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Abstract

This paper proposes a novel attention mecha-
nism for Transformer Neural Machine Trans-
lation, “Synchronous Syntactic Attention,” in-
spired by synchronous dependency grammars.
The mechanism synchronizes source-side and
target-side syntactic self-attentions by mini-
mizing the difference between target-side self-
attentions and the source-side self-attentions
mapped by the encoder-decoder attention ma-
trix. The experiments show that the proposed
method improves the translation performance
on WMT14 En-De, WMT16 En-Ro, and AS-
PEC Ja-En (up to +0.38 points in BLEU).

1 Introduction

The Transformer Neural Machine Translation
(NMT) model (Vaswani et al., 2017) has achieved
state-of-the-art performance and become the focus
of many NMT studies. One of its characteristics
is the self-attention mechanism, which computes
the strength of relationships between two words
in a sentence. Transformer NMT has been im-
proved by extending the self-attention mechanism
to incorporate syntactic information (Wang et al.,
2019b; Omote et al., 2019; Deguchi et al., 2019;
Wang et al., 2019a; Bugliarello and Okazaki,
2020). In particular, Deguchi et al. (2019) and
Wang et al. (2019a) have proposed dependency-
based self-attentions, which are trained to attend
to the syntactic parent for each token under con-
straints based on the dependency relations, for
capturing sentence structures. Existing syntax-
based NMT models, including their ones, use only
monolingual syntactic information on either side
or both.

By contrast, synchronous grammars such as
synchronous context-free grammars and syn-
chronous dependency grammars, which are de-
fined in two languages and generate sentence

Do you speak English?

Sprichst du Englisch?

ROOT

ROOT

Figure 1: An example of dependency structures and
alignments

structures aligned across them, have been intro-
duced into many SMT models with the result of
improving their translation performances (Jiang
et al., 2009; Ding and Palmer, 2005; Chiang, 2005;
Zhang et al., 2006). Figure 1 shows an example of
the dependency structures of source and target lan-
guage sentences and their alignments1. Inspired
by synchronous dependency grammars, we aim to
improve the performance of Transformer NMT by
incorporating the main idea of the synchronous de-
pendency grammars (i.e., synchronizing sentence
structures across two languages). As far as we
know, neither the synchronous dependency gram-
mars themselves nor their basic idea has yet been
incorporated into NMT.

This paper proposes a novel attention mecha-
nism for Transformer NMT, called “Synchronous
Syntactic Attention,” which captures sentence
structures aligned across two languages by the
aligned self-attentions on the source- and target-
side. The mechanism uses encoder-decoder atten-
tions to map source-side syntactic self-attentions
into a target language space based on Garg et al.
(2019)’s observation that encoder-decoder atten-
tions represent the alignments of source and tar-
get words. The mechanism is trained to main-
tain consistency between source- and target-side
syntactic self-attentions according to an objective

1In this paper, an arrow is drawn from a head to its depen-
dent.
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loss function that incorporates the difference be-
tween the target-side syntactic self-attentions and
the mapped source-side syntactic self-attentions.
We use dependency-based self-attention (Deguchi
et al., 2019) as source- and target-side syntactic
self-attentions.

2 Transformer NMT Model

The Transformer NMT model (Vaswani et al.,
2017) is an encoder-decoder model composed
of the encoder that encodes source tokens
f = (f1, f2, . . . , fI) into hidden vectors and
the decoder that generates target tokens e =
(e1, e2, . . . , eJ) from the outputs of the encoder.
The encoder and decoder consist of Nenc encoder
layers and Ndec decoder layers, respectively. Both
the encoder layers and decoder layers are com-
posed of multiple sub-layers, each of which in-
cludes a self-attention layer and a feed forward
layer. The decoder layers additionally apply an
encoder-decoder attention layer between the self-
attention layer and the feed forward layer.

