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Abstract

Information Retrieval using dense low-
dimensional representations recently became
popular and showed out-performance to
traditional sparse-representations like BM25.
However, no previous work investigated
how dense representations perform with
large index sizes. We show theoretically and
empirically that the performance for dense
representations decreases quicker than sparse
representations for increasing index sizes. In
extreme cases, this can even lead to a tipping
point where at a certain index size sparse
representations outperform dense representa-
tions. We show that this behavior is tightly
connected to the number of dimensions of
the representations: The lower the dimension,
the higher the chance for false positives, i.e.
returning irrelevant documents.

1 Introduction

Information retrieval traditionally used sparse rep-
resentations like TF-IDF or BM25 to retrieve rele-
vant documents for a given query. However, these
approaches suffer from the lexical gap problem
(Berger et al., 2000).

To overcome this issue, dense representations
have been proposed (Gillick et al., 2018): Queries
and documents are mapped to a dense vector space
and relevant documents are retrieved e.g. by using
cosine-similarity. Out-performance over sparse lex-
ical approaches has been shown for various datasets
(Gillick et al., 2018; Guo et al., 2020; Guu et al.,
2020; Gao et al., 2020).

Previous work showed the out-performance for
fixed, rather small indexes. The largest dataset
where it has been shown is the MS Marco (Bajaj
et al., 2018) passage retrieval dataset, where re-
trieval is done over an index of 8.8 million text
passages. However, in production scenarios, index
sizes quickly reach 100 millions of documents.

We show in this paper, that the performance
for dense representations can decrease quicker for
increasing index sizes than for sparse representa-
tions. For a small index of e.g. 100k documents,
a dense approach might clearly outperform sparse
approaches. However, with a larger index of sev-
eral million documents, the sparse approach can
outperform the dense approach.

We show theoretically and empirically that this
effect is closely linked to the number of dimensions
for the representations: Using fewer dimensions
increases the chances for false positives. This effect
becomes more severe with increasing index sizes.

2 Related Work

A common choice for dense retrieval is to fine-
tune a transformer network like BERT (Devlin
et al., 2018) on a given training corpus with queries
and relevant documents (Guo et al., 2020; Guu
et al., 2020; Gao et al., 2020; Karpukhin et al.,
2020; Luan et al., 2020). Recent work showed
that combining dense approaches with sparse, lexi-
cal approaches can further boost the performance
(Luan et al., 2020; Gao et al., 2020). While the ap-
proaches have been tested on various information
and question answering retrieval datasets, the per-
formance was only evaluated on fixed, rather small
indexes. Guo et al. (2020) evaluated approaches for
eight different datasets having index sizes between
3k and 454k documents.

We are not aware of previous work that compares
sparse and dense approaches for increasing index
sizes and the connection to the dimensionality. The
only work we are aware of that systematically stud-
ies the encoding size for dense approaches is (Luan
et al., 2020), but they only studied the connection
to the document length.

www.ukp.tu-darmstadt.de


606

3 Theory

Dense retrieval approaches map queries and doc-
uments1 to a fixed size dense vector. The most
relevant documents for a given query can then be
found using cosine-similarity.

Using as few dimensions as possible is desirable,
as it decreases the memory requirement to store
(an index) of millions of vectors and leads to faster
retrieval. However, as we show, lower-dimensional
representations can have issues with large indices.

Given a query vector q ∈ Rk, we search our
index of document vectors d1, ..., dn ∈ Rk for the
documents that maximizes:

cossim(q, di) = cos(θ) =
q · di
‖q‖ ‖di‖

Note: In the following we just show the case for
cosine similarity. The proof extends to other sim-
ilarity functions like dot-product and any p-norm
(Manhatten, Euclidean) as long as the vector space
is finite. A finite n-dimensional vector space can be
mapped to an n+1-dimensional vectors space with
vectors of unit length. In that case, dot-product in
n dimensions is equivalent to cosine-similarity in
n+1 dimensions. Similar, any p-norm in n dimen-
sions can be re-written as cosine-similarity in n+1
dimensions.

