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1 Brief Description

Deep learning based natural language processing
(NLP) has become the mainstream of research in
recent years and significantly outperforms conven-
tional methods. However, deep learning models are
notorious for being data and computation hungry.
These downsides limit such models’ application
from deployment to different domains, languages,
countries, or styles, since collecting in-genre data
and model training from scratch are costly. The
long-tail nature of human language makes chal-
lenges even more significant.

Meta-learning, or ‘Learning to Learn’, aims to
learn better learning algorithms, including better
parameter initialization, optimization strategy, net-
work architecture, distance metrics, and beyond.
Meta-learning has been shown to allow faster fine-
tuning, converge to better performance, and achieve
outstanding results for few-shot learning in many
applications. Meta-learning is one of the most im-
portant new techniques in machine learning in re-
cent years. There is a related tutorial in ICML 20191

and a related course at Stanford2, but most of the
example applications given in these materials are
about image processing. It is believed that meta-
learning has excellent potential to be applied in NLP,
and some works have been proposed with notable
achievements in several relevant problems, e.g., re-
lation extraction, machine translation, and dialogue
generation and state tracking. However, it does not
catch the same level of attention as in the image
processing community.

In the tutorial, we will first introduce Meta-
learning approaches and the theory behind them,
and then review the works of applying this tech-
nology to NLP problems. Table 1 summarizes the
content this tutorial will cover. This tutorial intends
to facilitate researchers in the NLP community to

1https://sites.google.com/view/
icml19metalearning

2http://cs330.stanford.edu/

understand this new technology better and promote
more research studies using this new technology.

2 Type of the tutorial

The type of tutorial is Cutting-edge. Meta-learning
is a newly emerging topic. The area of natural lan-
guage processing has seen a growing number of
papers about Meta-learning. However, there is no
tutorial systematically reviewing relevant works at
ACL/EMNLP/NAACL/EACL/COLING.

3 Tutorial Structure and Content

A typical machine learning algorithm, e.g., deep
learning, can be considered as a sophisticated func-
tion. The function takes training data as input and
a trained model as output. Today the learning al-
gorithms are mostly human-designed. These algo-
rithms have already achieved significant progress
towards artificial intelligence, but still far from op-
timal. Usually, these algorithms are designed for
one specific task and need a lot of labeled training
data. One possible method that could overcome
these challenges is meta-learning, also known as
‘Learning to Learn’, which aims to learn the learn-
ing algorithm. In the image processing research
community, meta-learning has shown to be success-
ful, especially few-shot learning. It has recently also
been widely adopted to a wide range of NLP applica-
tions, which usually suffer from data scarcity. This
tutorial has two parts. In part I, we will introduce
several meta-learning approaches (estimated 1.5
hours). In part II, we will highlight the applications
of the meta-learning methods to NLP (estimated
1.5 hours).

3.1 Part I - Introduction of Meta Learning

We will start with the problem definition of meta-
learning, and then introduce the most well-known
meta-learning approaches below.

https://sites.google.com/view/icml19metalearning
https://sites.google.com/view/icml19metalearning
http://cs330.stanford.edu/
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Table 1: Referrence of NLP tasks using different meta-learning methods.

(A) Learning to initialize (B) Learning to compare (C) Other

Text Classification
(Dou et al., 2019)
(Bansal et al., 2019)

(Yu et al., 2018)
(Tan et al., 2019)
(Geng et al., 2019)
(Sun et al., 2019)

Learning the learning algorithm:
(Wu et al., 2019)

Sequence Labelng (Wu et al., 2020) (Hou et al., 2020)

Machine Translation
(Gu et al., 2018)
(Indurthi et al., 2020)

Speech Recognition

(Hsu et al., 2020)
(Klejch et al., 2019)
(Winata et al., 2020a)
(Winata et al., 2020b)

Learning to optimize:
(Klejch et al., 2018)
Network architecture search:
(Chen et al., 2020b)
(Baruwa et al., 2019)