The self-attention and encoder-decoder atten-
tion are calculated by a multi-head attention mech-
anism. The multi-head attention MHA(Q,K, V )
maps the demb-dimension embedding space into
H subspaces of the dk (= demb

H ) dimension and
calculates attention in each subspace as shown in
Equations 1 to 3:

MHA(Q,K, V ) = [M1; . . . ;MH ]WM , (1)

Mh = AhVh, Ah = softmax

(
QhK

⊤
h√

dk

)
, (2)

Qh = QWQ
h ,Kh = KWK

h , Vh = VW V
h , (3)

where WQ
h , WK

h , W V
h ∈ Rdemb×dk and WM ∈

Rdemb×demb are parameter matrices. In the self-
attention, the previous layer’s output is used as Q,
K, and V . In the encoder-decoder attention, the
previous layer’s output is used as Q and the last
encoder layer’s output is used as K and V . Note
that, in training, the decoder’s self-attention masks
future tokens.

3 Dependency-Based Self-Attention

This section describes dependency-based self-
attention (DBSA) (Deguchi et al., 2019), which is
the baseline of our syntactic self-attention. DBSA
captures dependency structures by extending the
multi-head self-attention of the ldep-th layer of the
encoder or decoder. Let h be one of head of the

ldep-th encoder layer’s self-attention or the ldep-th
decoder layer’s self attention. An attention weight
matrix Ah, where each value indicates the depen-
dency relationship between two words, is calcu-
lated by using the bi-affine operation in Equation
4:

Ah = softmax

(
QhUK⊤

h√
dk

)
, U ∈ Rdk×dk . (4)

In Ah, the probability of token q being the head
of token t in a source/target sentence S (i.e.,
P (q = head(t)|S)) is modeled as Ah[t, q]. Then,
a weighted representation matrix Mh, which in-
cludes dependency relationships in the source sen-
tence or target sentence, is obtained by multiply-
ing Ah and Vh (i.e., Mh = AhVh). Finally, Mh

is concatenated with the other heads and mapped
to a demb-dimensional matrix. In the decoder-side
DBSA, future information is masked to prevent at-
tending to unpredicted tokens in inference.

The Transformer NMT model with DBSA
learns translation and dependency parsing at the
same time by minimizing the objective function
L = Lt + λdepLdep, where Lt is the translation
loss and Ldep is computed in Equation 5:

Ldep =−
I∑

i=1

logP (head(fi) | f)

−
J∑

j=1

logP (head(ej) | e). (5)

λdep > 0 is a hyperparameter to control the influ-
ence of the dependency parsing loss Ldep.

DBSA has been extended to deal with sub-
word tokens. For details, see the original paper
by Deguchi et al. (2019).

4 Proposed Method: Synchronous
Syntactic Attention

This section proposes a novel attention mecha-
nism for Transformer NMT, “Synchronous Syn-
tactic Attention,” which captures sentence struc-
tures aligned across source and target languages.
A Transformer NMT model with the proposed at-
tention is trained according to the objective func-
tion presented below as Equation 6:

L = Lt + λdepLdep + λsyncLsync, (6)

where Lsync is the loss to keep consistency be-
tween source-side and target-side syntactic self-
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Figure 2: An example of synchronous syntactic atten-
tion

attention (i.e., DBSA) and λsync is a hyperparam-
eter to control the influence of Lsync. In particu-
lar, Lsync is the differences between the encoder’s
self-attention, which is mapped into target lan-
guage space by the encoder-decoder attention, and
the decoder’s self-attention.

Let E and D be the attention matrix Ah of
the ldep-th encoder layer’s syntactic self-attention
and that of the ldep-th decoder layer’s syntactic
self attention, respectively. The proposed method
first maps E into the target language space by
the encoder-decoder attention as shown by Equa-
tion 7:

Dmapped = CEC⊤, (7)

where Dmapped is the mapped encoder’s syntactic
self attention matrix, and C is the encoder-decoder
attention weight matrix of the lsync-th decoder’s
layer. Then, Dmapped is masked to prevent attend-
ing to future tokens, and a softmax function is ap-
plied to the masked Dmapped as follows in Equa-
tion 8:

D′ = softmax(mask(Dmapped)). (8)

Next, the proposed method computes the mean
squared error between D′ and D as Lsync as fol-
lows in Equation 9:

Lsync =
∑
t,q

(D′
t,q −Dt,q)

2. (9)

Figure 2 shows an example of the synchronous
syntactic attention. The value in each cell indi-
cates an attention score (i.e., an element of an at-
tention weight matrix), and the darker cell repre-
sents a higher attention score. In all matrices, each
row represents an attention distribution for each
token (i.e., scores are normalized in a row direc-
tion). As can be seen in Figure 2, the English

encoder’s syntactic self-attentions E is mapped
into the German encoder’s syntactic self-attentions
D′ using the encoder-decoder attentions C and
C⊤. Then, the loss between the German en-
coder’s syntactic self-attentions D′ and the Ger-
man decoder’s syntactic self-attentions D is mea-
sured. When calculating the loss, the values of the
masked elements in D′ and D, such as DSprichst,du
and Ddu,Englisch?, are assigned to zero.

