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Abstract

This paper studies whether emergent lan-
guages in a signaling game follow Zipf’s law
of abbreviation (ZLA), especially when the
communication ability of agents is limited be-
cause of interfering noises. ZLA is a well-
known tendency in human languages where
the more frequently a word is used, the shorter
it will be. Surprisingly, previous work demon-
strated that emergent languages do not obey
ZLA at all when neural agents play a signal-
ing game. It also reported that a ZLA-like ten-
dency appeared by adding an explicit penalty
on word lengths, which can be considered
some external factors in reality such as artic-
ulatory effort. We hypothesize, on the other
hand, that there might be not only such exter-
nal factors but also some internal factors re-
lated to cognitive abilities. We assume that
it could be simulated by modeling the effect
of noises on the agents’ environment. In our
experimental setup, the hidden states of the
LSTM-based speaker and listener were added
with Gaussian noise, while the channel was
subject to discrete random replacement. Our
results suggest that noise on a speaker is one
of the factors for ZLA or at least causes emer-
gent languages to approach ZLA, while noise
on a listener and a channel is not.

1 Introduction

There has recently been a growing interest in sim-
ulating languages spontaneously emerging among
artificial agents, by training them to solve some
tasks requiring communications. A primary mo-
tivation in this area is to pursue the development
of artificial intelligence that can interact or com-
municate with human beings (e.g., Havrylov and
Titov, 2017; Lazaridou et al., 2017, 2018; Lee
et al., 2018). In addition to this line of research,
some studies have investigated the characteristics
of emergent languages, mainly concerned with to

what extent they are similar to human languages or
what kind of factor forms language-like protocols
(e.g., Kottur et al., 2017; Harding Graesser et al.,
2019; Chaabouni et al., 2020; Kharitonov et al.,
2020).

Chaabouni et al. (2019), for example, studied
the relationship between emergent languages and
Zipf’s law of abbreviation (ZLA), which is a univer-
sal tendency in human languages, where frequent
words tend to be shorter (Zipf, 1935; Kanwal et al.,
2017). To see whether emergent languages follow
ZLA, they performed experiments in which agents
played a signaling game. Their results suggested
that emergent languages have an opposite tendency
against ZLA. In other words, more frequent inputs
are encoded into longer messages. They also re-
ported that by giving an additional penalty on mes-
sage lengths (Eq. 6), the emergence of a ZLA-like
tendency was observed.

Zipf (1935) hypothesized that ZLA comes about
between two conflicting pressures: one for accu-
racy and the other for efficiency. In a paradigm
with human subjects using a simple artificial lan-
guage, Kanwal et al. (2017), for instance, intro-
duced some external factors for simulating the
competing pressures, namely, money reward for
precise and quick communications. In emergent-
language simulations, the explicit penalty on mes-
sage lengths (Eq. 6) of Chaabouni et al. (2019) can
also be considered an external factor for ZLA.

However, we speculate that there might be not
only such external factors but also internal factors
(or implicit penalties) related to the cognitive abili-
ties of human beings such as memory. Inspired by
some concepts in psychology, we hypothesize at
first in the following way:

Hypothesis 1. ZLA appears due to some internal
factors from the cognitive abilities of human beings,
as well as external factors. In other words, human
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beings assign shorter codes to frequent words so
that they can avoid difficulty in their internal pro-
cesses as much as possible.

Some studies in psychology suggested that in
human beings, there is an output buffer of some
sort that temporarily reserves some words to be
spoken (Baddeley et al., 1975; Baddeley, 2003;
Meyer et al., 2003; Damian et al., 2010; Baddeley
and Hitch, 2019). The output buffer might decay
over time, be overwhelmed by incoming inputs one
after another, or be exposed to other disturbances.
Such pressures, we thought, could be factors to
shorten frequent words.

