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Abstract

Currently, text chatting is one of the primary
means of communication. However, modern
text chat still in general does not offer any nav-
igation or even full-featured search, although
the high volumes of messages demand it. In
order to mitigate these inconveniences, we for-
mulate the problem of situation-based summa-
rization and propose a special data annotation
tool intended for developing training and gold-
standard data.

A situation is a subset of messages revolving
around a single event in both temporal and con-
textual senses: e.g, a group of friends arrang-
ing a meeting in chat, agreeing on date, time,
and place. Situations can be extracted via in-
formation retrieval, natural language process-
ing, and machine learning techniques. Since
the task is novel, neither training nor gold-
standard datasets for it have been created yet.

In this paper, we present the formulation
of the situation-based summarization prob-
lem. Next, we describe Chat Corpora Anno-
tator (CCA): the first annotation system de-
signed specifically for exploring and annotat-
ing chat log data. We also introduce a cus-
tom query language for semi-automatic situa-
tion extraction. Finally, we present the first
gold-standard dataset for situation-based sum-
marization. The software source code and the
dataset are publicly available1,2.

1 Introduction

In the recent years, the attitude to multiparticipant
chat has changed: what was regarded as a distrac-
tion is now used as primary means of communi-
cation in both professional and personal environ-
ments. However, its evident problems, such as

1https://github.com/mechanicpanic/
Chat-Corpora-Annotator

2https://github.com/mechanicpanic/
Situation_Dataset

the inability to quickly and efficiently navigate a
large body of skipped messages, are yet to be ad-
dressed. One of the ways of addressing this is
summarization. However, due to the specifics of
text chat data, such as noise and length, no widely
accepted model for this task has been created yet.
Nevertheless, there have been notable works in the
field. One of them is Collabot (Tepper et al., 2018):
a fully-fledged chat summarizer, which, however,
never went public. Additionally, there is a con-
siderable body of work on email summarization,
such as Ulrich et al. (2008), Loza et al. (2014), Joty
et al. (2011), which present both annotated data
and a summarization approach. While these works
are an indispensable basis for the research in the
area, we believe that chat data possesses enough
specific qualities (such as extremely short message
length, presence of specific slang and emoticons,
and largely informal grammar and spelling) to war-
rant new annotation procedures and summarization
methods.

To the best of our knowledge, publicly avail-
able annotated data for this task is both rare and,
additionally, highly specific. Most of the afore-
mentioned works have created their own specific
annotation procedures and applied them to small
volumes of data. Annotated data is hard to obtain
in and of itself, and creating a gold-standard dataset
from noisy raw data may take a lot of effort and
time. Therefore, we have focused on creating a
full-fledged annotation system for chat data.

In the current paper, we propose novel annota-
tion guidelines for multiparticipant chat data. In
our vision, it would be most practical to summa-
rize such datasets by specific situations. We de-
fine a situation as a subset of messages revolving
around a single event in both temporal and con-
textual senses. The set of situation tags would
be specific for each particular dataset, and devis-
ing a standardized tagset currently does not seem

https://github.com/mechanicpanic/Chat-Corpora-Annotator
https://github.com/mechanicpanic/Chat-Corpora-Annotator
https://github.com/mechanicpanic/Situation_Dataset
https://github.com/mechanicpanic/Situation_Dataset
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possible. Each tagset would be devised by a hu-
man analyst and will be specifically suited for the
needs of each user. This approach takes its roots
in the ideas of open-domain event extraction, such
as in (Ritter et al., 2012), but differs from them on
several points. First, we are interested in groups of
documents. Second, we do not explicitly extract
event keywords. Instead, we offer the user to de-
cide what situations revolve around which events
and how they are represented in the data.

Furthermore, the quality of the training data has
to be very high. In our understanding, creating a
gold-standard dataset requires full attention of a
human annotator, and relying on automatic recom-
menders would yield inferior results. Nevertheless,
a recommender could be helpful for deep dataset
exploration and for annotation assistance. Such
assistance may come in a form of generating candi-
dates for manual cross-checks when the annotator
had finished their job or for rapid dataset prototyp-
ing. Since our task formulation is novel, there is no
specifically trained machine learning (ML) model
for it yet. To address the need for a recommender,
we have designed a lightweight query language for
rule-based detection of situations in chat datasets.

