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Abstract

Event extraction has long been a challenging
task, addressed mostly with supervised meth-
ods that require expensive annotation and are
not extensible to new event ontologies. In
this work, we explore the possibility of zero-
shot event extraction by formulating it as a
set of Textual Entailment (TE) and/or Ques-
tion Answering (QA) queries (e.g. “A city
was attacked” entails “There is an attack”), ex-
ploiting pretrained TE/QA models for direct
transfer. On ACE-2005 and ERE, our system
achieves acceptable results, yet there is still a
large gap from supervised approaches, show-
ing that current QA and TE technologies fail
in transferring to a different domain. To inves-
tigate the reasons behind the gap, we analyze
the remaining key challenges, their respective
impact, and possible improvement directions1.

1 Introduction

Event extraction (EE) has long been an impor-
tant and challenging NLP task. Figure 1 exem-
plifies a TRANSFER-OWNERSHIP event from
the ACE-2005 dataset (Walker et al., 2006), where
the trigger is “purchased” and the arguments in-
clude “China” (Buyer), “Russia” (Seller), etc. The
subtasks of EE involve identifying and classifying
event triggers and their corresponding arguments.

The predominant approaches normally require
supervision (e.g. Lin et al., 2020), which is both
expensive and inflexible when moving to new event
ontologies. Recent works (Chen et al., 2020; Du
and Cardie, 2020) have pointed out the connection
between Question Answering (QA) and EE in de-
veloping supervised systems. Meanwhile, several
efforts have explored unsupervised methods. Peng
et al. (2016) first attempted to extract event triggers
with minimal supervision using similarity-based

∗ This work was done when the author was visiting the
University of Pennsylvania.

1Our code and models will be available at http://
cogcomp.org/page/publication_view/943.

Figure 1: An example of an event from ACE-2005, and
how arguments are extracted via QA.

heuristics. Huang et al. (2018) and Lai et al. (2020)
explored both trigger and argument extraction un-
der a slightly different setting: training on some
event types and testing on unseen ones. Recently,
Liu et al. (2020) proposed a QA-based zero-shot
argument extraction method, which did not handle
triggers. So far, no method has been proposed to
extract both event triggers and arguments without
any EE training data2. Moreover, the performance
of existing zero-shot attempts, especially on ar-
guments, is still far from satisfactory, yet little is
known about possible underlying reasons.

In this work, we investigate the possibility of
zero-shot EE via transfer learning from Textual
Entailment (TE) and QA. Observe that given pre-
trained TE/QA models, extracting events can be
viewed as answering questions/verifying hypothe-
ses about a text. For example, the sentence in Fig-
ure 1, taken as the premise, would entail the hy-
pothesis “There is a transfer of ownership”, there-
fore providing the event type. Then, by asking Q1

“Who bought something?”, we obtain “China” as
the Buyer. Similarly, Q2, Q3 will yield the Seller
and Artifact, and so on.

Based on the observation above, we propose an
intuitive zero-shot EE approach. It does not re-
quire any event training data, but we still make
several design choices based on the development
set. To demonstrate the level of generalization,
we choose the optimal model with the ACE de-
velopment set, and evaluate it on both ACE and
ERE (LDC2015E29) test sets. The performance

2An exception is Zhang et al. (2021), done concurrently.

http://cogcomp.org/page/publication_view/943
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surpasses previous zero-shot approaches on every
subtask when the gold trigger span is given, yet is
still unsatisfying compared to supervised methods,
revealing a large gap in using off-the-shelf TE/QA
models for direct transfer. To shed light on why it
is the case, we identify the key challenges behind
the gap, and attribute each of them to the intrin-
sic weakness of pretrained models, our usage of
them, or the task itself. We then anatomize their
individual impact with an ablation study.

Our contributions are: (1) We propose the first
TE/QA-based event extraction system that tackles
both triggers and arguments without any event train-
ing data; (2) We show that existing TE/QA models
do not support direct domain transfer well; and (3)
We provide insights into the remaining challenges,
their individual influence, and possible directions
for future research.