But how should they be modeled in the simu-
lations of language emergence? Since artificial
agents in simulations are not humans but often (re-
current) neural networks, it is not trivial to define
equivalent pressures for them. To adopt such pres-
sures into a signaling game, we propose modeling
them into noise that interferes with the states of
agents. Although the potential factors described
above might be the matter of a speaker in a sig-
naling game, we also propose adding noise to a
listener for comprehensive research. The listener’s
short-term memory might also be limited due to
similar reasons as the speaker. Besides, we try
adding noise to a channel that spans the speaker
and the listener, referring to a noisy-channel model
(Shannon, 1948). Although a noisy channel is not
probably pressure for efficiency but for accuracy,
the assumption that redundancy contributes to ac-
curacy seems to think implicitly of a listener as
capable enough of correcting errors while main-
taining necessary information, which is not trivial
for neural agents. Therefore it is worth a try.

By the modeling and for the comprehensiveness,
hypothesis 1 is revised as follows:

Hypothesis 2. ZLA appears due to some of the
three types of noises: noise on a speaker, noise on
a listener, and noise on a channel.

In our experimental setup, speaker and listener
agents are exposed to Gaussian noise since they
have continuous vectors as their states. On the other
hand, the channel is exposed to discrete random
replacements, as messages passing through it have
discrete variables.

Our experiments suggest that noise on a speaker
is one factor for ZLA or at least causes emergent
languages to be closer to ZLA, whereas noise on
a listener and a channel is not in our signaling
game. Rather, the noise on a channel strengthened

redundancy.
Our analysis reveals the following things. First,

when noise interferes with a speaker agent, noise
accumulation can make it difficult to generate long
consistent messages. Second, when noise interferes
with a listener agent, on the other hand, noise accu-
mulation does not affect the overall tendency cru-
cially: even if the listener agent “forgets” the prefix
of a message, the suffix is sufficient for communi-
cations. Third, noise on a channel can be thought
of as a pressure for accuracy rather than efficiency,
which is consistent with an information-theoretic
point of view and Zipf’s hypothesis.

2 Background

Chaabouni et al. (2019) studied whether emergent
languages follow ZLA when neural agents play a
signaling game. As we largely refer to, we review
their setups, methods, and results in this section.

2.1 Signaling Game with a Power-law
distribution

They extended a signaling game (Lewis, 1969) by
making inputs be sampled from a power-law dis-
tribution. In the power-law distribution, the n-th
most frequent input is sampled from a finite input
space I at the probability ∝ 1/n. Thus, if agents
learned to assign frequent inputs to shorter mes-
sages, their communication protocol could be said
to obey ZLA.

Let S andL be a speaker and a listener. Formally,
the game procedure is as follows:

1. An input i ∈ I is sampled from a power-law
distribution. Let ir be the r-th most frequent
input. Then ir is sampled at the probability
∝ r−1.

2. Given i, the speaker S generates a message
m, i.e., m = S(i). m = x1 . . . x|m| is a string
over an alphabet A = {a1, . . . , a|A|−1,eos}
s.t. xi 6= eos (1 ≤ i < |m|), x|m| = eos,
and 0 < |m| ≤ max len, where |m| is the
length of m and max len is a hyperparam-
eter. Note that eos ∈ A stands for “end-of-
sentence,” and it is guaranteed to be attached
to the end of each message1.

3. Given m, the listener L generates an output,
i.e., o = L(m).

1One might think that eom (end-of-message) is better, but
we follow the convention in the literature of neural language
modeling.
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4. The procedure is successful if i = o.

2.2 Training Method
Since players in a signaling game are neural net-
works, each input i ∈ I is represented as a |I|-
dimensional one-hot vector i. Likewise, an output
o is represented as a |I|-dimensional vector o s.t.
(o)k > 0 (k = 1, . . . , |I|) and

∑|I|
k=1(o)k = 1.

