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Abstract

Shapley Values, a solution to the credit as-
signment problem in cooperative game the-
ory, are a popular type of explanation in ma-
chine learning, having been used to explain
the importance of features, embeddings, and
even neurons. In NLP, however, leave-one-
out and attention-based explanations still pre-
dominate. Can we draw a connection between
these different methods? We formally prove
that — save for the degenerate case — at-
tention weights and leave-one-out values can-
not be Shapley Values. Attention flow is a
post-processed variant of attention weights ob-
tained by running the max-flow algorithm on
the attention graph. Perhaps surprisingly, we
prove that attention flows are indeed Shap-
ley Values, at least at the layerwise level.
Given the many desirable theoretical qualities
of Shapley Values — which has driven their
adoption among the ML community — we ar-
gue that NLP practitioners should, when pos-
sible, adopt attention flow explanations along-
side more traditional ones.

1 Introduction

The approaches to model interpretability taken by
the ML and NLP communities overlap in some ar-
eas and diverge in others. Notably, in machine
learning, model prediction has sometimes been
framed as a cooperative effort between the poten-
tial subjects of an explanation (e.g., input tokens)
(Lundberg and Lee, 2017). But how should we
allocate the credit for a prediction, given that some
subjects contribute more than others (e.g., the sen-
timent words in sentiment classification)? The
Shapley Value is a solution to this problem that
uniquely satisfies several criteria for equitable al-
location (Shapley, 1953). However, while Shapley
Value explanations have been widely adopted by
the ML community — to analyze the importance of
features, neurons, and even training data (Ghorbani

and Zou, 2019, 2020) — they have had far less
traction in NLP, where leave-one-out and attention-
based explanations still predominate.

What is the connection between these different
paradigms? When, if ever, are attention weights
and leave-one-out values effectively Shapley Val-
ues? The adoption of Shapley Values — which
have their origins in game theory (Shapley, 1953)
— by the ML community can be ascribed to their
many desirable theoretical qualities. For example,
consider a token whose masking out does not im-
pact the model prediction in any way, regardless
of how many other tokens in the sentence are also
masked out. In game theory, such a token would be
called a null player, whose Shapley Value is guar-
anteed to be zero (Myerson, 1977; Young, 1985).
If we could provably identify the conditions under
which attention weights and leave-one-out values
are Shapley Values, we could extend such theoreti-
cal guarantees to them as well.

In this work, we first prove that — save for the
degenerate case — attention weights and leave-
one-out values cannot be Shapley Values. More
formally, there is no set of players (i.e., possible
subjects of an explanation, such as tokens) and pay-
off (i.e., function defining prediction quality) such
that the values induced by attention or leave-one-
out also satisfy the definition of a Shapley Value.
We then turn to attention flow, a post-processed
variant of attention weights obtained by running
the max-flow algorithm on the attention graph (Ab-
nar and Zuidema, 2020). We prove that when the
players all come from the same layer (e.g., tokens
in the input layer), there exists a payoff function
such that attention flows are Shapley Values.

This means that under certain conditions, we
can extend the theoretical guarantees associated
with the Shapley Value to attention flow as well.
As we show, these guarantees are axioms of faith-
ful interpretation, and having them can increase
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confidence in interpretations of black-box NLP
models. For this reason, we argue that whenever
possible, NLP practitioners should use attention
flow-based explanations alongside more traditional
ones, such as gradients (Feng et al., 2018; Smilkov
et al., 2017). We conclude by discussing some
of the limitations in calculating Shapley Values for
any arbitrary player set and payoff function in NLP.

2 Model Interpretation as a Game

The Shapley Value (Shapley, 1953) was proposed
as a solution to a classic problem in game theory:
When a group of players work together to achieve
a payoff, how can we fairly allocate the payoff
to each player, given that some contribute more
than others? The players here are the potential
subjects of the explanation (e.g., input tokens); the
payoff is some quality of the model prediction (e.g.,
correctness). We contextualize the game theoretic
terms with respect to model interpretability below.

Definition 2.1. A player is a possible subject of
the explanation (e.g., character, token, embedding,
neuron). N = {1, ..., n} is the set of all players.

Definition 2.2. A coalition is a subset of players
S ⊆ N that work together. There are 2n possible
coalitions. The other players N \ S are left out
by being replaced with a non-subject that cannot
affect the outcome (e.g., a zeroed-out embedding
or a dropped-out neuron).

Definition 2.3. The payoff reflects some quality
of the model prediction — e.g., correctness, confi-
dence, entropy — made using a given coalition. It
is defined by a payoff function v : 2N → R, where
v(∅) = 0. The value φi(v) of a player i is the share
of the payoff allocated to it. In other words, it is the
importance accorded to subject i of an explanation.