2 Approach
Our pipeline consists of two modules, trigger ex-
traction and argument extraction, both relying on
pretrained TE/QA models for direct transfer.

The pretrained models we use are all BERT-
based (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020), including a TE model trained on
MNLI (Williams et al., 2018), a Yes/No QA model
trained on BoolQ (Clark et al., 2019), and an extrac-
tive QA model trained on QAMR (Michael et al.,
2018) and/or SQuAD2.03 (Rajpurkar et al., 2018)4.
The TE model, when given a premise and a hypoth-
esis, predicts the relation between them (“entail-
ment”, “contradiction”, or “neutral”). The Yes/No
QA model takes as input a context and a Yes/No
question, and returns either Yes or No. Finally, the
extractive QA model is also given a context but
with a Wh-question, and the answer is a span in
the context. With these models, we design the two
modules for event extraction.

2.1 Trigger Extraction (T-Ext)

We formulate Trigger Extraction (T-Ext) as a TE or
a Yes/No QA task. Only the TE case is illustrated,
since the other only differs in the query format.

To obtain potential event triggers from a sen-
tence, we first run Semantic Role Labeling (SRL)
as a preprocessing step. We use a BERT-based
Verb+Nominal SRL model5. The sentence is then

3Abbreviated as SQuAD henceforth.
4See Appendix A and B for model and dataset details.
5https://github.com/CogComp/

SRL-English

Argument Question
Artifact “What is bought?”
Buyer “Who buys something?”
Seller “Who sells something?”
Price “How much does something

cost?”
Beneficiary “Who is something bought for?”
Time “When is the purchase?”
Place “Where is the purchase?”

Table 1: The predefined question for each argument
type in an TRANSFER-OWNERSHIP event.

chunked into “text pieces”, each containing an SRL
predicate and its core arguments (e.g. A0, A1, A2).

Then, for each text piece, we pass it to the TE
model as the premise, coupled with a hypothesis in
the format of “This text is about ...” for each event
type, inspired by Yin et al. (2019). For example,
the hypothesis for BE-BORN is “This text is about
someone’s birth.”. Then, for each hypothesis, the
model returns the probability that it is entailed by
the premise. If the highest entailment probability
across all event types surpasses a threshold, we
output the corresponding SRL predicate as an
event trigger of this type.6

2.2 Argument Extraction (A-Ext)
We formalize the task of Argument Extraction (A-
Ext) as a sequence of QA interactions with the
pretrained extractive QA model.

Given an input sentence and the extracted trigger,
we ask a set of questions based on the event type
definition, and retrieve the QA model’s answers as
argument predictions.

Consider the example in Figure 1. Assume that
T-Ext has identified a TRANSFER-OWNERSHIP
event with the trigger “purchased”. With this in-
formation, we consult a predefined set of ques-
tions for each argument type in the current event
type. For instance, Table 1 provides a full collec-
tion of questions for all arguments in TRANSFER-
OWNERSHIP. Finally, to obtain the head of the
argument (e.g. “submarines” in “two nuclear sub-
marines”), we implement a simple heuristics-based
head identifier based on the AllenNLP Dependency
Parser7 as a post-processing step.

An important caveat in the above process con-
cerns missing arguments. Specifically, many argu-
ment types in the event template do not occur in
every sentence, e.g. in Figure 1, there is no Place
argument. For simplicity, we call questions with a
non-empty gold answer “has-answer” (HA) ques-

6See Appendix C.2 for configuration details.
7https://demo.allennlp.org/dependency-parsing

https://github.com/CogComp/SRL-English
https://github.com/CogComp/SRL-English
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Setting System TI TI+TC AI AI+AC
scratch Lin et al. 20 78.2 74.7 59.2 56.8(supervised)

scratch
(zero-shot)

Huang et al. 188 55.6 49.1 27.8 15.8
Zhang et al. 20 58.3 53.5 16.3 6.3
Ours 45.5 41.7 27.0 16.8

gold TI
(zero-shot)