Relation Classification

(Obamuyide and Vlachos, 2019)
(Bose et al., 2019)
(Lv et al., 2019)
(Wang et al., 2019)

(Ye and Ling, 2019)
(Chen et al., 2019a)
(Xiong et al., 2018)
(Gao et al., 2019)

Dialogue
(Qian and Yu, 2019)
(Madotto et al., 2019)
(Mi et al., 2019)

Learning to optimize:
(Chien and Lieow, 2019)

Parsing
(Guo et al., 2019)
(Huang et al., 2018)

Word Embedding (Hu et al., 2019) (Sun et al., 2018)

Multi-model (Eloff et al., 2019)
Learning the learning algorithm:
(Surı́s et al., 2019)

Keyword Spotting (Chen et al., 2020a)
Network architecture search:
(Mazzawi et al., 2019)

Sound Event Detection
(Shimada et al., 2020)
(Chou et al., 2019)

Voice Cloning
Learning the learning algorithm:
(Chen et al., 2019b)
(Serrà et al., 2019)

3.1.1 Learning to Initialize

Gradient descent is the core learning algorithm for
deep learning. Most of the components in gradient
descent are handcrafted. First, we have to determine
how to initialize network parameters. Then the gra-
dient is computed to update the parameters, and the
learning rates are determined heuristically. Deter-
mining these components usually need experience,
intuition, and trial and error. With meta-learning,
those hyperparameters can be learned from data
automatically. Among these series of approaches,
learning a set of parameters to initialize gradient
descent, or learning to initialize, is already widely
studied.

Column (A) of Table 1 lists the NLP papers us-
ing learning to initialize. Learning to initialize is
the most widely applied meta-learning approach in
NLP today. The idea of learning to initialize spreads
quickly in NLP probably because the idea of look-
ing for better initialization is already widespread
before the development of meta-learning. The re-
searchers of NLP have applied lots of different trans-
fer learning techniques to find a set of good initial-
ization parameters for a specific task from its related

tasks. Here we will not only introduce learning to
initialize but also compare its difference with typical
transfer learning.

3.1.2 Learning to Compare

Besides the gradient descent-based learning algo-
rithm, the testing examples’ labels are determined
by their similarity to the training examples in some
learning algorithms. In this category, methods to
compute the distance between two data points are
crucial. Therefore, a series of approaches have
been proposed to learn the distance measures for the
learning algorithms. This category of approaches is
also known as metric-based approaches.

Column (B) of Table 1 lists the NLP papers us-
ing learning to compare. Natural language is in-
trinsically represented as sophisticated sequences.
Comparing the similarity of two sequences is not
trivial, and widely used handcrafted measures, such
as, Euclidean distance, cannot be directly applied,
which motivates the research of learning to compare
in NLP.
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3.1.3 Other Methods
Although the above two methods dominate the NLP
field at the moment, other meta-learning approaches
have also shown their potential. For example, be-
sides parameter initialization, other gradient de-
scent components such as learning rates and net-
work structures can also be learned. In addition
to learning the components in the existing learning
algorithm, some attempts even make the machine
invent an entirely new learning algorithm beyond
gradient descent. There is already some effort to-
wards learning a function that directly takes training
data as input and outputs network parameters for
the target task. Column (C) of Table 1 lists these
methods.

3.2 Part II - Applications to NLP tasks

There is a growing number of studies applying meta-
learning techniques to NLP applications and achiev-
ing excellent results. In the second part of the tuto-
rial, we will review these studies. Here we summa-
rize these studies by categorizing their applications.
Please refer to Table 1 for a detailed list of studies
we plan to cover in the tutorial.

3.2.1 Text Classification
Text classification has a vast spectrum of applica-
tions, such as sentiment classification and intent
classification. The meta-learning algorithms devel-
oped for image classification can be applied to text
classification with slight modification to incorporate
domain knowledge in each application (Yu et al.,
2018; Tan et al., 2019; Geng et al., 2019; Sun et al.,
2019; Dou et al., 2019; Bansal et al., 2019).