Next, we introduce Chat Corpora Annotator, a
standalone desktop application for exploring and
annotating multiparticipant chat datasets. To the
best of our knowledge, this is the first tool that
addresses both these tasks simultaneously. Addi-
tionally, we describe the annotation guidelines and
the workflow for the summarization task.

Finally, we present an example collection that
can be used to train machine learning models or
serve as a gold-standard to assess summarization
algorithms.

The main contributions of the paper are:

• An introduction of the situation-based sum-
marization problem.

• A lightweight and easy-to-use annotation tool
specifically designed for data exploration in
multiparticipant chat logs.

• A special query language that can be used to
generate annotation recommendations and run
ad-hoc exploration queries.

• A workflow for CCA that is aimed at creat-
ing a dataset for the task of situation-based
summarization.

• An example collection created using CCA.

2 Situations

Our inspiration for the proposed approach is based
on cases such as a user taking a break from an
important multi-participant chat for a significant
amount of time. For example, it could be an em-
ployee taking a vacation. Having returned, they
would have to catch up with the rest of their col-
leagues, which would include browsing chat discus-
sions that happened during their absence. There-
fore, they would be forced to navigate a large body
of skipped messages which may be distracting and
unproductive, as well as require a lot of time.

Basically, they would have to quickly look
through all of the messages that were sent while
they were away, since they would have no means
to “prune” irrelevant discussions. The main issue
here is the fact that they would not know whether
a particular subset of messages is useful until they
read at least some of them.

Another frequent scenario is a user searching for
a particular conversation that is hard to find. Usu-
ally, in this case user issues search queries trying
different keywords. In general, chats offer unso-
phisticated search capabilities, limiting them to
simplified textual search, thus hindering efficient
retrieval. For example, if the user needs to recall
the details of a meeting (for example, the name of
the place their friends have agreed to go out to),
they would to issue “bar”, “pub”, “restaurant” until
they obtain the desired result.

We propose to address such use-cases with chat
log summarization that is based on the concept
of situation. We define a situation as a subset of
messages revolving around a single event in both
temporal and contextual senses. We can propose
many various examples: participants are arranging
a meeting, selecting a product to be used in their
project, solving a code issue and so on.

An example of a situation that has been found
and tagged with the use of our tool is presented in
Fig. 1. In this figure, the user is shown a situation in
which chat participants find a job offer and discuss
the process of applying to it.

Our final goal that exceeds the scope of this pa-
per is to build a system that would automatically
detect such situations and present them to the user.

The idea is to integrate the hypothetical tool into
the interface of multiparticipant chat applications
to provide the user with the means to take a situa-
tion-based perspective on chat history, instead of
plain-text browsing as it has to be done currently.
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Figure 1: CCA’s main window with a tagged situation visible.

In its first version, we plan to highlight situation
locations in the history, and then, in the future,
present a generated summary.

Automatic extraction of situations can be per-
formed using information retrieval, natural lan-
guage processing (Murray et al., 2018), and ma-
chine learning (Carenini and Murray, 2012) tech-
niques. However, currently, there are no corpora to
train models for this problem and no gold-standard
datasets to run experiments on. Therefore, our first
step is to create such a corpus and for this a special
tool that assists tagging is needed.

3 Chat Corpora Annotator: System
Overview

Following the aforementioned considerations, we
have created the Chat Corpora Annotator (CCA) —
the first exploration-annotation tool designed
specifically for multiparticipant chat log data. Its
main use case is creating a dataset for the proposed
summarization task.

Furthermore, the provided functionality can help
gain clear and immediate insights into raw data.
CCA implements all common statistics and explo-
ration tools and does not require any coding skills
to use them. Additionally, CCA’s CSV viewer is
more comfortable to use than, for example, the rep-
resentation of a dataset that can be created with
pandas3 in a Jupyter Notebook. The user can

3https://pandas.pydata.org/

resize and swap columns in the window without
affecting the data. CCA can be used for any tex-
tual data that contains a date, a username, and a
text field, for example, email threads, Twitter logs,
etc. Finally, all performance-heavy functionality is
implemented separately from the main module and
simply searching through a dataset does not require
the user to load the CoreNLP models.