Theorem: The probability for false positives (I)
increases with the index size n and (II) with the
decreasing dimensionality k.

Proof (I): Given a query q and the relevant doc-
ument dr. For simplicity, we assume only a sin-
gle relevant document. If multiple documents are
relevant, we consider only the one with the high-
est cosine similarity. In order that no false posi-
tive is returned, cossim(q, dr) must be greater than
cossim(q, di) for all i 6= r. Assume the possible
vectors are independent. Then, the probability for
a false positive is

P (false positive) = 1−(1−P (false positivei))
n−1

for an index with n − 1 negative elements and
P (false positivei) the probability that a single el-
ement is a false positive, i.e. cossim(q, di) >
cossim(q, dr).

Proof (II): While the previous proof is straight-
forward, that the chance of false positives in-
creases with larger index sizes, the more inter-
esting aspect is the relation to the dimensional-
ity, i.e., what is the probability P (false positivei)

1We use document as a cover-term for text of any length.

= P (cossim(q, di) > cossim(q, dr)) for a random
di? We show that this probability decreases with
more dimensions.

Without loss of generality, we assume that the
vectors are of unit length. The vectors are then on
an k-dimensional sphere with radius 1. A false pos-
itive happens if cossim(q, di) > cossim(q, dr), or,
equivalent if 1−cossim(q, di) < 1−cossim(q, dr).
I.e., we intersect the sphere in k dimensions with
a hyperplane in k − 1 dimensions. The area of
the cut-off portion is defined by 1− cossim(q, dr).
All vectors within the cut-off portion (i.e. spheri-
cal cap) are false positives. The probability that a
random vector will be returned as false positive is:

P (false positivei) = Acap/Asphere

with Acap the surface area of the spherical cap
and Asphere the surface area of the sphere in k
dimensions. Define the surface area of the sphere
in k dimensions as Ak, then the surface area of
Acap is (Li, 2011):

Acap =
1

2
AkIsin2θ

(
k − 1

2
,
1

2

)
with Ix(a, b) the regularized incomplete beta

function and θ the polar angle, i.e. the angle be-
tween q and the relevant document dr. Hence:

P (false positivei) =
1

2
Isin2θ

(
k − 1

2
,
1

2

)
(1)

For constant cosine similarity between query
q and relevant document dr, Isin2θ

(
k−1
2 , 12

)
is a

monotonically decreasing function with increas-
ing dimension k. In conclusion, more dimensions
decrease the probability for false positives.

Combining (I) and (II) shows that a low dimen-
sional representation might work well for small in-
dex sizes. However, with more indexed documents,
the probability of false positives increases faster
for low dimensional representations than for higher
dimensional representations. Hence, at some in-
dex size, higher dimensional representations might
outperform the lower-dimensional representation.

4 Empirical Investigation

In the proof, we have assumed that vectors are
independent and uniformly distributed over the
space, which gives us a lower bound on the false
positive rate. However, in practice, dense repre-
sentations are neither independent nor uniformly
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distributed. As shown in (Ethayarajh, 2019; Li
et al., 2020), dense representations derived from
pre-trained Transformers like BERT map to an
anisotropic space, i.e., the vectors occupy only a
narrow cone in the vector space. This drastically
increases the chance that an irrelevant document is
closer to the query embedding than the relevant doc-
ument. Hence, we study how actual dense models
are impacted by increasing index sizes and lower-
dimensional representations.

4.1 Dataset

We conduct our experiments on the MS MARCO
passage dataset (Bajaj et al., 2018). It consists of
over 1 million unique real queries from the Bing
search engine, together with 8.8 million paragraphs
from heterogeneous web sources. Most of the
queries have only 1 passage judged as relevant,
even though more can exist. The development set
consists of 6980 queries and the performance is
evaluated using mean reciprocal rank MRR@10.

To better compare the relative performance dif-
ferences, we compute a rank-aware error rate:

Err =
1

n

n∑
i=1

(
1− 1

ranki

)
with ranki being the rank of the relevant docu-
ment for the i-th query. To be compatible with
MRR@10, we set ranki = ∞ for ranki >
10. We then define the relative error rate as
ErrDense/ErrBM25. A relative error rate of 50% in-
dicates that the dense approach makes only 50% of
the errors compared to BM25 retrieval.

