
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 411–418

August 1–6, 2021. ©2021 Association for Computational Linguistics

411

DefSent: Sentence Embeddings using Definition Sentences

Hayato Tsukagoshi Ryohei Sasano Koichi Takeda
Graduate School of Informatics, Nagoya University

tsukagoshi.hayato@e.mbox.nagoya-u.ac.jp,
{sasano,takedasu}@i.nagoya-u.ac.jp

Abstract

Sentence embedding methods using natural
language inference (NLI) datasets have been
successfully applied to various tasks. How-
ever, these methods are only available for lim-
ited languages due to relying heavily on the
large NLI datasets. In this paper, we pro-
pose DefSent, a sentence embedding method
that uses definition sentences from a word dic-
tionary, which performs comparably on un-
supervised semantics textual similarity (STS)
tasks and slightly better on SentEval tasks
than conventional methods. Since dictionar-
ies are available for many languages, DefSent
is more broadly applicable than methods us-
ing NLI datasets without constructing addi-
tional datasets. We demonstrate that DefSent
performs comparably on unsupervised seman-
tics textual similarity (STS) tasks and slightly
better on SentEval tasks to the methods us-
ing large NLI datasets. Our code is publicly
available at https://github.com/hpprc/
defsent.

1 Introduction

Sentence embeddings represent sentences as dense
vectors in a low dimensional space. Recently, sen-
tence embedding methods using natural language
inference (NLI) datasets have been successfully ap-
plied to various tasks, including semantic textual
similarity (STS) tasks. However, these methods are
only available for limited languages due to relying
heavily on the large NLI datasets. In this paper, we
propose DefSent, a sentence embedding method
that uses definition sentences from a word dictio-
nary. Since dictionaries are available for many lan-
guages, DefSent is more broadly applicable than
the methods using NLI datasets without construct-
ing additional datasets.

Defsent is similar to the model proposed by Hill
et al. (2016) in that it generates sentence embed-
dings so that the embeddings of a definition sen-
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Figure 1: Sentence-BERT (left) and DefSent (right).

tence and the word it represents are similar. How-
ever, while Hill et al. (2016)’s model is based on
recurrent neural network language models, Def-
Sent is based on pre-trained language models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), with a fine-tuning mechanism as well
as Sentence-BERT (Reimers and Gurevych, 2019).
Sentence-BERT is one of the state-of-the-art sen-
tence embedding models, which is based on pre-
trained language models that are fine-tuned on NLI
datasets. Overviews of Sentence-BERT and Def-
Sent are depicted on Figure 1.

2 Sentence Embedding Methods

In this section, we introduce BERT, RoBERTa, and
Sentence-BERT, followed by a description of Def-
Sent, our proposed sentence embedding method.

2.1 BERT and RoBERTa

BERT is a pre-trained language model based on
the Transformer architecture (Vaswani et al., 2017).
Utilizing masked language modeling and next sen-
tence prediction, BERT acquires linguistic knowl-
edge and outputs contextualized word embeddings.
In masked language modeling, a specific propor-
tion of input tokens is replaced with a special token
[MASK], and the model is trained to predict these

https://github.com/hpprc/defsent
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masked tokens. Next sentence prediction is a task
to predict whether two sentences connected by a
sentence separator token [SEP] are consecutive
sentences in the original text data. BERT uses the
output embedding of the unique token [CLS] at
the beginning of each such sentence for prediction.

RoBERTa has the same structure as BERT. It
attempts to improve BERT by removing the next
sentence prediction from pre-training objectives
and increasing the data size and batch size. While
both Sentence-BERT and DefSent are applicable
to BERT and RoBERTa, we use BERT for the ex-
planations in this paper.

2.2 Sentence-BERT
Conneau et al. (2017) proposed InferSent, a sen-
tence encoder based on a Siamese network struc-
ture. InferSent trains the sentence encoder such
that similar sentences are distributed close to each
other in the semantic space. Reimers and Gurevych
(2019) proposed Sentence-BERT, which also uses
a Siamese network to create BERT-based sentence
embeddings. An overview of Sentence-BERT is
depicted on the left side of Figure 1. Sentence-
BERT first inputs the sentences to BERT and then
constructs a sentence embedding from the output
contextualized word embeddings by pooling. They
utilize the following three types of pooling strategy.