3.2.2 Sequence Labeling
Using a meta-learning algorithm to make the model
fast adapt to new languages or domains is also use-
ful for sequence labeling like name-entity recogni-
tion (NER) (Wu et al., 2020) and slot tagging (Hou
et al., 2020). However, the typical meta-learning
methods developed on image classification may not
be optimal for sequence labeling because sequence
labeling benefits from modeling the dependencies
between labels, which is not leveraged in typical
meta-learning methods. Techniques, such as the
collapsing labeling mechanism, are proposed to op-
timize meta-learning for sequence labeling prob-
lem (Hou et al., 2020).

3.2.3 Automatic Speech Recognition and
Neural Machine Translation

Automatic speech recognition (ASR), Neural ma-
chine translation (NMT), and speech translation

require a large amount of labeled training data. Col-
lecting such data is cost-prohibitive. To facilitate the
expansion of such systems to new use cases, meta-
learning is applied in these systems for the fast adap-
tation to new languages in NMT (Gu et al., 2018)
and ASR (Hsu et al., 2020; Chen et al., 2020b),
and fast adaptation to new accents (Winata et al.,
2020b), new speakers (Klejch et al., 2019, 2018),
code-switching (Winata et al., 2020a) in ASR.

3.2.4 Relation Classification and Knowledge
Graph Completion

The typical supervised learning approaches for rela-
tion classification and link prediction for knowledge
graph completion require a large number of training
instances for each relation. However, only about
10% of relations in Wikidata have no more than
ten triples (Vrandei and Krtzsch, 2014), so many
long-tail relations suffer from data sparsity. There-
fore, meta-learning has been applied to the relation
classification and knowledge graph completion to
improve the performance of the relations with lim-
ited training examples (Obamuyide and Vlachos,
2019; Bose et al., 2019; Lv et al., 2019; Wang et al.,
2019; Ye and Ling, 2019; Chen et al., 2019a; Xiong
et al., 2018; Gao et al., 2019).

3.2.5 Task-oriented Dialogue and Chatbot
Domain adaptation is an essential task in dialog
system building because modern personal assis-
tants, such as Alexa and Siri, are composed of thou-
sands of single-domain task-oriented dialog sys-
tems. However, training a learnable model for a
task requires a large amount of labeled in-domain
data, and collecting and annotating training data for
the tasks is costly since it involves real user interac-
tions. Therefore, researchers apply meta-learning
to learn from multiple rich-resource tasks and adapt
the meta-learned models to new domains with min-
imal training samples for dialog response genera-
tion (Qian and Yu, 2019) and dialogue state tracking
(DST) (Huang et al., 2020).

Also, training personalized chatbot that can
mimic speakers with different personas is useful
but challenging. Collecting many dialogs involving
a specific persona is expensive, while it is challeng-
ing to capture a persona using only a few conver-
sations. Thus, meta-learning comes into play for
learning persona with few-shot example conversa-
tions (Madotto et al., 2019).

4 Diversity

As the main applications of the meta-learning ap-
proaches are to find better metrics, model architec-
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tures, or initializations such that the meta-trained
model can generalize well in new tasks with limited
data, the approach is often used at efficient knowl-
edge transferring between domains and languages,
and has seen many promising results. Meta-learning
has the potential to democratize the progress of
machine learning and NLP for different domains,
languages, and countries in a scalable way.

5 Prerequisites for the attendees

The attendees have to understand derivatives as
found in introductory Calculus and understand ba-
sic machine learning concepts such as classification,
model optimization, and gradient descent.

6 Reading list

We encourage the audience to read the papers of
some well-known meta-learning techqnieus before
the tutorial, which are listed below.

• Learning to Initialize (Finn et al., 2017)

• Learning to Compare (Snell et al., 2017;
Vinyals et al., 2016)

• Other Methods (Ravi and Larochelle, 2017;
Andrychowicz et al., 2016)
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8 Open access

We will allow the publication of our slides and video
recording of the tutorial in the ACL Anthology.
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