4.2 Model

For sparse, lexical retrieval, we use ElasticSearch,
which is based on BM25. For dense retrieval,
we use a DistilRoBERTa-base model (Sanh et al.,
2020) as a bi-encoder: The query and the passage
are passed independently to the transformer model
and the output is averaged to create fixed-sized
representations. We train this using InfoNCE loss
(van den Oord et al., 2018):

L = − log
exp(τ · cossim(q, p+))∑
i exp(τ · cossim(q, pi))

with q the query, p+ the relevant passage. We
use in-batch negative sampling and use the other
passages in a batch as negative examples. We found
that τ = 20 performs well. We train the model in

two setups: 1) only with random (in-batch) nega-
tives, and 2) we provide for each query addition-
ally one hard-negative passage. We use the hard-
negative passages provided by the MS MARCO
dataset, which were retrieved using lexical search.
Models are trained with a batch size of 128 with
Adam optimizer and a learning rate of 2e− 5.

DistilRoBERTa produces representations with
768 dimensions. We also experiment with lower-
dimensional representations. There, we added a
linear projection layer on-top of the mean pooling
operation to down-project the representation to ei-
ther 128 or 256 dimensions. Dense retrieval is per-
formed using cosine similarity with exact search.

Models were trained using the SBERT frame-
work (Reimers and Gurevych, 2019).2

5 Experiments

First, we study the impact of increasing index sizes
with real text passages. Then, we study the perfor-
mance when random noise is added.

5.1 Increasing Index Size
In the first experiment, we start with an index that
only contains the 7433 relevant passages for the
6980 queries. Then, we add step-wise randomly
selected passages from the MS MARCO corpus to
the index until all 8.8 million passages are indexed.

Model 10k 100k 1M 8.8M
BM25 79.93 63.88 40.14 17.56
Trained without hard negatives

128 dim 87.50 68.63 39.76 15.71
256 dim 88.82 70.79 41.74 17.08
768 dim 88.99 71.06 42.24 17.34

Trained with hard negatives
128 dim 90.32 77.92 54.45 27.34
256 dim 91.10 78.90 55.51 28.16
768 dim 91.48 79.42 56.05 28.55

Table 1: Dev performance (MRR@10 ×100) on MS
MARCO passage dataset with different index sizes.
Higher score = better.

Table 1 shows the MRR@10 performance for
the different systems. Increasing the index natu-
rally decreases the performance for all systems, as
retrieving the correct passages from a larger index
is more challenging. The dense approach trained
without hard negatives clearly outperforms BM25
for an index with 10k - 1M entries, but with all 8.8
million passages it performs worse than BM25.

Table 2 shows the relative error rate in compari-
son to BM25 retrieval. For small index sizes, we

2https://www.SBERT.net

https://www.SBERT.net
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Model 10k 100k 1M 8.8M
Trained without hard negatives

128 dim 62.3 86.8 100.6 102.2
256 dim 55.7 80.9 97.3 100.6
768 dim 54.9 80.1 96.5 100.3

Trained with hard negatives
128 dim 48.2 61.1 76.1 88.1
256 dim 44.3 58.4 74.3 87.1
768 dim 42.5 57.0 73.4 86.7

Table 2: Relative error rate (%) of dense approaches in
comparison to BM25 retrieval. Lower score = better.

observe that dense approaches drastically reduce
the error rate compared to BM25 retrieval. With
increasing index sizes, the gap closes.

5.2 Index with Random Noise
MS MARCO is sparsely labeled, i.e., there is usu-
ally only a single passage labeled as relevant even
though multiple passages would be considered as
relevant by humans (Craswell et al., 2020). To
avoid that the drop in performance is due to the
retrieval of relevant, but unlabeled passages, we
perform an experiment where we add random ir-
relevant noise to the index. Our index consists
only of the relevant passages and a large fraction
of irrelevant, randomly generated strings.3

We also evaluate the popular DPR system by
Karpukhin et al. (2020), which is a BERT-based
dense retriever trained on the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019). We chose
the NQ dev set, consisting of 1772 questions from
Google search logs. DPR encodes the passage as
Title [SEP] Paragraph. We create a ran-
dom string for the paragraph and combine it with
1) a randomly generated string as title, 2) selecting
randomly one of the over 6 Million real Wikipedia
article titles, 3) selecting randomly one of the 1772
article titles found in the NQ dev set.