3.1 Features and User Interface

CCA’s feature set has been inspired by linguistic-
oriented tools, which were traditionally intended
for a single researcher reading through the data
and manually creating a linguistic corpus (Weisser,
2016). However, we have also taken into account
the recent developments in the field, such as the
simplicity and usability of modern annotators.

The main screen of CCA can be seen in Fig. 1.
The user can upload CSV files and read through
them, jump through available dates, and use the
Lucene full-text search capabilities, as well as the
analysis tools:

• Statistics. This menu item contains simple
corpus statistics and visualizing functionality.
Currently available: the number of messages,
unique usernames, tokens, noun phrases, as
well as the average length of a message, av-
erage messages per day, and average token
length.

https://pandas.pydata.org/
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• N-gram search. This is a simple tool inspired
by Google Ngram Viewer. On its first run it
builds a B+-tree disk-backed index for shin-
gles (Manning et al., 2008) of length from 2
to 5. This tool allows the user to query the
index with a single term efficiently and see
the frequency of each shingle that contains it.

• Concordancer. This is a simple concor-
dancer akin to nltk’s (Bird et al., 2009)
concordance(): the search is constrained
to a single term, which is then displayed with
its immediate context. The user can select the
number of characters that surround the term.

All of these tools are intended for the same purpose:
they provide different angles on the topics of dis-
cussion in the dataset. For example, searching for
the word “help” in the Ubuntu Chat Dataset (Uthus
and Aha, 2013) reveals that, indeed, it is tech sup-
port chat data.

Additionally, simple visualizations options are
provided. At the moment, there are two: a chart for
message counts by date and a heatmap for message
density by date.

3.2 Query Language
3.2.1 Idea
In this section, we will discuss Matcher, our custom
SQL-like query language created for annotation
recommendations and rich data exploration.

In modern systems such as (Cejuela et al., 2014),
annotation recommendations are usually provided
by machine learning models. There are no such
models for situation extraction yet, and this has mo-
tivated us to adopt a different approach: we provide
the users with complex querying functionality. Our
approach was inspired by rule-based information
extraction systems (Chiticariu et al., 2010, 2013).

Our idea was to allow the user to query the cor-
pus for occurrences of special entities while defin-
ing their surroundings. In essence, the approach
we have taken is rule-based pattern-matching. It is
inspired by the Boolean retrieval model (Manning
et al., 2008).

Running such queries in an ad-hoc manner is a
powerful and versatile way of dataset exploration.
A user can pose a query to check their annotation
work, browse the results, refine the query by adding
or removing conditions and run it again, effectively
fine-tuning their work.

Designing Matcher, we aimed to create an in-
tuitive, simple language that would be easier to

learn for non-programmers. SQL seemed to us a
suitable choice: so, we have created Matcher as
an SQL-like language. Our query editor provides
two modes of entering queries: free-text and a vi-
sual query builder (as seen on top of Fig. 2), which
highlights the operators that would be appropriate
to use next.

Matcher is implemented with the ANTLR parser
generator4.

3.2.2 Formalization
The general syntax of a Matcher query is as fol-
lows:

SELECT cond11, . . . , cond1n1
INWIN wsize1;

cond21, . . . , cond2n2
INWIN wsize2; . . . , condm1 ,

. . . , condmnm
INWIN wsizem.

We call each of condi1, . . . , condini
, i ∈ [1 . . .m]

a matching group and an individual condij a
matcher.

A matcher is a template that is matched against a
single reply in chat history. It consists of a boolean
expression which is sequentially (i.e., in a chrono-
logical order) checked against each message. If it
evaluates to true, then this line is considered to be
a part of the answer.

Each matcher that follows some condij searches
for the next line that satisfies its corresponding con-
dition condij+1. This message does not necessarily
have to immediately follow the previous one.

A single condij consists of a set of atomic pred-
icates joined by Boolean operators. Atomic pred-
icates check the message for simple conditions,
such as either the presence of any word from a
user-defined word list (haswordofdict(), see
Fig. 1) or an extracted NER tag (hastime(),
haslocation(), etc). In order to obtain the
NER data, we have implemented the CoreNLP
pipeline within our tool. The full list of atomic
predicates and other operators can be found in the
Github README.