Definition 2.4. A game is defined by (N, v), a
player set N and payoff function v. It is a trans-
ferable utility game (TU-game), where the payoff
can be distributed among the players as desired.
In the game of model interpretation, the subjects
of the explanation are framed as players working
cooperatively to make the best possible prediction.

2.1 Equitable Allocation

How can we allocate the payoff equitably, in a way
that reflects the actual contribution made by each
player? In other words, how can we faithfully in-
terpret a prediction? The game theory literature
proposes that any equitable payoff allocation satis-

fies these three conditions (Myerson, 1977; Young,
1985; Ghorbani and Zou, 2019):

Condition 1. (Null Player): A player that induces
no change in the payoff from joining any coalition
has zero value. Formally, ∀ S ⊆ N \ {i}, v(S ∪
{i}) = v(S) =⇒ φi = 0.

Condition 2. (Symmetry): Two players who in-
duce the same change in payoff upon joining ev-
ery coalition (that excludes them) have the same
value. Formally, ∀ S ⊆ N \ {i, j}, v(S ∪ {i}) =
v(S ∪ {j}) =⇒ φi = φj .

Condition 3. (Additivity): The value of a player
across two different games with payoff v, w should
be the sum of its value in each game. Formally,
∀ i ∈ N,φi(v + w) = φi(v) + φi(w).

2.2 The Shapley Value
The Shapley Value is a well-known solution to the
problem of payoff allocation in a cooperative set-
ting, as it uniquely satisfies the three criteria for
equitable allocation in 2.1 (Shapley, 1953; Myer-
son, 1977; Young, 1985). It sets the value of a
player to be its expected incremental contribution
to a coalition, over all possible coalitions.

Definition 2.5. Where R is one of n! possible per-
mutations of the player set N , let PR[:i] be the
subset of players that precede player i in the per-
mutation. Then, for a given payoff function v, the
Shapley Value of player i is

φi(v) =
1

n!

∑
R

[v(PR[:i] ∪ {i})− v(PR[:i])] (1)

There are other equivalent ways of expressing the
Shapley Value, including as a sum over the 2n pos-
sible coalitions.

In addition to satisfying our three criteria of equi-
table allocation (2.1), a Shapley Value distribution
always exists and is unique for a TU-game (N, v).
Unlike with attention weights, which have been
criticized for allowing counterfactual explanations
(Jain and Wallace, 2019; Serrano and Smith, 2019),
there can thus be no counterfactual Shapley Value
distribution for a given input and payoff function
v. The distribution is also said to be efficient, since
it allocates all of the payoff: v(N) =

∑
i∈N φi(v)

(Myerson, 1977; Young, 1985). The Shapley Value
can, in theory, be computed for any player set and
payoff function. However, in practice, there are
typically too many players to calculate this com-
binatorial expression exactly. Generally, estimates
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are taken by uniformly sampling m random permu-
tationsR (Ghorbani and Zou, 2019):

φ̂i(v) =
1

m

∑
R∈R

[v(PR[:i] ∪ {i})− v(PR[:i])] (2)

In the rest of this paper, we ask: Is there some TU-
game (N, v) for which attention weights / attention
flows / leave-one-out values are Shapley Values? If
so, for which games?

3 Attention Weights

Many have argued that attention weights are not
a faithful explanation, on the basis of consistency
(i.e., poor correlation with other importance mea-
sures) and non-exclusivity (i.e., multiple explana-
tions leading to the same outcome) (Jain and Wal-
lace, 2019). Others have countered that they have
some utility (Wiegreffe and Pinter, 2019). Without
making assumptions about their inherent utility, we
prove in this section that they cannot be Shapley
Value explanations, outside of the degenerate case.

Proposition 1. If some player is attended to more
than another, there is no TU-game (N, v) for which
attention weights are Shapley Values.

Proof. Assume that attention weights are Shapley
Values for some TU-game. Shapley Values are
necessarily efficient (i.e., v(N) =

∑
i φi(v)) (My-

erson, 1977; Young, 1985), so for attention weights
to be efficient, the only applicable payoff function
would be the sum of attention weights. Since each
player only has one Shapley Value for a given v,
if it is attended to multiple times, its value must
be the total attention paid to it: where aj,i denotes
the attention j pays to i, φi(v) =

∑
j∈N aj,i. Note

that the payoff for a coalition S is within some
constant of its cardinality, since for a player j, the
weights aj,· of the players that it attends to sum to
1 (Bahdanau et al., 2015). We consider two cases.