CLS Using the [CLS] token embedding.; When
using RoBERTa, since the [CLS] token does
not exist, the beginning-of-sentence token
<s> is used as an alternative.

Mean Using the mean of the contextualized em-
beddings of all words in a sentence.

Max Using the max-over-time of the contextual-
ized embeddings of all words in a sentence.

Let u and v be the sentence embeddings for each
of the sentence pairs obtained by pooling. Then
compose a vector [u; v; |u − v|] and feed it to the
label prediction layer, which has the same number
of output dimensions as the number of classes. For
fine-tuning, Reimers and Gurevych uses the SNLI
dataset (Bowman et al., 2015) and the Multi-Genre
NLI dataset (Williams et al., 2018), which together
contain about one million sentences.

2.3 DefSent
Since they have the same meaning, we focus on
the relationship between a definition sentence and
the word it represents. To learn how to embed

sentences in the semantic vector space, we train
the sentence embedding model by predicting the
word from definitions. An overview of DefSent
is depicted on the right side of Figure 1. We call
the layer that predicts the original token from the
[MASK] embeddings used in the masked language
modeling during BERT pre-training a word predic-
tion layer. Also, we use wk to denote the word
corresponding to a given definition sentence Xk.

DefSent inputs the definition sentence Xk to
BERT and derives the sentence embedding u by
pooling the output embeddings. As in Sentence-
BERT, three types of pooling strategy are used:
CLS, Mean, and Max. Then, the derived sentence
embedding u is input to the word prediction layer
to obtain the probability P (wk|Xk). We use cross-
entropy loss as a loss function and fine-tune BERT
to maximize P (wk|Xk).

In DefSent, the parameters of the word predic-
tion layer are fixed. This setting allows us to fine-
tune models without training an additional classi-
fier, as is the case with both InferSent and Sentence-
BERT. Additionally, since our method uses a word
prediction layer that has been pre-trained in masked
language modeling, the sentence embedding u is
expected to be similar to the contextualized word
embedding of wk when wk appears as the same
meaning as Xk.

3 Word Prediction Experiment

To evaluate how well DefSent can predict words
from sentence embeddings, we conducted an ex-
periment to predict a word from its definition.

3.1 Dataset

DefSent requires pairs of a word and its defini-
tion sentence. We extracted these from the Oxford
Dictionary dataset used by Ishiwatari et al. (2019).
Each entry in the dataset consists of a word and its
definition sentence, and a word can have multiple
definitions. We split this dataset into train, dev, and
test sets in the ratio of 8:1:1 word by word to eval-
uate how well the model can embed unseen defini-
tions of unseen words. It is worth noting that since
DefSent utilizes the pre-trained word prediction
layer of BERT and RoBERTa, it is impossible to
obtain probabilities for out-of-vocabulary (OOV)
words. Therefore, we cannot calculate losses of
these OOV words in a straightforward way.1 In our

1Although we could substitute the mean of subwords as
OOV word embeddings, we opted to filter out OOV words for
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experiments, we only use words and their respec-
tive definitions in the dataset, as contained by the
model vocabulary. The statistics of the datasets are
listed in Table 1.

3.2 Settings

We used the following pre-trained models: BERT-
base (bert-base-uncased), BERT-large (bert-large-
uncased), RoBERTa-base (roberta-base), and
RoBERTa-large (roberta-large) from Transformers
(Wolf et al., 2020). The batch size was 16, a fine-
tuning epoch size was 1, the optimizer was Adam
(Kingma and Ba, 2015), and we set a linear learn-
ing rate warm-up over 10% of the training data.
For each respective model and pooling strategy,
the learning rate was chosen based on the highest
recorded Mean Reciprocal Rank (MRR) for the dev
set in the range of 2x× 10−6, x ∈ {0, 0.5, 1, ..., 7}.
We conducted experiments with ten different ran-
dom seeds, and their mean was used as the eval-
uation score. Top-k accuracy (the percentage of
correct answers within the first, third, and tenth
positions) and MRR were calculated from the out-
put word probabilities when a definition sentence
was fed into the model. Also, we evaluated the
performance of BERT-base without fine-tuning for
comparison.