For example, consider the following query:

SELECT (haswordofdict(meetings)
AND hastime()),
haswordofdict(agreements)

It returns all conversations which start with a
message containing any word from a user-defined
“meetings” dictionary (meeting-related words) and
contains a time marker. The conversation has to
end with any message that has a word from the

4https://www.antlr.org/

https://www.antlr.org/
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Figure 2: A dedicated visual interface for the Matcher query language. The depicted query is intended for retrieval
of JobSearch situations.

“agreements” dictionary (words used to give con-
sent). Thus, this query tries to extract all situations
of participants scheduling a meeting.

The problem with this query is evident: while
it will return the required conversation, it will also
return a lot of unrelated messages since it does
not restrict the position of the last message. To
address this, we have introduced an optional clause
INWIN wsize, where wsize is a positive integer. It
requires that all matchers from the matching group
affected by the INWIN clause fit in a window of at
max wsize messages. Therefore, the proper query
looks like this:

SELECT (haswordofdict(meetings)
AND hastime()),
haswordofdict(agreements)
INWIN 10

The purpose of the INWIN clause is not only
to restrict the maximum length of the desired con-
versation fragment. Using it allows to query for
a sequence of messages in which each message
immediately follows another, i.e. without allow-
ing other messages in between. This functionality
comes naturally, if the length of the window is
specified to be equal to the number of matchers
in a given group. It stems from the rule that each
matcher should correspond to exactly one message
in each of the resulting fragments.

In Matcher, a query may have several matching
groups. In this case, the action of the next INWIN
clause starts from the last message of the previously

matched group. Finally, we have to note that using
the INWIN clause is optional for the last matching
group.

3.2.3 Real query example
The following query was issued by the annotator
during the creation of our corpus. Its purpose is
to locate situations where participants discuss the
current job market in programming, finding and
discussing appropriate job postings for themselves.
A fragment of the found results can be seen in
Fig 1.

SELECT
(SELECT

haswordofdict(job),
haswordofdict(skill)

INWIN 2);
(SELECT haswordofdict(area)

OR haswordofdict(dev)
OR haswordofdict(money))

INWIN 5

This query states that the annotator would like
to see two messages which contain words from
the “job” and “skill” dictionaries respectively, and
the distance between them should be less than 2
messages (first inner query). After that, the second
inner query will retrieve a third message which con-
tains any word from either “area”,“dev” or “money”
and is not farther away from the first one by more
than 5 messages.

Note that Matcher functionality is intended for
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assistance only, and it should not be considered
as the primary means of annotation. The reason-
ing is simple: due to the inherently variable and
noisy nature of chat logs there are no guarantees
that the found situations are valid. The results re-
quire manual checking. Moreover, there are no
guarantees that all relevant situations contained in
the logs would be found by a given query (for ex-
ample, a user-defined dictionary might not contain
a specific word that is used in logs). That is, speak-
ing in terms of information retrieval, there are no
guarantees on both precision and recall (Manning
et al., 2008). This is why our query processor does
not recommend tags outright, it only points out the
approximate locations of interest to the user in the
data.

Concluding this section, we state that the pro-
posed approach is simpler to use than ML recom-
menders. Our reasoning is that the results obtained
during this process are straightforward, while an
ML model can produce results as a “black box”:
the user would have no understanding as to why
certain messages are assigned certain labels.

3.3 Annotation Guidelines and Workflow

The annotation guidelines are currently simple
and revolve around situation definition, which was
given in Section 1. The annotator either receives
instructions before tagging or personally devises a
tagset during data exploration. Next, they manually
read through the data, extracting and annotating
subsets of messages as situations.

Concerning the annotation model, we have cre-
ated it to be more flexible than just assigning a
single tag to a sequential subset of messages. Each
message can belong to several differently-typed
situations, but cannot belong to two different situa-
tions of the same type. We rely on the assumption
that chat messages are short and the users generally
keep them constrained to one topic. However, as
the topics shift quickly in multiparticipant chat, the
users can try and catch up by compacting informa-
tion concerning different topics in one message.

Figure 3 contains the workflow we provide for
our tool. As it can be seen, the entirety of the data
preparation process is done inside CCA. The user
receives a semi-structured data file and loads it into
the tool. The user then explores it with the analytic
search tools (searches through n-grams, issues sim-
ple queries, and so on), as well as utilizes Matcher,
either coming up with their own dictionaries and

queries or importing them. During this process,
they simultaneously annotate the data and amend
the tagset if required. Finally, they save the result-
ing output as an XML file.