5 Experiments

5.1 Setup
We compared the proposed model with a conven-
tional Transformer NMT model and a Transformer
NMT with DBSA (Transformer+DBSA), which
do not synchronize between source- and target-
side self attentions, to confirm the effectiveness of
the proposed synchronous syntactic attention. The
Transformer base model (Vaswani et al., 2017)
was used as the baseline model.

We evaluated translation performance in the
WMT14 En-De translation task, WMT16 En-Ro
translation task, and WAT ASPEC Ja-En transla-
tion task (Nakazawa et al., 2016). In ASPEC Ja-
En, we used the first 1.5 million translation pairs
of the training data in training. We used Moses
Tokenizer to tokenize English, German, and Ro-
manian sentences and KyTea (Neubig et al., 2011)
to tokenize Japanese sentences. Byte Pair En-
coding (BPE) was applied to create subword to-
kens. We used dependency structures generated
by Stanza (Qi et al., 2020) for English, German,
and Romanian sentences, and EDA2 for Japanese
sentences as the supervisions in the training of
source- and target-side DBSA (i.e., calculation
of Ldep in Transformer+DBSA and the proposed
model). Note that Stanza and EDA are not used
in testing. The details of the dataset and prepro-
cessing are shown in the Appendix.

All models were trained for 100,000 updates.
We used label smoothed cross entropy (Szegedy
et al., 2016) as the Lt of the objective function
and set label smoothing ϵ to 0.1. In the proposed
model, the hyperparameter λsync was tuned for
each development set and set to 0.5 for WMT14
En-De, 0.1 for WMT16 En-Ro, and 10.0 for AS-
PEC Ja-En. In all experiments, λdep and ldep were
set to 0.5 and 1, respectively. lsync was set to 5
according to Garg et al. (2019)’s finding that the

2http://www.ar.media.kyoto-u.ac.jp/
tool/EDA

http://www.ar.media.kyoto-u.ac.jp/tool/EDA
http://www.ar.media.kyoto-u.ac.jp/tool/EDA
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増悪 因子 の 検索 と 至適 治療 の 重要 性 を 強調 し た
exacerbation factors of retrieval and optimum treatment of importance importance are emphasized emphasized emphasized

Import@@ ance of retrieval and optimum treatment of exacerbation factors is emphasized .

(a) Dependency structures captured by DBSA’s attentions

増悪 因子 の 検索 と 至適 治療 の 重要 性 を 強調 し た
exacerbation factors of retrieval and optimum treatment of importance importance are emphasized emphasized emphasized

Import@@ ance of retrieval of exacerbation factors and optimum treatment are emphasized .

(b) Dependency structures captured by SyncAttn’s attentions

Figure 3: Dependency structures of the examples in Figure 4

WMT14 WMT16 ASPEC
Model En→De En→Ro Ja→En
Transformer 27.23 23.83 28.94
DBSA 27.31 24.13 29.57
SyncAttn 27.69 24.33 29.84

Table 1: Experimental results (BLEU(%))

alignment performance of the encoder-decoder at-
tention in the penultimate layer is the best among
all layers. In decoding, we used beam search with
length penalty and set the beam size to 4. The de-
tails of the hyperparameters are shown in the Ap-
pendix.

5.2 Results

Table 1 shows the experiment results. In the
table, “DBSA” and “SyncAttn” indicate Trans-
former NMT with DBSA and Transformer NMT
with the proposed synchronous syntactic attention,
respectively. Translation performance was evalu-
ated by BLEU (Papineni et al., 2002).

As Table 1 illustrates, the proposed model Syn-
cAttn outperforms the baseline models Trans-
former and DBSA on all the tasks. In particu-
lar, SyncAttn improved by 0.38, 0.20, and 0.27
BLEU points in the WMT14 En-De, WMT16 En-
Ro, ASPEC Ja-En tasks, respectively, compared
to DBSA. These results demonstrate the effective-
ness of our synchronous syntactic attention.