3.3 Results

Table 2 shows the experimental results.2 Max was
the best pooling strategy for BERT-base without
fine-tuning, but its top-1 accuracy was extremely
low at 0.0157. This indicates that it is not adequate
for predicting words from definitions without fine-
tuning. DefSent performed higher for larger mod-
els. In the case of BERT, CLS was the best pooling
strategy for both base and large models. CLS was
also the best pooling strategy for RoBERTa-base
but Mean was the best for RoBERTa-large.

4 Extrinsic Evaluations

Next, to evaluate the general quality of the con-
structed sentence embedding, we conducted eval-
uations on semantic textual similarity (STS) tasks
and SentEval tasks (Conneau and Kiela, 2018).

simplicity and intuitiveness.
2We report the fine-tuning time and computing infrastruc-

ture in Appendix A, and report the learning rate, means, and
standard deviations on the word prediction experiment in Ap-
pendix B. We also show the actual predicted words when
definition sentences and other sentences are given as inputs in
Appendices C and D, respectively.

All Words Definitions Avg. length
Train 29,413 97,759 9.921
Dev 3,677 12,127 9.874
Test 3,677 12,433 9.846

In BERT vocab. Words Definitions Avg. length
Train 7,732 54,142 9.531
Dev 936 6,544 9.512
Test 979 6,930 9.551

In RoBERTa vocab. Words Definitions Avg. length
Train 7,269 53,935 9.376
Dev 901 6,625 9.372
Test 925 6,945 9.410

Table 1: Statistics of datasets.

Model Pooling MRR Top1 Top3 Top10
BERT-base CLS .0009 .0000 .0000 .0000
(no fine-tuning) Mean .0132 .0001 .0043 .0242

Max .0327 .0157 .0320 .0626
BERT-base CLS .3200 .2079 .3670 .5418

Mean .3091 .1972 .3524 .5356
Max .2939 .1840 .3350 .5207

BERT-large CLS .3587 .2388 .4139 .6011
Mean .3286 .2091 .3792 .5723
Max .2925 .1814 .3356 .5194

RoBERTa-base CLS .3436 .2241 .3983 .5836
Mean .3365 .2170 .3906 .5783
Max .3072 .1941 .3523 .5386

RoBERTa-large CLS .3863 .2611 .4460 .6364
Mean .3995 .2699 .4634 .6599
Max .3175 .2015 .3646 .5543

Table 2: Results of word prediction experiments.

4.1 Settings
We compared the performance of DefSent with
several existing sentence embedding methods in-
cluding InferSent (Conneau et al., 2017), Universal
Sentence Encoder (Cer et al., 2018), and Sentence-
BERT (Reimers and Gurevych, 2019). For the pool-
ing strategies, we used the strategy that achieved
the highest MRR in the word prediction task for
each pre-trained model.3 The performance of the
existing methods was taken from Reimers and
Gurevych (2019).

4.2 Semantic textual similarity tasks
We evaluated DefSent on unsupervised STS tasks.
In these tasks, we compute semantic similarities
of given sentence pairs and calculate Spearman’s
rank correlation ρ between similarities and gold
scores of sentence similarities. In the unsupervised
setting, none of the models are optimized on the
STS datasets. Instead, the similarities of the given
sentence embeddings are calculated using common
similarity measures such as negative Manhattan
distance, negative Euclidean distance, and cosine-
similarity. In this study, we used cosine-similarity.

3We report the means and standard deviations on the un-
supervised STS tasks and SentEval tasks for each respective
model and pooling strategy in Appendices E and F.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Avg. GloVe embeddings (Pennington et al., 2014) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - Glove (Conneau et al., 2017) 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Universal Sentence Encoder (Cer et al., 2018) 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
Sentence-BERT-base (Mean) 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
Sentence-BERT-large (Mean) 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
Sentence-RoBERTa-base (Mean) 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
Sentence-RoBERTa-large (Mean) 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
DefSent-BERT-base (CLS) 67.56 79.86 69.52 76.83 76.61 75.57 73.05 74.14
DefSent-BERT-large (CLS) 66.22 82.07 71.48 79.34 75.38 73.46 74.30 74.61
DefSent-RoBERTa-base (CLS) 65.55 80.84 71.87 78.77 79.29 78.13 74.92 75.62
DefSent-RoBERTa-large (Mean) 58.36 76.24 69.55 73.15 76.90 78.53 73.81 72.36

Table 3: Spearman’s rank correlation ρ × 100 between cosine similarities of sentence embeddings and human
ratings. STS-B denotes STS Benchmark, and SICK-R denotes SICK-Relatedness.

Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
Avg. GloVe embeddings 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.45 84.94
BERT CLS-vector 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
InferSent - GloVe 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
Universal Sentence Encoder 80.09 85.19 93.98 86.70 86.38 93.20 70.14 85.10
Sentence-BERT-base (Mean) 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
Sentence-BERT-large (Mean) 84.88 90.07 94.52 90.33 90.66 87.40 75.94 87.69
DefSent-BERT-base (CLS) 80.94 87.57 94.59 89.98 85.78 89.73 73.82 86.06
DefSent-BERT-large (CLS) 85.79 90.54 95.58 90.15 91.17 90.47 73.74 88.20
DefSent-RoBERTa-base (CLS) 83.94 90.44 94.05 90.70 89.16 90.80 75.52 87.80
DefSent-RoBERTa-large (Mean) 86.47 91.53 95.02 91.15 90.77 92.33 73.91 88.74

Table 4: Accuracy (%) for each task in SentEval.

We performed experiments on unsupervised STS
tasks using the STS12-16 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS Benchmark (Cer et al.,
2017), and SICK-Relatedness (Marelli et al., 2014)
datasets. These datasets contain sentence pairs and
their similarity scores, which is a real number from
0 to 5 assigned by human evaluations. Experiments
were conducted with ten different random seeds,
and the mean was used as the evaluation score.

Table 3 shows the experimental results. Al-
though the training data size used in DefSent
was only about 5% that of Sentence-BERT,
DefSent-BERT-base and DefSent-RoBERTa-base
performed comparably to Sentence-BERT-base and
Sentence-RoBERTa-base. In particular, DefSent-
RoBERTa models showed high performance in the
STS Benchmark.

4.3 SentEval

SentEval (Conneau and Kiela, 2018) is a popular
toolkit for evaluating the quality of universal sen-
tence embeddings that aggregates various tasks,
including binary and multi-class classification, nat-
ural language inference, and sentence similarity.
For the SentEval evaluations, we trained a logistic
regression classifier using sentence embeddings as

input features to evaluate the extent to which each
sentence embedding contained the important infor-
mation for each task. We used the same tasks and
settings as Reimers and Gurevych (2019) and per-
formed a 10-fold cross-validation. We conducted
experiments with three different random seeds, and
the mean was used as the evaluation score.

Table 4 shows the results.4 DefSent-RoBERTa-
large achieved the best average score among all
models. Also, increasing the model size improved
the performance consistently. The performances
of DefSent-BERT-large, DefSent-RoBERTa-base,
and DefSent-RoBERTa-large were better than the
performances of Sentence-BERT-based methods.
These results indicate that DefSent embeds useful
information that can be applied to various tasks.

5 Conclusion

In this paper, we proposed DefSent, a new sen-
tence embedding method using a dictionary, and
demonstrated its effectiveness through a series of
experiments. Its performance was comparable to
or even slightly better than existing methods using

4Reimers and Gurevych (2019) reported that there were
minor difference from Sentence-BERT, so we omitted the
results of Sentence-RoBERTa.
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large NLI datasets. DefSent is based on dictionar-
ies developed for many languages, so it does not
require new language resources when applied to
other languages. Since the model is trained with
the same word prediction process as the masked
language modeling, sentence embeddings derived
by DefSent are expected to be similar to contextu-
alized word embeddings of a word when it appears
with the same meaning as the definition.

In future work, we will evaluate the performance
of DefSent when it is applied to languages other
than English and when it is applied to a broader
range of downstream tasks, such as document clas-
sification tasks. We will also analyze the relation-
ship between the sentence embeddings by DefSent
and the contextualized word embeddings in the
semantic vector space and investigate how model
architecture and size influence the embeddings.
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dings of sentences other than definition sentences
are input. We used BERT-large as a model and
CLS as a pooling strategy for the experiment. The
evaluation procedure is the same as for Appendix
C.

