition and visual interpretation (such as
object detection and location) have been solved ex-
ternally. We discuss our contribution in the context
of an end-to-end application Section 6.

4https://rasa.com/docs/rasa/reference/
rasa/nlu/classifiers/diet_classifier/

https://spacy.io/usage/embeddings-transformers
https://spacy.io/usage/embeddings-transformers
https://rasa.com/docs/rasa/reference/rasa/nlu/classifiers/diet_classifier/
https://rasa.com/docs/rasa/reference/rasa/nlu/classifiers/diet_classifier/


5.1 Baselines
We compare DIET and DIET-M against a Multi-
Layer Perceptron (MLP) with a single hidden layer.
Two variations of the MLP were tested: (1) MLP
which takes as input only the embedded language
representations; and (2) MLP-M which is provided
with the embedded language representations con-
catenated with the visual features, resulting in a
multi-modal variant. Rectified linear unit (ReLU)
was used as the activation function and stochastic
gradient descent (Ruder, 2016) was used to mini-
mize a cross-entropy loss. The output of the final
layer was passed through a soft-max layer to get the
probability distribution across all possible intents.
At test time, the intent with the highest probability
score was predicted as the true intent associated
with a command.

We also report a simple majority class baseline,
which labels all instances with the most prevalent
class in the training set (GoToLocation).

5.2 Metrics
We report micro-averaged accuracy, acknowledg-
ing the class imbalance in our data set, as well as
precision recall and F1 measure.

5.3 Results
Our experiments answered the following questions:
(a) how important is the multi-modal (scene) input
for accurate intent classification; (b) is a power-
ful contextual language encoding model necessary
to achieve high intent classification performance;
and (c) how does the training dataset augmenta-
tion impact performance with multi-intent com-
mands? To answer the first question, we compared
both machine learning models (DIET-M, MLP-
M) against their unimodal language-only versions
(DIET, MLP). To answer the second question, we
compared the complex DIET classifier against the
simpler MLP architecture, and a majority class
baseline. Finally, the benefits of data augmentation
were ascertained by testing DIET-M’s performance
on the same testing dataset after training on datasets
with different levels of augmentation.

Powerful language encoders improve intent
classification accuracy. Table 3 compares the
performance of the majority class baseline (Ma-
jority), MLP and the DIET classifier. All models
were trained and tested on the full, augmented data
set. Unsurprisingly, we observed that all machine
learning models outperformed the majority class

Method Ac Pr Re F1

Majority 0.142 0.142 1.0 0.248

MLP 0.451 0.379 0.374 0.333
DIET 0.591 0.409 0.508 0.429

MLP-M 0.929 0.931 0.929 0.930
DIET-M 0.985 0.982 0.984 0.983

Table 3: Intent classification performance of the ma-
jority class baseline, multi-layer perceptron (MLP) and
our DIET classifier in a unimodal and multi-modal
setup (-M). We report accuracy (Ac), precision (Pr), re-
call (Re) and F1-measure.

baseline. Furthermore, the variants of the DIET
classifier consistently achieved a higher score than
the simpler MLP (improvement of 5.6% absolute
accuracy). Even though both models achieve F1
measures > 90%, very high language understand-
ing performance is essential for user satisfaction
in dialogue systems in general, and in assistive
technology settings in particular. In addition, our
evaluation adopted “laboratory” conditions, assum-
ing noise-free entity and vision processing. With
these arguments in mind, and recalling the fact
that DIET is by design fast and efficient, we con-
clude that state-of-the-art language understanding
architectures are preferable for situated intent clas-
sification.

Grounding language in visual context informa-
tion improved intent classification performance.
Table 3 compares multi-modal model variants
(DIET-M, MLP-M) – with access to visual and
language information – against their unimodal vari-
ants, which classify intents based on language com-
mands only and remain agnostic about the visual
surroundings. For both the MLP and DIET we
observed a substantial improvement with added vi-
sual information. This is unsurprising, given the
fact that navigational language commands are of-
ten high-level and can only be fully disambiguated
in the context of the environment. As evidenced
by the large performance gain of our multi-modal
models over their language-only counterparts, both
systems successfully learned to leverage the addi-
tional visual context for accurate intent interpreta-
tion.

Data augmentation improved performance of
DIET-M. We investigated the benefit of data aug-
mentation on the best performing classifier (DIET-



Augmented Ac Pr Re F1

0% 0.630 0.529 0.607 0.545
10% 0.921 0.927 0.923 0.925
50% 0.952 0.947 0.944 0.945
100% 0.985 0.982 0.984 0.983
100% (multi) 0.981 0.974 0.976 0.973

Table 4: The performance of the DIET-M classifiers,
trained on datasets with access to 0%, 10%, 50% or
100% of the augmented data. 100% (multi) tests only
on the more challenging multi-intent subset of the test
data.

M) by ablating the amount of augmented train-
ing data available to the classifier during train-
ing. Specifically, we augment 0%, 10%, 50%
or 100% of the original ALFRED instances with
multi-subtask variations (as described in Section 3)
Rows 1-–4 in Table 4 show DIET-M performance
trained on data sets with varying amounts of aug-
mentation, and tested on the full, augmented test
data. The model improved consistently with in-
creased augmentation of the training data. Even
a small amount of augmented data improved per-
formance substantially, while more augmentation
leads to diminishing returns. We finally analyzed
specifically the benefit of data augmentation on un-
derstanding multi-intent commands, i.e., language
commands which imply sequences of actions (bot-
tom part of Table 1). To this end, we evaluated
the classifier only on multi-intent commands. The
result in the final row of Table 4 shows that the
performance on these longer and more complex
instances was practically on par with performance
on the full test set, confirming that DIET-M suc-
cessfully maps abstract comments to sequences of
actions.