We count for how many queries a random string
is ranked higher than the relevant passage. The
results are shown in Table 3. We observe that
BM25 does not rank any randomly generated pas-
sage higher than the relevant passage for the MS
MARCO dataset. The chance that a random pas-
sage contains words matching the query is small.

For the dense retrieval models, we observe for
quite a large number of queries that a random string
passage is ranked higher than the relevant passage.
As proven in Section 3, the error increases with
larger index sizes and fewer dimensions.

3Strings are generated randomly using lowercase charac-
ters a-z and space.

Model 100k 1M 10M 100M
BM25 0.00% 0.00% 0.00% 0.00%
Dense without hard negatives - MS MARCO

128 dim 2.71% 4.41% 6.69% 9.73%
256 dim 2.39% 4.03% 6.16% 9.04%
768 dim 2.13% 3.72% 5.77% 8.52%

Dense with hard negatives - MS MARCO
128 dim 2.87% 4.20% 6.00% 8.11%
256 dim 2.45% 3.72% 5.59% 7.38%
768 dim 2.12% 3.32% 5.09% 7.03%

DPR (Karpukhin et al., 2020) - Natural Questions
rnd title 0.17% 0.28% 0.34% 0.51%
all titles 2.48% 5.59% 9.31% 12.08%
dev titles 4.18% 5.36% 6.66% 8.01%

Table 3: Percentage of queries for which a random
string passage is ranked higher than the relevant pas-
sage. 100k/1M/10M/100M indicates the number of ran-
dom passages in the index.

For DPR, we observe an extreme dependency on
the title. Having 100 million entries in the index
with a real Wikipedia article title and a random
paragraph, results in the retrieval of those for about
12.08% of all questions at the top position.

The error numbers far exceed the estimation
from equation (1), confirming that the represen-
tations are not uniformly distributed over the com-
plete vector space and are concentrated in a small
space. In the appendix (Figure 1), we plot the rep-
resentations for the queries, the relevant passages,
and the random strings.

6 Conclusion

We have proven and shown empirically that the
probability for false positives in dense information
retrieval depends on the index size and on the di-
mensionality of the used representations. These
approaches can even retrieve completely irrelevant,
randomly generated passages with high probabil-
ity. It is important to understand the limitations of
dense retrieval:

1) Dense approaches work better for smaller,
clean indexes. With increasing index size the dif-
ference to sparse approaches can decreases.

2) Evaluation results with smaller indexes cannot
be transferred to larger index sizes. A system that is
state-of-the-art for an index of 1 million documents
might perform badly on larger indices.

3) The false positive rate increases with fewer
dimensions.

4) The empirically found error rates far exceeded
the mathematical lower-bound error rates, indicat-
ing that only a small fraction of the available vector
space is effectively used.
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A Plot of Random Noise Index

Figure 1 shows a two-dimensional plot of the 6980
development queries in the MS MARCO passage
dataset, together with the 7433 passages that are
marked as relevant and 7433 representations for
randomly generated strings (using lowercase char-
acters and space with a random length between 20
and 150 characters). The representation for the ran-
dom strings are concentrated, but we still observe a
significant overlap with the region for queries and
relevant documents. This explains why random
strings are retrieved for certain queries (Table 3).
We use the dense model that was trained with hard
negatives with 768 dimensions. UMAP (McInnes
et al., 2018) is used for dimensionality reduction to
2 dimensions.
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Figure 1: Plot of queries (blue), the relevant document (green) and representations from randomly generated strings
(red). Dimensionality reduction via UMAP (McInnes et al., 2018). Model with hard negatives, 768 dimensions.