E Full Results of the STS Evaluation

Table 8 shows the experimental results on STS
tasks for each model and pooling strategy.

F Full Results of the SentEval Evaluation

Table 9 shows the experimental results on SentEval
tasks for each model and pooling strategy.
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Model Pooling Learning rate MRR Top1 Top3 Top10
BERT-base CLS 22.5 × 10−6 .3200±.0020 .2079±.0021 .3670±.0029 .5418±.0022

Mean 23.5 × 10−6 .3091±.0021 .1972±.0030 .3524±.0038 .5356±.0029

Max 23.5 × 10−6 .2939±.0021 .1840±.0026 .3350±.0023 .5207±.0045

BERT-large CLS 22.5 × 10−6 .3587±.0043 .2388±.0047 .4139±.0059 .6011±.0054

Mean 23.5 × 10−6 .3286±.0044 .2091±.0045 .3792±.0055 .5723±.0072

Max 23.0 × 10−6 .2925±.0138 .1814±.0113 .3356±.0172 .5194±.0181

RoBERTa-base CLS 22.5 × 10−6 .3436±.0016 .2241±.0016 .3983±.0027 .5836±.0017

Mean 23.0 × 10−6 .3365±.0017 .2170±.0014 .3906±.0029 .5783±.0022

Max 22.0 × 10−6 .3072±.0037 .1941±.0039 .3523±.0050 .5386±.0064

RoBERTa-large CLS 22.0 × 10−6 .3863±.0040 .2611±.0045 .4460±.0044 .6364±.0041

Mean 22.0 × 10−6 .3995±.0041 .2699±.0053 .4634±.0042 .6599±.0036

Max 22.5 × 10−6 .3175±.0069 .2015±.0054 .3646±.0087 .5543±.0092

Table 5: MRR, top-1, top-3, and top-10 accuracy on the word prediction experiment. The scores are the mean and
standard deviation of 10 evaluations with different random seeds.

Word Definition Predictions (1st, 2nd, 3rd)
cost be expensive for ( someone ) cost charge pay
preserve prevent ( food ) from rotting preserve keep spoil
good that which is pleasing or valuable or useful good pleasing pleasure
linux an open-source operating system modelled on unix. linux unix gnu
pile place or lay as if in a pile pile stack heap
weird very strange; bizarre weird strange bizarre
sale the general activity of selling selling sale retail
satellite a celestial body orbiting the earth or another planet. planet satellite orbit
logic the quality of being justifiable by reason reason justice certainty
custom a thing that one does habitually habit routine ritual
chief a person who is in charge leader boss master
nirvana an ideal or idyllic state or place paradise dream ideal

Table 6: Predicted words when the embeddings of definition sentences are input. The first two columns represent
words and their defining sentences, and the third to fifth columns represent the top three predicted words. Correctly
predicted words shown in bold.

Input Predictions (1st, 2nd, 3rd, 4th, 5th)
royal man king royal prince noble knight
royal woman queen princess royal regal sovereign
royal boy boy prince royal king baby
royal girl princess queen lady royal belle
good fine good great right solid
bad bad dirty awful ugly nasty
not good bad poor wrong awful terrible
not bad okay fair good fine ok
Star wars jedi star trek galaxy saga
Star wars in America jedi western fan hollywood movie
Star wars in Europe trek space adventure cinema fantas
Star wars in Japan godzilla anime gundam jedi manga
captain america marvel hero thor superhero hulk

Table 7: Predicted words when the embeddings of sentences other than definition sentences are input.
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Model Pooling STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base CLS 67.56±0.26 79.86±0.25 69.52±0.39 76.83±0.32 76.61±0.33 75.57±0.37 73.05±0.32 74.14±0.25

Mean 67.30±0.44 81.96±0.24 71.92±0.28 77.68±0.47 76.71±0.48 76.90±0.40 73.28±0.30 75.11±0.21