4 Gold-Standard Corpus

4.1 Corpus Development and Statistics
In order to test CCA’s functionality, we have cre-
ated an annotated situation corpus for the freeCode-
Camp dataset5. The fragment of the dataset that
we used contains 967, 038 messages spanning over
381 days, sent by 29870 unique users.

The constructed corpus contains 236 tagged sit-
uations, comprising 4146 messages in total. On
average, our situations are 17 messages long. The
average length of a message in the corpus is 78
symbols, in contrast to the dataset average of 66
symbols. The average number of users participat-
ing in a situation is 3.

Our tagset comprises 6 tags, as can be seen in
the list below. They describe a common situation
encountered in this particular dataset: e.g., Code-
Help is a user pasting in a faulty code fragment
and receiving help. The tags have been manually
devised after dataset exploration, and each of them
has yielded the following numbers:

• JobSearch: 24 situations, 4 users and 13 mes-
sages on average

• CodeHelp: 95 situations, 3 users and 18 mes-
sages on average

• SoftwareSupport: 53 situations, 3 users and
22 messages on average

• OSSelection: 19 situations, 4 users and 16
messages on average

• Meeting: 4 situations, 2 users and 12 mes-
sages on average

• FCCBug: 42 situations, 3 users and 14 mes-
sages on average

Additionally, we have considered windows in
situations (i.e., gaps containing untagged unrelated
messages inside situations) and intertwined situa-
tions (two or more situations which intersect). The
entire number of windows in our corpus is 820,
which makes every situation have around 3 win-
dows on average. The average length of a window

5https://www.kaggle.com/freecodecamp/
all-posts-public-main-chatroom

https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom
https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom
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Figure 3: CCA workflow.

is 5 messages. Furthermore, out of 236 total situa-
tions, 60 are intertwined.

The creation of the corpus took a single anno-
tator who was acquainted with the task around 20
work hours. They have utilized all available tools,
but used Matcher the most. As they have reported,
Matcher functionality was very valuable, as read-
ing through a million messages would have been
impossible. Additionally, they reported that run-
ning even very simple, single-term queries helped
navigate the chat log data more efficiently by pro-
viding a paginated view of the dataset, coupled
with highlighting of relevant messages.

4.2 Inter-Annotator Agreement

Only one annotator was employed during the cre-
ation of the corpus, so we did not run into situations
that called for conflict resolution.

Going forward, we envision an interface for man-
ual resolution that would allow to compare output
files from different annotators either against each
other and all at once. The annotator responsible for
the comparison should be able to extend or shrink
the boundaries of a situation, remove or add single
messages, etc. Furthermore, we will implement
the computation of various inter-annotator statis-
tics such as Cohen’s Kappa (Manning et al., 2008)
in order to provide the user with formal means of
evaluating the intermediate results.

5 Evaluation

We have conducted two kinds of evaluation tests: a
responsiveness study and a usability study.

5.1 Tool Responsiveness

Raw chat log dataset files can be as large as sev-
eral gigabytes, therefore, we have developed our
application taking this into account.

Metric Results
N-gram indexing 4 minutes
Indexing 1 minute
Heatmap rendering 0.5 s
Jumping dates less than 0.1s
Opening an indexed file less than 0.1s
Search query less than 0.1s
Simple Matcher query less than 0.1s
Complex Matcher query around 0.1s

Table 1: Experiments on CCA responsiveness.

Table 1 presents the results we have obtained.
We have measured the time it takes CCA to perform
crucial operations on a large data file. The setup
was as follows: we used CCA on a mid-range home
PC running Windows 10 (Intel i5-7600k, 16GB
DDR4 RAM, Crucial MX500 500GB SSD), ma-
nipulating a 500MB CSV file that contained around
1M chat messages. We adhere to the well-known
quote of Jakob Nielsen (Nielsen, 1994): “0.1 sec-
ond is about the limit for having the user feel that
the system is reacting instantaneously, meaning
that no special feedback is necessary except to dis-
play the result”. As it can be seen, our system is
responsive and only takes up a considerable amount
of time on tasks that are run once, such as index-
ing or extracting key phrases, which could also be
improved further in the next versions of our system.