Let L(i,o) = L(i, L(S(i)) be the cross-entropy
error between i and o = L(S(i)):

L(i,o) = −
|I|∑
k=1

(i)k log(o)k, (1)

where S is a speaker and L is a listener. Our pur-
pose is to minimize its expectation E[L], but the
simple backpropagation algorithm is not applicable
due to discrete messages m = x1 . . . x|m| sampled
from a speaker. Chaabouni et al. (2019) used the
following surrogate function, the gradient of which
is an unbiased gradient estimator, with an auxiliary
loss entropy regularizer ER:

E[LS + LL + ER] (2)

LS = SG(L(i,o)− b)
|m|∑
t=1

logPS,t(xt) (3)

LL = L(i,o) (4)

ER = −λH
N

N∑
t=1

H(PS,t), (5)

where b is a mean baseline added to reduce the
estimate variance, SG(·) denotes the stop-gradient
operation2, PS,t is the speaker’s output layer at time
step t defining a categorical distribution over an al-
phabet A, PS,t(xt) is the probability of xt ∈ A
being sampled at time step t, and H(·) is the en-
tropy function. Eq. 3 and Eq. 4 are derived by
the approach of Schulman et al. (2015), which can
be seen as the combination of REINFORCE-like
method (Williams, 1992) and standard backprop-
agation. ER (Eq. 5) is added to encourage the
exploration during training (Williams and Peng,
1991).

2.3 Anti-ZLA Emergent Languages
Chaabouni et al. (2019) reported, somewhat surpris-
ingly, that the communication protocols had a clear
anti-ZLA tendency when agents play a signaling

2When we write SG(x) instead of bare x, we regard x as
a constant with respect to any parameters.

game described in section 2.1. They also reported
that a ZLA-like tendency appeared when they ad-
ditionally imposed an artificial length pressure on
messages:

L′(i, L(m),m) = L(i, L(m)) + α× |m|, (6)

where m is a message, | · | denotes length, and
α ≥ 0 is a hyperparameter.

Rita et al. (2020) took a quite similar approach
and observed the emergence of ZLA. As well as
imposing a length pressure on a speaker agent, they
re-designed the architecture of a listener agent so
that the listener would be impatient to recover i as
soon as possible.

Note that both the length pressure (Eq. 6) and
the architecture re-design in Rita et al. (2020) can
be regarded as somewhat explicit losses, whereas
we try to impose an implicit pressure on agents.

3 Setup

3.1 Game with Noise

For a game, we take almost the same design as
Chaabouni et al. (2019), which was introduced in
section 2.1. We additionally introduce a channel C
over which messages move from speaker to listener:
A listener L obtains a message m̃ = C(m) through
a channelC, instead of receiving directlym = S(i)
from a speaker. Also, there are several differences
in hyperparameter settings.

3.2 Architectures

As speaker and listener agents have continuous vec-
tors as their states, they are added with continuous
noise. For simplicity, we choose a Gaussian noise
sampled at each time step with replacement. Chan-
nels, on the other hand, are exposed to discrete
noise, since they convey discrete symbols. We take
a random replacement operation for the channel
noise.

3.2.1 Speaker and Listener

The architectures of speaker and listener agents
are based on a single-layer LSTM, following
Chaabouni et al. (2019).

At training time, we add Gaussian noise to the
cell states of the LSTM of each agent3. Formally,

3We also tried simply shrinking the size of the agents’
hidden layers to restrict their capacity, but it made it difficult
to train the agents successfully. We leave it for future work
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for t > 0,

(ht+1, ct+1) = LSTM(xt+1, (ht, ĉt)) (7)

ĉt = ct + εt (8)

εt ∼ N (· | 0, σ2E) (9)

where σ > 0 is a standard deviation (SD), E is
the identity matrix, N (· | 0, σ2E) is a Gaussian
distribution with a mean vector 0 and a variance-
covariance matrix σ2E, and εt is a sampled value
from N (· | 0, σ2E) at time step t. We denote by
σS , σL the SDs for the speaker and listener archi-
tecture respectively.

At test time, we do not add noise for determinis-
tic evaluation.