5.3 Case Study

This section compares translation examples of the
baseline model DBSA and the proposed model
SyncAttn to show the effectiveness of the syn-
chronous syntactic attention. Figure 4 shows
translation examples of the two models for the Ja-

Input 増悪因子の検索と至適治療の重要性を強調した
DBSA Importance of retrieval and optimum treatment of exacerba-

tion factors is emphasized.
SyncAttn Importance of retrieval of exacerbation factors and optimum

treatment are emphasized.
Reference The importance of finding out exacerbation factors and opti-

mum treatment are emphasized.

Figure 4: Translation examples of DBSA and SyncAttn
in the ASPEC Ja-En task

En task. The bold words are the differences be-
tween the translations by the two models. As can
be seen in Figure 3, in both models, the encoder’s
self-attentions correctly find that “因子 (factors)”
attends to “の (of )”. However, DBSA does not
correctly find the head of “factors” on the English
side, while SyncAttn does. This is because Syn-
cAttn synchronizes the source- and target-side de-
pendency structures between “因子” and “factors”
identified by the encoder-decoder attentions while
DBSA does not. Figure 3 and 4 show that the cor-
rect analysis for the target-side dependency struc-
tures led to the correct translation.

6 Related Work

The main characteristic of Transformer NMT
is attention mechanisms (i.e., self-attentions and
encoder-decoder attentions). Some researches
have analyzed and/or improved the attention
mechanisms of Transformer NMT. For instance,
Tang et al. (2018b) analyzed encoder-decoder at-
tentions in terms of word sense disambiguation,
and Tang et al. (2018a) analyzed self-attentions in
terms of subject-verb agreement and word sense
disambiguation. Raganato and Tiedemann (2018)
and Voita et al. (2019) revealed the behaviors
of attention heads in terms of dependency rela-
tions. Namely, Raganato and Tiedemann (2018)
observed that specific attention heads of the en-
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coder’s self-attentions mark syntactic dependency
relations. Voita et al. (2019) found that the con-
fident heads play linguistically-interpretable roles
like dependency relations. Garg et al. (2019) pro-
posed a method for jointly learning to produce
translations and alignments with a single Trans-
former model and showed that encoder-decoder
attentions emulate word alignments. Based on
their observations, our method maps the encoder’s
syntactic self-attentions into the target language
space by using encoder-decoder attentions.

Shaw et al. (2018) extended a self-attention
mechanism to encode the relative positions be-
tween two words in a sentence. Omote et al.
(2019) and Wang et al. (2019b) proposed a self-
attention mechanism to encode relative positions
on source-side dependency trees.

Some researchers proposed syntax-aware self-
attentions that are trained using dependency-based
constraints. For instance, Wang et al. (2019a) and
Bugliarello and Okazaki (2020) proposed source-
side dependency-aware Transformer NMT. Wang
et al. (2019a) created a constraint based on de-
pendency relations between tokens to encoder
self-attentions. Bugliarello and Okazaki (2020)
also proposed Parent-Scaled Self-Attention, which
multiplies an attention weight matrix by scores
based on dependency relations. Deguchi et al.
(2019) proposed DBSA, which is applicable to
both the encoder’s and decoder’s self-attentions
and is extended to subword units. We used DBSA
to implement source- and target-side syntactic at-
tentions in Transformer NMT. The main differ-
ence from the above-mentioned studies is that our
work focuses on the incorporation of bilingual
syntactic information into NMT.

Harada and Watanabe (2021) incorporated syn-
chronous phrase structure grammar into NMT.
Specifically, they proposed a syntactic NMT
model that induces latent phrase structure and
synchronizes the source- and target-side sentence
structures. The difference with our model is that
we synchronize dependency structures while they
synchronize phrase structures.