Case 1 For a player j that attends to some other
player, its contribution to the payoff of every S ∈
N \ {j} is

∑
aj,· = 1, implying φj(v) = 1 by

the Shapley Value definition (1). If some player
(that pays attention) is more or less attended to than
another — which is the point of using attention —
this results in a contradiction. Thus φj cannot be
the total attention paid to j.

Case 2 For a player i that doesn’t attend to any
other player, its contribution to the payoff of every
S ∈ N \ {i} is 0, since the attention paid to i is

redistributed among other players when it is absent.
This implies φi(v) = 0 by (1). However, all input
embeddings fall under this case, and we know at
least one will be attended to; its attention weights
will be non-zero, making this a contradiction. Thus
φi cannot be the total attention paid to i.

4 Attention Flows

What if we restricted the players to those from the
same layer of a model? The remaining players still
affect the prediction but can’t have any of the pay-
off allocated to them. In this case, attention weights
still cannot be Shapley Values. However, attention
weights can be post-processed. Abnar and Zuidema
(2020) proposed treating the self-attention graph as
a flow network — where the attention weights are
capacities — and then applying a max-flow algo-
rithm (Ford and Fulkerson, 1956) to this network
to calculate the maximum flow on each edge. We
prove (by construction) that these attention flows
are Shapley Values when the players are restricted
to those from the same layer and the payoff is the
total flow, as visualized in Figure 1.

Proposition 2. Consider a TU-game (N, v), where
N = {1, ..., n} players are all from the same layer.
Let f denote the flow obtained by running a max-
flow algorithm on the graph defined by the self-
attention matrix, where the capacities are the atten-
tion weights. Let v(S) = |f(S)|, the value of the
flow when only permitting flow through players in
the coalition S ⊆ N . Then for each player i, its
total outflow |fo(i)| is its Shapley Value.

Proof. Blocking the flow through a player i ∈ S
decreases v(S) by that player’s outflow |fo(i)|,
since the attention flow is only calculated once
— with the entire graph — and not for each possi-
ble subgraph. Since the players are all disjoint and
have no connections, blocking the flow through one
player does not affect the outflow of any of the other
players. This would not be the case, for example, if
the players were in different layers, in which case
changes in flow upstream would cause changes in
flow downstream. Then for any coalition S ⊆ N
and player i 6∈ S, v(S∪{i}) = v(S)+ |fo(i)|. We
can rewrite the total outflow for player i as

|fo(i)| = v(S ∪ {i})− v(S), ∀ S ⊆ N

=
n!

n!
v(S ∪ {i})− v(S), ∀ S ⊆ N

=
1

n!

∑
R

[
v(PR[:i] ∪ {i})− v(PR[:i])

]
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Figure 1: The attention flow network for three tokens across three layers, with player nodes (red) and non-player
nodes (blue). The payoff v(N) is the total flow through the network. φi(v) is the total outgoing flow of player i.
Note that if we remove player i, then the total flow will decrease by φi(v), but the outgoing flow of the other two
players (red) will stay the same. In other words, the contribution of player i to the total flow v(N) is always φi(v);
therefore, φi(v) is its Shapley Value. This construction is possible because the players are all in the same layer and
therefore parallel; if one depended on another, then its outgoing flow could not be its Shapley Value.

which is just the Shapley Value definition (1). Note
that the players cannot be from different layers
— at least for the definition of v as the total flow
value — because the Shapley Value distribution
would not be efficient (i.e., v(N) 6=

∑
i∈N φi(v))

and efficiency necessarily holds for Shapley Values.
This in turn implies that the theoretical properties
that hold for Shapley Values extend to attention
flows under these conditions.

Attention Rollout Abnar and Zuidema (2020)
also proposed another post-processed variant of at-
tention called attention rollout, in which the atten-
tion weight matrices from each layer are multiplied
with those before it to get aggregated attention val-
ues. Attention roll-out values cannot be Shapley
Values, however; this can be shown with a trivial
extension of the proof to Proposition 1.

5 Leave-One-Out

Erasure describes a class of interpretability meth-
ods that aim to understand the importance of a
representation, token, or neuron by erasing it and
recording the resulting effect on model prediction
(Li et al., 2016; Arras et al., 2017; Feng et al., 2018;
Serrano and Smith, 2019). Although the Shap-
ley Value technically falls under this class, most
erasure-based methods only remove one entity —
the one whose importance they want to estimate —

and this only takes two forward passes, compared
to O(2n) passes for the Shapley Value. Since only
one entity is erased, this simpler group of erasure-
based methods is called leave-one-out (Jain and
Wallace, 2019; Abnar and Zuidema, 2020). We
show in this section that leave-one-out values are
not Shapley Values, except in the degenerate case.