3.2.2 Channel
At training time, we think of a channel as being
exposed to some noise so that the messages can
be degraded during transportation. Such degrada-
tion is modeled as replacement: each symbol in a
message is probabilistically replaced with another
one. Note that each message is attached with eos,
which is exceptionally protected from the replace-
ment, since the effect of the insertion or deletion of
eos is too strong for our purpose.

Formally, let A be an alphabet, m = a1 . . . an
be an original message generated by the speaker,
and m̃ = ã1 . . . ãn be transformed one. Then the
probability distribution over ãi 6= eos given ai 6=
eos (i = 1, . . . , n− 1) is as follows:

p(ãi | ai) =

{
1− πC (ai = ãi)
πC

|A\{ai,eos}|
(ai 6= ãi)

,

(10)

where πC is a hyperparameter s.t. 0 ≤ πC ≤ 1.
Let us call πC a channel replacement probability.

At test time, the channel is free from noise so
that we can perform deterministic examinations.

3.3 Optimization

3.3.1 Design and Estimation of Loss Function
We use almost the same loss function as Eq. 2. We
modify ER (Eq. 5) into Decayed Entropy Regular-
izer (DER) and we define an additional auxiliary
loss Soft Max Length (SML) in the following sec-
tions. Both DER and SML are introduced to pre-
vent messages from being unnaturally long. Note
that they themselves are not factors for ZLA in our
assumption.

Figure 1: Illustration of the effect of the entropy regu-
larizer

3.3.2 Decayed Entropy Regularizer
Chaabouni et al. (2019) used ER (Eq. 5) to en-
courage the exploration. However, ER might have
an unexpected side-effect: They could lead mes-
sages to be unnecessarily long. We give an intu-
itive explanation as shown in Figure 1. Suppose
that a speaker agent has learned a message pattern
m = x1 . . . x|m| for an input i. By the definition
of the message, x|m| = eos, indicating that the
probability that eos is sampled is relatively higher
at time step |m|. Then, the speaker’s output layer
PS,|m| at time step |m| is updated so that the en-
tropy H(P|m|) will be larger. It means that the
probability of eos being sampled becomes lower,
which might lead the message to be longer. Such
an effect can cause an undesirable bias in emer-
gent languages. Thus, we modify ER into Decayed
Entropy Regularizer (DER) as:

DER = −λH
Z

N∑
t=1

H(Pt)× ρt−1H , (11)

Z =
N∑
t=1

ρt−1H , (12)

where ρH is a hyperparameter s.t. 0 < ρH ≤ 1.
DER is a weighted mean that puts a higher priority
on the entropy at earlier time steps but lower on
those at later. Therefore, it is expected to cancel
the unnecessary effect of hindering eos emission
at later time steps.

3.3.3 Soft Max Length
Each message m is generated by sampling a sym-
bol xt at each time step t and concatenating them
until either eos is sampled (self-termination) or
the time step reaches max len − 1 (forced ter-
mination). In the forced termination case, eos is
attached to the end of the sequence. However, this
generating procedure may cause a speaker agent
to fail to learn to emit eos for some inputs, since
message lengths are bounded regardless of the eos
emission. To handle this problem, we introduce an
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additional auxiliary loss Soft Max Length (SML)
defined as:

SML = λsmlmax(0, |m| − eff max len),
(13)

where m is a message, | · | denotes length, λsml
is the coefficient of this term, and eff max len
is a hyperparameter s.t. 0 ≤ eff max len ≤
max len.

3.3.4 Training and Implementation
We follow Chaabouni et al. (2019) on the rest of
the training method: Agents are trained for 2500
episodes, each of which contains 100 mini-batches.
Each mini-batches are made of 5120 inputs sam-
pled from the power-law distribution with replace-
ment. When the accuracy at test time reaches 0.99
or more, the training stops early. Note that we do
not add any noise at test time.

The game and the training are implemented us-
ing the EGG toolkit (Kharitonov et al., 2019)4.