7 Conclusions

In this paper, we proposed a novel attention mech-
anism for Transformer NMT, “Synchronous Syn-
tactic Attention,” which captures sentence struc-
tures aligned across source and target languages
by aligned self-attention. The synchronous at-

tention mechanism trains syntactic self-attentions
(DBSA) under a constraint that minimizes the loss
between encoder’s and decoder’s self attentions,
where the encoder’s self attentions are mapped
into the target language space by encoder-decoder
attentions. Since this method relies only on the
constraint induced from the encoder’s and de-
coder’s self-attentions and encoder-decoder atten-
tions, it does not require additional model param-
eters. The experiments show that the proposed
method improves Transformer NMT’s translation
performance (up to a 0.38 BLEU point improve-
ment).
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A Dataset and Preprocessing Details

We used Moses Tokenizer with the aggres-
sive hyphen splitting option3 for English,
German, and Romanian sentences and KyTea
for Japanese sentences. In English, Ger-
man, and Romanian sentences, we used
normalize-punctuation.perl, con-
tained in the Moses toolkit, to normalize the
characters. In WMT14 En-De, we also applied
language identification filtering to the training
data using langid4 (Lui and Baldwin, 2012),
keeping only the sentence pairs with correct
languages on both sides (Ng et al., 2019). In
ASPEC Ja-En, we used the first 1.5 million
translation pairs of the training data in training.
We trained Byte Pair Encoding (BPE) with 37,000
joint operations for WMT14 En-De and 40,000
joint operations for WMT16 En-Ro and trained
BPE separately on the source and target sides with
16,000 merge operations for ASPEC Ja-En. We
set the batch size to 25,000 tokens for WMT14
En-De, 6,000 tokens for WMT16 En-Ro, and
12,000 tokens for ASPEC Ja-En. Before applying
BPE, we removed sentences longer than 100
words in all the training datasets and sentence
pairs with a source/target length ratio exceeding

3 https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

4https://github.com/saffsd/langid.c

# Sentence pairs
Dataset Train Dev Test
WMT14 En→De 3,772,107 3,000 3,003
WMT16 En→Ro 599,208 1,999 1,999
ASPEC Ja→En 1,428,181 1,790 1,812

Table 2: Statistics of evaluation dataset

1.5 for WMT14 En-De and WMT16 En-Ro and
2.0 for ASPEC Ja-En.

Table 2 shows the number of parallel sentence
pairs in the training, development, and test sets.

B Model and Training Details

We used the Transformer base model (Vaswani
et al., 2017) as the baseline model. We used
the Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.9, β2 = 0.98. The learning rate was
warmed up over the first 4,000 steps to a peak
value of 7e-4, and then it was decreased pro-
portionally to the inverse square root of the step
number (Vaswani et al., 2017). All models were
trained for 100,000 updates. The dropout prob-
ability was set to 0.1. We used label smoothed
cross entropy (Szegedy et al., 2016) as the Lt

of the objective function and set label smooth-
ing ϵ to 0.1. In all experiments, λdep was set to
0.5, the ldep-th layer that captures source or tar-
get side’s sentence structures was set to the 1st
(bottom) layer, and the encoder-decoder attention
for mapping the encoder’s self-attention was ob-
tained from the 5th layer (i.e., lsync=5) according
to Garg et al. (2019)’s finding that the alignment
performance of the encoder-decoder attention in
the penultimate layer is the best among all layers.
In decoding, we used beam search with a beam
size of 4 and length penalty α = 0.6 (Wu et al.,
2016).

We performed all the training on 2 V100 GPUs
for WMT14 En-De, and a single V100 GPU for
WMT16 En-Ro and ASPEC Ja-En. For all the
models, training took about 7 hours for WMT14
En-De, about 3 hours for WMT16 En-Ro, and
about 4 hours for ASPEC Ja-En. The num-
ber of model parameters of all models is about
64M for WMT14 En-De and WMT16 En-Ro, and
about 72M for ASPEC Ja-En. In WMT14 En-De
and WMT16 En-Ro, the encoder-side embedding
layer and the decoder-side embedding layer are
shared.
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C Hyperparameter Search

In the proposed model, the hyperparameter
λsync was tuned on each development set.
We tuned λsync by trying different λsync ∈
{0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}.

D Evaluation Details

In all experiments, translation performance was
evaluated by BLEU (Papineni et al., 2002). As
for the ASPEC Ja-En task, we followed the WAT
Automatic Evaluation Systems5.

5http://lotus.kuee.kyoto-u.ac.jp/
WAT/evaluation/index.html#automatic_
evaluation_systems.html
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