Max 64.61±0.87 82.06±0.21 72.43±0.31 76.56±0.74 75.61±0.43 76.61±0.52 72.15±0.46 74.29±0.33

BERT-large CLS 66.22±0.79 82.07±0.39 71.48±0.33 79.34±0.44 75.38±0.60 73.46±0.45 74.30±0.50 74.61±0.41

Mean 64.18±0.96 82.76±0.42 73.14±0.32 79.66±0.92 77.93±0.78 77.89±0.89 73.98±0.46 75.65±0.53

Max 58.94±1.06 81.03±0.66 71.34±0.88 76.23±1.83 76.07±0.56 75.75±0.70 71.69±0.74 73.01±0.74

RoBERTa-base CLS 65.55±0.89 80.84±0.26 71.87±0.39 78.77±0.70 79.29±0.27 78.13±0.61 74.92±0.18 75.62±0.38

Mean 60.78±1.41 77.17±0.60 69.71±0.73 75.13±1.00 77.75±0.38 76.52±0.63 74.10±0.45 73.02±0.63

Max 63.85±0.86 78.55±0.90 71.19±0.86 76.55±1.12 77.86±0.59 78.02±0.77 73.97±0.46 74.28±0.62

RoBERTa-large CLS 63.84±1.34 77.33±2.53 68.64±1.34 72.86±1.96 77.13±1.32 78.32±1.08 74.14±1.31 73.18±1.20

Mean 58.36±1.16 76.24±0.87 69.55±0.85 73.15±1.32 76.90±0.94 78.53±0.54 73.81±0.88 72.36±0.73

Max 62.89±1.42 77.99±1.88 69.83±1.66 75.60±1.51 79.63±0.60 79.34±0.48 74.04±0.84 74.19±0.88

Table 8: Spearman’s rank correlation ρ × 100 between the cosine similarities of the sentence embeddings and
the human ratings for each model and pooling strategy. The scores are the mean and standard deviation of 10
evaluations with different random seeds.

Model Pooling MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
BERT-base CLS 80.94±0.08 87.57±0.12 94.59±0.09 89.98±0.04 85.78±1.14 89.73±0.76 73.82±0.19 86.06±0.28

Mean 81.84±0.17 88.20±0.04 94.82±0.12 89.94±0.12 86.49±0.20 89.73±0.31 75.32±0.78 86.62±0.18

Max 80.74±0.16 88.00±0.09 94.32±0.07 89.92±0.25 85.03±0.09 89.13±0.50 74.11±0.49 85.89±0.02

BERT-large CLS 85.79±0.19 90.54±0.26 95.58±0.14 90.15±0.04 91.17±0.06 90.47±0.95 73.74±0.61 88.20±0.07

Mean 84.05±0.25 89.50±0.24 95.21±0.12 90.19±0.36 89.44±0.14 88.60±0.87 73.99±0.90 87.28±0.05

Max 83.48±0.30 89.04±0.37 94.55±0.09 89.88±0.17 87.50±0.26 90.87±1.30 74.28±1.27 87.09±0.27

RoBERTa-base CLS 83.94±0.30 90.44±0.49 94.05±0.06 90.70±0.17 89.16±0.22 90.80±0.35 75.52±0.42 87.80±0.20

Mean 84.88±0.21 91.09±0.01 94.60±0.10 90.69±0.07 89.73±0.54 93.13±0.12 77.22±0.46 88.76±0.08

Max 83.98±0.03 90.78±0.24 93.96±0.07 90.63±0.11 90.05±0.06 93.60±0.72 77.80±0.32 88.69±0.12

RoBERTa-large CLS 85.63±0.27 90.74±0.15 94.53±0.14 91.20±0.11 90.08±0.59 93.53±0.76 72.66±1.73 88.34±0.28

Mean 86.47±0.29 91.53±0.06 95.02±0.08 91.15±0.07 90.77±0.34 92.33±0.64 73.91±0.96 88.74±0.12

Max 85.60±0.26 90.73±0.70 94.21±0.65 91.09±0.32 90.65±0.37 91.53±1.70 76.15±0.33 88.56±0.57

Table 9: The percentage of correct answers (%) for each task of SentEval. The scores are the mean and standard
deviation of three evaluations with different random seeds.