3.4 Evaluating Communicative Effectiveness
As Lowe et al. (2019) pointed out, emergent com-
munications have to be carefully examined in terms
of effectiveness: even if something like communi-
cation emerges, agents might act without referring
to signals from others. Since message lengths can
vary in our signaling game, it is doubtful that every
single symbol in a message conveys essential infor-
mation. For example, it is not trivial whether eos
is really end-of-sentence, since agents can use other
symbols as “punctuations” or meaningless “blanks.”
The effective position of beginning-of-sentence is
not trivial, either. Thus, apparent message lengths
may differ from actual ones.

To evaluate effectiveness, we introduce
position-wise symbol effectiveness and then
head/intermediate/tail effectiveness to cover a
weak point in the former.

Position-wise Symbol Effectiveness
First, to evaluate how informative symbols are dis-
tributed across positions, we introduce position-
wise symbol effectiveness, which is a quite sim-
ilar notion to positional encoding in Rita et al.
(2020). Suppose a symbol xk in a message m =
x1 . . . xk . . . x|m| is informative enough. Then, a

4The code for the EGG toolkit is found at https:
//github.com/facebookresearch/EGG. Our code
is available at https://github.com/wedddy0707/
noisyEGG.git.

listener L is expected to fail to recover an input
i correctly if xk is replaced with another sym-
bol y, i.e., i 6= L(x1 . . . y . . . x|m|). Based on
this intuition, the symbol effectiveness e(m, k)
at position k ∈ {1, . . . ,max len} in a message
m = x1 . . . x|m| is defined as follows:

e(m, k) =


1

|A′|
∑
a∈A′

1i 6=L(m[xk:=a]) (k < |m|)

0 (k ≥ |m|)
(14)

A′ = A\{xk,eos}, (15)

where A is an alphabet, m[xk := a] denotes
x1 . . . xk−1axk+1 . . . x|m|, and 1φ is defined as

1φ =

{
1 (φ is true.)
0 (φ is false.)

. (16)

By definition, 0 ≤ e(m, k) ≤ 1. Low e(m, k)
means that symbol xk is redundant, since the lis-
tener L can recover i from most of m[xk := a]
(a ∈ A′). Otherwise, xk is considered neces-
sary for successful communications. Note that
eos = x|m| is prevented from being replaced.

The value of e(m, k) (Eq. 14) may vary de-
pending on messages and speaker agents. That
would make it difficult to perform straightforward
evaluations for position-wise symbol effectiveness.
To handle this problem, we also define ek, mean
e(m, k) across messages and across speaker agents.
Formally, let S = {S1, . . . , S|S|} be a set of |S|
speaker agents trained with different random seeds.
Then ek is defined as:

ek =
1

|S||I|
∑
S∈S

∑
i∈I

e(S(i), k). (17)

Head, Intermediate, and Tail Effectiveness
One may be interested in detecting whether the ef-
fectiveness is concentrated in the prefixes, infixes,
or suffixes of messages. However, ek (Eq. 17) do
not seem good for this purpose: Since message
lengths can vary, the effectiveness of infixes and
suffixes can scatter across ek. Thus, we addition-
ally introduce head effectiveness ehead, intermedi-
ate effectiveness emed, and tail effectiveness etail.
Intuitively, ehead is mean effectiveness across the
heads of messages (i.e., x1 inm = x1 . . . x|m|) and
across speaker agents. Similarly, emed (resp. etail)
is mean effectiveness across the intermediate posi-
tions (resp. tails) of messages and across speaker

https://github.com/facebookresearch/EGG
https://github.com/facebookresearch/EGG
https://github.com/wedddy0707/noisyEGG.git
https://github.com/wedddy0707/noisyEGG.git
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Figure 2: Mean message lengths across successful runs
as a function of inputs sorted by frequency, when ER,
DER, SML, and DER+SML are used respectively. The
shaded areas represent one stanrd error of mean (SEM).