5.2 Usability Study

We have run a small usability evaluation with three
volunteers. We have explained the annotation task
to them, and then asked them to load the tool, index
a small CSV file, explore the data and annotate it
using our standard tagset. Next, we have conducted
a short informal discussion on the tool’s interface,
responsiveness and feasibility for the task at hand.
The users have reported that the task was under-
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standable to them, although it did require a little
time to grasp, and the system appeared convenient
for reading and searching through large volumes of
data. They have proposed the following improve-
ments: developing concise documentation for the
system’s capabilities, improving the cohesiveness
of the UI, and finally, we have asked them to fill out
the System Usability Scale questionnaire (Brooke,
1986), which has been slightly modified to fit our
system better. Namely, we have modified ques-
tions 1 and 9, to “I find the system adequate for the
proposed task” and “I could use the system to con-
fidently complete the proposed task” respectively.
This has been done since our system is intended for
several specific tasks that arise in a research setting,
not in daily life. The answers have put CCA at the
50th percentile, which indicates an “OK” level of
usability (Sauro, 2018). Going by the responses we
have obtained, CCA was easy enough to use, but it
lacks better feature integration and perhaps a short
tutorial. We consider this an adequate result for a
first prototype, however, we will focus our future
efforts on improving it.

6 Related Work

In this section, we will review two types of related
studies: annotation tools and corpora created from
chat log data for various tasks.

6.1 Annotation Tools

As mentioned previously, annotating raw text chat
data is a complicated task due to its specifics. In
this section, we will go over several well-known
annotating tools and frameworks and evaluate their
feasibility for the task at hand.
brat (Stenetorp et al., 2012) is a flexible all-

purpose annotation tool. It supports two modes
of annotation: annotating a text span with a label,
and connecting these labels with either directed
or undirected binary relations. Furthermore, the
second mode also includes n-ary relations and at-
tributes of these relations. Finally, brat supports
an extensive constraint system for relations and an
advanced search system. Due to it being based on
a dedicated visualization system, brat was one of
the first tools that provided its users with intuitive
high-quality annotation visualization. However, as
noted by Kummerfeld (2019), it takes considerable
effort to set up for any custom task, including ours.

GATE (Bontcheva et al., 2013) and UIMA (Fer-
rucci and Lally, 2004) are well-known analysis

frameworks that have been developed since the
early 00’s. While they are powerful, customizable
and could be extended to suit any task, they are
not easy to set up and utilize “on-the-go” — a
feature that is essential for many modern tasks.
For example, the creators of the Tweebank v1
dataset (Owoputi et al., 2013) admit to creating
it in a single day. While it is not claimed to be a
gold-standard dataset, the speed is impressive, and
the team has used their own dedicated annotation
tool. However, with these frameworks, the user
would have not only to read through the extensive
manuals, but also, most likely, code their own tools
in Java6.

TWIST (Pluss, 2012) and LIDA (Collins et al.,
2019) are intended for dialogue annotation, which
has been mostly focused on task-oriented dialogue
for dialogue systems. Task-oriented dialogues al-
ready suppose a predefined topic and predefined
roles (e.g., customer support tasks) and little noise.
These tools provide their user with functionality
such as turn/dialogue segmentation. They also im-
pose constraints on the data, such as requiring only
two speakers to be present in the dataset, which
already makes them unsuitable for our task. Fi-
nally, they do not implement any full-text or con-
strained search features, which makes data explo-
ration nearly impossible.

TagTog (Cejuela et al., 2014) and LightTag7 are
modern Web-based annotators that advertise flex-
ibility for any task. While they are flexible and
require little set up time, they also do not feature
any search or exploration functionality in their free
versions. Usually, these tools let the user view the
data one line at a time, which is simply unfeasible
for the task. Although it is possible to set up Light-
Tag to display the “context” of the current message,
it is still a constrained view. Further, these tools
are oriented at fairly monotonous work such as
building a NER dataset with custom tags, and this
is why they tightly integrate ML recommenders
into their workflow. This is helpful for well-known
classification tasks, but it is not a feasible approach
for something novel, i.e. that lacks trained models.
SLATE by Kummerfeld (2019) is an experimental
annotation tool focused on a terminal-based work-
flow that was released in 2019. Its authors argue
that its main advantages are: complete configurabil-
ity for any task and annotation speed which is not