6 Discussion

We leveraged and extended a large-scale dataset of
indoor navigation tasks to develop an intent clas-
sification component for robotic arm control to
perform ”pick and place” tasks. Our novel multi-
modal DIET classifier exceeded 98% in classifica-
tion performance in an ”in vitro” evaluation setup.
We now discuss limitations of our work as well as
future directions.

Toward end-to-end task completion. The in-
tent classifier will be embedded in a larger sys-
tem in order to enable end-to-end task completion.

In our evaluation, we assumed that visual scene
parsing (including object recognition and location)
as well as entity recognition in the language had
been solved perfectly and externally. In an ongo-
ing project, the presented system is integrated with
these components, leveraging the recent improve-
ments and corresponding tools and frameworks
powered by advances in machine learning, robotics
and data sets (Liu et al., 2020; Zhu et al., 2020;
Redmon and Farhadi, 2018). This paper presented
a highly accurate system which provides a strong
foundation and promising starting point for end-
to-end integration as well as experiments under
noisy conditions (e.g., malformed or ambiguous
utterances, or speech recognition errors).

Diversity of tasks and inputs Our study was
constrained to “pick-and-place” tasks which (a) are
conceptually straightforward and (b) are typically
expressed in a fairly regular, formulaic manner.
Even though the underlying ALFRED data set was
diverse and somewhat noisy due to its crowd-
sourced nature, future work will extend our sce-
nario to more complex tasks. ALFRED includes a
variety of tasks beyond “pick-and-place” and can
directly support this line of work. Our way of
constructing multi-intent subtasks by concatenat-
ing low-level descriptions biased the data towards
long descriptions and an underrepresentations of
co-referential pronouns (e.g., “Pick up the keys and
put them in the bowl”). Future work could leverage
a mix of human data collection and natural lan-
guage generation from language models to further
augment the training data.

The accuracy-flexibility trade-off. This work
developed a highly accurate intent classifier moti-
vated by the fact that efficient and reliable language
understanding is paramount to effective human-
robot interaction. To achieve this, we limited the
scenarios to a single task type as well as a sim-
ple but inflexible intent classification task: We
exhaustively enumerated possible intents as 16
classes, thus preventing the model from meaning-
fully classifying an input that does not correspond
to one of these categories. A more flexible system
would predict a sequence of atomic intent labels of
varying length. To this end, the task could be re-
framed as multi-label classification; or a sequence-
to-sequence model could be developed to translate
a natural language input into a sequence of intent
labels. Analyzing the trade-off between reliability



and flexibility in the context of robust multi-modal
intent classification for assistive technologies is a
fruitful direction for future research.

7 Conclusion

This paper presented a multi-modal intent classifier
for ”pick-and-place”-tasks which takes diverse nat-
ural language commands as input, and which will
be incorporated into a natural language interface
of an assistive robotic arm. Our work will help to
improve the naturalness of human-robot commu-
nication, which to-date often consists of mechan-
ical (joystick) control or formulaic and templated
language input. We showed how a large-scale natu-
ralistic data set for general indoor navigation can
be adapted to support training of a specific, high-
accuracy intent classifier. We extended a state-of-
the-art natural language-based intent classifier to
utilize both vision and language information. Our
evaluation showed the effectiveness of our data
augmentation, and the importance of multi-modal
signal for our task. We hope that our work moti-
vates a wider, cross-disciplinary use of large-scale
naturalistic data sets – which are becoming more
ubiquitous in the NLP and ML communities – as a
valuable resource for developing flexible intelligent
assistive technologies.
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Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić,
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A Dataset Statistics

Intent train valid test

{ GoToLocation } 14.3% 14.3% 14.3%
{ PickUpObject } 3.5% 3.7% 3.5%
{ PutObject } 3.5% 3.6% 3.5%

{ GoToLocation, PickUpObject } 7.2% 7.1% 7.2%
{ PickUpObject, GoToLocation } 3.5% 3.6% 3.6%
{ GoToLocation, PutObject } 7.1% 7.1% 7.1%
{ PickUpObject, PutObject } 3.5% 3.6% 3.6%
{ RotateAgent, PickUpObject } 3.6% 3.4% 3.7%
{ RotateAgent, PutObject } 3.6% 3.5% 3.6%

{ GoToLocation, PickUpObject, GoToLocation } 7.1% 7.1% 7.1%
{ PickUpObject, GoToLocation, PutObject } 7.0% 6.9% 7.2%
{ GoToLocation, PickUpObject, PutObject } 7.3% 7.1% 7.2%
{ RotateAgent, PickUpObject, PutObject } 3.6% 3.5% 3.5%
{ RotateAgent, PickUpObject, GoToLocation } 3.6% 3.6% 3.6%

{ GoToLocation, PickUpObject, GoToLocation,
PutObject }

14.2% 14.3% 14.2%

{ RotateAgent, PickUpObject, GoToLocation,
PutObject }

7.2% 7.4% 7.0%

Total Commands 104,669 24,612 25,109
Total Percentage 70% 15% 15%

Table 5: Full distribution of task instances by intent type in our final data set.