# successful runs
ER (baseline) 16

DER 7
SML 6

DER+SML 11

Table 1: The number of successful runs out of 16.

agents. Formally, let S = {S1, . . . , S|S|} be as
above. Then ehead, emed, and etail are defined as
follows:

ehead =
1

|S||I|
∑
S∈S

∑
i∈I

e(S(i), 1) = e1 (18)

emed =
1

|S||I|
∑
S∈S

∑
i∈I

e

(
S(i),

⌊
|S(i)|
2

⌋)
(19)

etail =
1

|S||I|
∑
S∈S

∑
i∈I

e(S(i), |S(i)| − 1), (20)

where b·c is a floor function.

4 Experiments

4.1 Hyperparameter Setting
In all our experiments, the size |I| of an input space
was set to 256, the size |A| of an alphabet was 40,
the size of hidden layers was 100 for both agents,
and the entropy regularizer coefficient λH was 1.
The hyperparameters σS , σL, and πC for noise var-
ied through sections.

We define a training run ending with an accuracy
higher than 0.99 as a successful run.

4.2 Effects of DER and SML
Before conducting the main experiments, we show
the effect of DER (Eq. 11) and SML (Eq. 13). For a

setting Spearman ρ
no noise 0.327 (p = 5.9× 10−71)
noise σS = 1/4 0.113 (p = 1.5× 10−6)
noise σS = 1/2 0.109 (p = 6.9× 10−7)
noise σS = 1 0.008 (p = 7.7× 10−1)
noise σL = 1/4 0.273 (p = 6.6× 10−32)
noise σL = 1/2 0.280 (p = 5.9× 10−20)
noise σL = 1 0.268 (p = 1.4× 10−22)
noise πC = 0.01 0.261 (p = 3.3× 10−37)
noise πC = 0.05 0.236 (p = 6.3× 10−21)
noise πC = 0.1 0.249 (p = 8.6× 10−27)

Table 2: Spearman correlations between input fre-
quency ranks and message length ranks in successful
runs in various noise conditions.

baseline model, we used the existing entropy regu-
larizer ER (Eq. 5), setting λH = 1 and max len =
30. For a model with DER, (λH, ρH) = (1, 1/2).
For a model with SML (and ER), λH = 1 and
(max len,eff max len) = (40, 30). For a
model with DER+SML, (λH, ρH) = (1, 1/2) and
(max len,eff max len) = (40, 30).

To see the overall tendency, we show the mean
message lengths across successful runs for each
model in Figure 2. The mean lengths are longer
when ER is used. In particular, the ones of the
baseline model are near max len = 30. On the
other hand, the mean lengths are shorter when DER
is used. That suggests that DER prevents messages
from being unnecessarily longer.

To check the effects on learning, in addition,
Table 1 shows the number of successful runs out
of 16 for each model. Although apparent tenden-
cies in Figure 2 are similar between the DER and
DER+SML model, Table 1 suggests that it is easier
to learn with the DER+SML model which has 5
more successful runs than the SML model.

4.3 Effects of Noise

In this section, we show the influence of noise
on a speaker, listener, and channel. We used the
DER+SML model with the same hyperparameters
as in the previous section. We examined the effect
of each noise by varying σS , σL, and πC . Note that
σS is the standard deviation of noise on a speaker,
σL is the one on a speaker, and πC is the channel
replacement probability.

4.3.1 Noise on a Speaker
To examine the effect of noise on a speaker,
(σS , σL, πC) was set to (1/4, 0, 0, 0), (1/2, 0, 0),
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Figure 3: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(σS , σL, πC) = (0, 0, 0), (1/4, 0, 0), (1/2, 0, 0), and
(1, 0, 0) respectively.

Figure 4: ek in successful runs, when (σS , σL, πC) =
(0, 0, 0), (1/4, 0, 0), (1/2, 0, 0), and (1, 0, 0) respec-
tively.

and (1, 0, 0). 7 out of 16, 8 out of 16, and 6 out of
32 runs were successful for each setting.