Proposition 3. If ∃ i ∈ N such that player i is
not a null player even when excluding the coalition
N \{i}, then there is no TU-game (N, v) for which
leave-one-out values are Shapley Values.

Proof. Let the leave-one-out value of player i be
denoted by LOOi(v). Let R′ denote any permuta-
tion of N where PR′[:i] 6= N \ {i}. By definition,

φi(v) =
1

n!

∑
R

[
v(PR[:i] ∪ {i})− v(PR[:i])

]
=

1

n!

∑
R′

[
v(PR′[:i] ∪ {i})− v(PR′[:i])

]
+

1

n
(v(N)− v(N \ {i}))︸ ︷︷ ︸

LOOi(v)

By our assumption, the first term is non-zero, so
there is no equivalence with LOOi(v). In practice,
this assumption is almost always satisfied.

Note that leave-one-out tells us very little about
player importance for discrete payoff functions.
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For example, if the payoff were the correctness
(i.e., 1 if correct and 0 otherwise), then the impor-
tance of a player would be binary: it would either
be critically important to prediction or totally irrele-
vant. This provides an incomplete picture — while
there is enough redundancy in BERT-based mod-
els to tolerate some missing embeddings, this does
not mean those embeddings are of no importance
(Kovaleva et al., 2019; Ethayarajh, 2019; Michel
et al., 2019). For example, if two representations
played a critical and identical role in a prediction —
but only one was necessary — then leave-one-out
would assign each a value of zero, despite both
being important. In contrast, the Shapley Value of
both players would be non-zero and identical.

6 Applications

Because Shapley Values have many useful applica-
tions, attentions flows — and any other score that
meets the criteria for a Shapley Value — have many
useful applications as well:

• For one, using the various properties of the
Shapley Value, we can provide more specific
interpretations of model behavior than is cur-
rently the case, backed by theoretical guaran-
tees. For example, if a token has zero attention
flow in layer k but non-zero flow in layer k−1,
then we can conclude that all the information
it contains about the label (e.g., sentiment)
was extracted by the model prior to the kth
layer; this derives from the “null player” prop-
erty of the Shapley Value. The same could not
be said if the token only had a leave-one-out
value of zero, since leave-one-out values are
not Shapley Values.

• Interpretability in NLP often takes a single
token or embedding to be the unit of analy-
sis (i.e., a “player” in game theoretic terms).
However, what if we wanted to understand the
role of entire groups of tokens rather than in-
dividual ones? For most interpretability meth-
ods, there is no canonical way to aggregate
scores across multiple units — we cannot nec-
essarily add the raw attention scores of two
tokens, since the usefulness of one may de-
pend on the other. If we used a method that
provided Shapley Values, we could easily re-
define a “player” to be a group of tokens, such
that all tokens in the same player group would

simultaneously be included or excluded from
a coalition.

• Recent work has used the Data Shapley —
an extension of the Shapley Value — to es-
timate the contribution of each example in
the training data to a model’s decision bound-
ary (Ghorbani and Zou, 2019). If we’re fine-
tuning BERT for sentiment classification, for
example, we might want to know which sen-
tence is more helpful: “This movie was great!”
or “This was better than I expected.” We can
answer such questions by using the Data Shap-
ley. To our knowledge, this has been done in
computer vision but not in NLP.

7 Limitations and Future Work

Because Shapley Values — and by extension, atten-
tion flows — have many theoretical guarantees that
are axioms of faithful interpretation, we encourage
NLP practitioners to provide attention flow-based
explanations alongside more traditional ones. This
is not without limitations, however. As proven in
Proposition 2, this equivalence only holds for a
specific payoff function — the total flow through
a layer — which is reflective of model confidence
but not of the prediction correctness.

But why do we need attention flows at all if, in
theory, Shapley Values can be calculated for any ar-
bitrary player set and payoff function? While this is
true in theory, because of the combinatorial calcu-
lation (1), it is computationally intractable in most
cases. While it is possible to take a Monte Carlo
estimate (2), in practice the bounds can be quite
loose (Maleki et al., 2013). Finding TU-games for
which the Shapley Value can be calculated exactly
in polynomial time — as with attention flow -– is an
important line of future work. These explanations
may come with trade-offs: for example, SHAP is a
kind of Shapley Value that assumes contributions
are linear (i.e., a coalition can’t be greater than
the sum of its parts), which makes it much faster
to calculate but restricts the set of possible payoff
functions (Lundberg and Lee, 2017). Still, such
methods will be critical to providing explanations
that are both fast and faithful.
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