6https://uima.apache.org/doc-uima-
annotator.html

7https://www.lighttag.io/

https://uima.apache.org/doc-uima-annotator.html
https://uima.apache.org/doc-uima-annotator.html
https://www.lighttag.io/


135

hindered by GUI. Concerning the second point, this
tool is controlled via keyboard shortcuts instead of
a mouse, and all of its UI is contained within a
Linux terminal. It supports annotation of continu-
ous spans of any entities, such as characters, tokens,
lines, or documents. Additionally, SLATE supports
linking any of these entities. It was specifically
designed to create large corpora out of chat and
chat-like data in a very short time. This goal has
been achieved, however, SLATE does not offer any
exploration functionality. Furthermore, its learning
curve may be steep for someone who is not used
for a keyboard-based workflow.

Finally, we would like to mention Huggingface
Dataset Viewer8, which is a web-based tool for
manually looking through NLP datasets from the
Huggingface nlp library. While it is not an an-
notator and cannot be directly compared to our or
other tools, its existence proves that there is a need
to explore a dataset before using it for any task.

As it can be seen, there are no tools that could
be readily applied or easily customized for our task.
Existing options either lack the desired function-
ality or require a substantial, often comparable to
creating a new tool from scratch, effort in order to
make them suitable for the considered task.

6.2 Chat Datasets

Most of the existing annotated chat log datasets are
intended for the chat disentanglement task. The
first known corpora belongs to Shen et al. (2006),
who have drawn their data from an intra-university
IRC channel. This dataset was not public. Fur-
ther on, some of the most well-known work in
this area belongs to Elsner and Charniak (2008)
who have created a corpora for chat disentangle-
ment based on IRC logs of the #Linux channel
at free-node.org. They have manually anno-
tated around two thousand utterances via a dedi-
cated interface. However, to the best of our knowl-
edge, the data has since ceased to be publicly avail-
able. Adams and Martell (2008) developed a dis-
entanglement and topic extraction dataset based on
Navy tactical chat which was not released. How-
ever, the most well-known dataset belongs to Lowe
et al. (2015): they have created the Ubuntu Dia-
logue Dataset based on IRC data from the Ubuntu
help channel. It contains around a million of heuris-
tically extracted multi-turn dialogues, and it can be
accessed online. A dataset based on the French

8https://huggingface.co/nlp/viewer/

version of the same channel was presented by Riou
et al. (2015), containing 1229 messages. Dulceanu
(2016) presents a small dataset of manually col-
lected 884 chat messages which were disentangled
and annotated with three speech acts. Finally, Kum-
merfeld et al. (2019) present the largest disentangle-
ment corpus to date: it contains around 78 thousand
manually annotated messages also from the Ubuntu
and Linux IRC channels.

Concerning other tasks, we would like to men-
tion Tweebank v2 (3550 tweets) by Liu et al.
(2018), which was created for training a full ma-
chine learning based NLP pipeline. Its first ver-
sion by Owoputi et al. (2013) contained 840 tweets
tagged for training a part-of-speech tagger.

To the best of our knowledge, very few summa-
rization datasets for chat and chat-like data were
made publicly available. The AMI corpus (Carletta
et al., 2005) contains transcripts of audio drawn
from business meetings, hand-annotated with their
abstractive and extractive summaries among many
other annotation modes. Further on, Joty et al.
(2010) have developed the BC3 corpus that con-
tains email and blog data for summarization. Koto
(2016) take the same approach and present a sum-
marization dataset for chats in the Indonesian lan-
guage, consisting of 300 manually summarized
chat segments.

As it can be seen, no attempts on creating anno-
tated corpora from the freeCodeCamp data have
been made to date, and our work is the first to
attempt that.

7 Conclusion & Future Work

In this paper, we have presented a novel situation-
based summarization task, CCA — an annotation-
exploration tool for large chat logs, a workflow for
creating a situation-based summarization dataset,
and an example corpus. Chat Corpora Annotator
offers a novel approach to exploration: a query
language that allows the user to query a dataset for
subsets of messages which could be a situation. To
the best of our knowledge, CCA is the only tool
designed for these two tasks at once.

Further work on the tool will be focused on im-
proving its usability and efficiency, as well as ex-
tending language support. The work on the summa-
rization task will be moving towards implementing
the first versions of the summarizer itself.

https://huggingface.co/nlp/viewer/
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