To see the overall tendency, we show mean mes-
sage lengths for each model in Figure 35. The
tendency shifts from anti-ZLA to the one between
ZLA and anti-ZLA as σS gets bigger.

In addition, we show Spearman correlations be-
tween input frequency ranks and message length
ranks in Table 2. Intuitively, ρ < 0 implies ZLA
and ρ > 0 implies anti-ZLA. According to Table 2,
ρ gets smaller as σS gets bigger, which is consistent
with the observation in Figure 3.

To check the symbol effectiveness, we show ek
(Eq. 17) in Figure 4. Judging from Figure 4, the
effectiveness at an earlier position becomes higher

5There are some messages of length max len =40 while
other messages are much shorter. We excluded the former
in Figure 3 because otherwise the mean lines would have
unnatural peaks and impair readability. As a result, 4 out of
1792, 30 out of 2048, and 7 out of 1526 data points were
removed for σS = 1/4, 1/2, and 1 respectively.

Figure 5: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(σS , σL, πC) = (0, 0, 0), (0, 1/4, 0), (0, 1/2, 0), and
(0, 1, 0) respectively.

Figure 6: ek in successful runs, when (σS , σL, πC) =
(0, 0, 0), (0, 1/4, 0), (0, 1/2, 0), and (0, 1, 0) respec-
tively.

as σS gets bigger. We also show ehead, emed, and
etail (Eq. 18, Eq. 19, and Eq. 20) in Figure 9. In
Figure 9, the bigger σS is, the higher ehead and
emed are, indicating that the former halves of mes-
sages become more informative by the effect of
noise on a speaker.

These results suggest that noise on a speaker is a
factor for ZLA, or at least causes message lengths
to be closer to ZLA. One possible reason is that
noise accumulation over time made it difficult for a
speaker agent to generate long consistent messages.

4.3.2 Noise on a Listener

Next, to investigate the effect of noise on a listener,
(σS , σL, πC) was set to (0, 1/4, 0), (0, 1/2, 0), and
(0, 1, 0). 7 out of 16, 4 out of 32, and 5 out of 16
runs were successful for each setting.

To see the overall tendency, mean message
lengths are shown in Figure 5. The apparent ten-
dencies are quite similar among all the settings
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Figure 7: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(σS , σL, πC) = (0, 0, 0), (0, 0, 0.01), (0, 0, 0.05), and
(0, 0, 0.1) respectively.

including ‘no noise,’ showing clear anti-ZLA ten-
dencies. Spearman correlations in Table 2 also
suggest anti-ZLA tendencies.

To check the symbol effectiveness, we show ek
(Eq. 17) in Figure 6. In Figure 6, ek for σL > 0
shows similar tendencies to those for ‘no noise,’
although the peak of ek for σL = 1/2 is lower than
the other results.. ehead, emed, and etail (Eq. 18,
Eq. 19, and Eq. 20) are shown in Figure 9. Ac-
cording to Figure 9, ehead for σL > 0 tends to be
smaller than the one for ‘no noise,’ but the over-
all tendencies seem similar (e.g., ehead < emed <
etail).

These results suggest that noise on a listener is
not a crucial factor for changing a tendency in emer-
gent languages. The listener’s short-term memory
is thought to have been limited due to noise accu-
mulation over time, as ehead got smaller. However,
even if there was no noise, informative symbols
tended to be located in the latter half of messages,
i.e, ehead < emed < etail, which is one possible
reason why noise on a listener did not crucially
affect the overall tendency.

4.3.3 Noise on a Channel
Finally, to check the effect of noise on a channel,
(σS , σL, πC) was set to (0, 0, 0.01), (0, 0, 0.05),
and (0, 0, 0.1). 9 out of 16, 6 out of 32, and 7
out of 32 runs were successful for each setting.

To see the overall tendency, mean message
lengths are shown in Figure 7. The apparent re-
sults for πC > 0 are similar to the one for ‘no
noise,’ showing clear anti-ZLA tendencies. Spear-
man correlations in Table 2 also suggest anti-ZLA
tendencies.

Figure 8: meaneffk in successful runs, when
(σS , σL, πC) = (0, 0, 0), (0, 0, 0.01), (0, 0, 0.05), and
(0, 0, 0.1) respectively.

To check the symbol effectiveness, we show ek
(Eq. 17) in Figure 8. In Figure 8, ek becomes lower
entirely as πC gets bigger. ehead, emed, and etail
(Eq. 18, Eq. 19, and Eq. 20) are shown in Figure 9.
In Figure 9, ehead, emed, and etail become lower
as πC gets bigger. Remember that low e(m, k)
(Eq. 14) means that the symbol at position k in m
is redundant. Thus, lower ek, ehead, emed, and etail
indicate that symbols are redundant on the whole.

These results suggest that redundancy was facili-
tated due to the noise on a channel. It is consistent
with Zipf’s hypothesis and a noisy-channel model.

5 Discussion

Our experiments suggest that noise on a speaker is
a factor for ZLA, while noise on a listener and a
channel is not in our signaling game.

One possible reason for the noise on a speaker
is that noise accumulation matters as time goes.
At each trial, the speaker agent gets an input i
and transforms it into an initial hidden state h0.
The hidden states need to maintain the input i in
some way for emitting consistent symbols. But
noise accumulates over time and is harmful to their
memory, which may cause frequent messages to be
shorter. However, the result per se shows a neutral
tendency between ZLA and anti-ZLA. Our implicit
length pressure might not have been strong enough,
or there might have been some problems with the
agents’ architectures.

Noise on a listener is not a crucial factor for
ZLA in our setting. Judging from symbol effec-
tiveness, the latter halves of messages tend to be
more informative than the former when noise in-
terferes with the listener. It means that the listener
could “forget” the former halves of messages. In
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Figure 9: ehead, emed, and etail in successful runs under various noise conditions.

the first place, however, the former halves are less
informative even if there is no noise. That may be
why noise on a listener did not affect the overall
tendency. Noise on a channel seems to facilitate
the redundancy of messages, which is consistent
with Zipf’s hypothesis and a noisy-channel model.

To help agents with learning, we used the two
auxiliary loss DER (Eq. 11) and SML (Eq. 13)
which are somewhat artificial. In particular, the
usage of SML conflicts a bit with our original goal
to give rise to ZLA by an implicit penalty, as SML
is similar to an artificial length pressure (Eq. 6).

6 Conclusion

In this paper, we simulated the emergence of lan-
guage and checked whether the emergent languages
follow Zipf’s law of abbreviation (ZLA). Inspired
by some psychological concepts, we proposed ex-
posing architectures to some noise during train-
ing. Our experiments were conducted under several
noise conditions. The results suggested that noise
on a speaker agent is one factor for ZLA, whereas
neither noise on a listener nor noise on a channel is
in our signaling game.

Our main contribution is to propose a potential
factor for ZLA instead of an external length pres-
sure and to demonstrate that noise imposing inter-
nal difficulty on a speaker agent may cause ZLA.

However, there are several problems and limita-
tions in addition to what is discussed in section 5.
First, we could not try the combination of noises.
One might be interested in combining the noises
on a speaker, listener, and channel, but we failed
to train agents stably under such conditions. It is
simply because it became much more difficult for
agents to learn under several noises.

Second, our signaling game did not contain any
contexts. As an input space was no more complex

than having the order by frequency, emergent lan-
guages could only have a unigram-like structure.
However, according to Piantadosi et al. (2011),
word predictability considering contexts is a better
predictor of word length than unigram probabili-
ties. From a more realistic point of view, therefore,
contexts should be considered in some ways. More-
over, if agents are forced to remember contexts,
noise on a listener may also be a factor for ZLA,
making the listener impatient.

We leave these issues for future work.
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