Huang et al. 18 - 33.5 - 14.7
Zhang et al. 20 - 82.9 - -
Ours - 83.7 38.9 24.2

gold TI+TC
(zero-shot)

Liu et al. 20 - - - 25.8
Ours - - 44.3 27.4

Table 2: The F1 score on ACE-2005. Subtasks include
Trigger Identification (TI), Trigger Classification (TC),
Argument Identification (AI), and Argument Classifica-
tion (AC). See Section 3 for setting definitions. SOTA
results among zero-shot methods are in boldface.

tions and the rest “no-answer” (NA) questions. The
QA model is considered to output NA when it pre-
dicts an empty span or the highest non-empty span
confidence is lower than a threshold.

3 Experimental Setup
We evaluate our system on the ACE-2005 dataset.
Its event ontology has 7 types and 33 subtypes, and
we evaluate T-Ext directly on the subtypes. The
same train/development/test split from Lin et al.
(2020) is used. We make several design choices9

on the development and report results on the test,
ignoring the training set.

To demonstrate how our model generalizes, we
also directly evaluate the optimal model on the
ERE dataset (LDC2015E29). To adapt to ERE, we
define a query for each new event type.

There are four subtasks of event extraction: Trig-
ger Identification (TI), Trigger Classification (TC),
Argument Identification (AI), and Argument Clas-
sification (AC). We experiment under three set-
tings: scratch, where the system performs all sub-
tasks without any gold annotation; gold TI, where
gold trigger spans are given; gold TC, where gold
trigger spans and types are given10.

Following Ji and Grishman (2008), Precision,
Recall, and F1 are used for evaluation11. We eval-
uate argument spans on the head level, consistent
with most prior work (Huang et al., 2018; Wadden
et al., 2019; Lin et al., 2020; Zhang et al., 2021).

4 Results
We report results in comparison with several ex-
isting zero-shot methods (Huang et al., 2018; Liu

8Trained on 10 event types; tested on unseen ones.
9See Appendix C.2 and C.3.

10We don’t have a gold AI setting, since the proposed QA-
based A-Ext module cannot do AC alone.

11Evaluation scripts are adapted from http://blender.
cs.illinois.edu/software/oneie.

Setting System TI TI+TC AI AI+AC
scratch Lin et al. 20 68.4 57.0 50.1 46.5(supervised)
scratch

Ours

39.8 31.8 23.0 15.0
gold TI - 58.4 30.8 18.8
gold TI+TC - - 47.9 27.5
(zero-shot)

Table 3: The F1 score on the ERE. The optimal model
is chosen on ACE dev and directly evaluated on ERE.

et al., 2020; Zhang et al., 2021), as well as a super-
vised SOTA system (Lin et al., 2020).

As shown in Table 2, on the ACE test set, our
system outperforms prior zero-shot methods in ev-
ery subtask under both the “gold TI” and “gold
TI+TC” settings. However, it fails in “scratch”, in-
dicating that the main bottleneck lies in identifying
exact trigger spans. Compared with the supervised
SOTA, our system is still notably worse on TI, AI,
and AC in particular, like other zero-shot systems.

Table 3 shows the results on ERE. Compared to
ACE, our argument detection module generalizes
well, whereas the trigger module does not. Under
the gold TI setting, the TC F1 on overlapping event
types is 70.4, whereas on new event types it is only
19.0, likely because the newly added event types
in ERE have a finer definition. For example, a
model needs to understand “whether a contact is
in-person or not” to distinguish between MEET
(in-person), CORRESPONDENCE (not in-person),
and CONTACT (unsure). Further research should
focus on how to effectively generalize to new event
types with subtle definitions.

5 Analysis
Using the results on ACE, we now present an anal-
ysis of the remaining core challenges of the task,
along with an ablation study on their individual
impact. To further understand the challenges, we
attribute each to the fragility of the pretrained mod-
els (M-Error), our usage of the models (U-Error),
or the task itself (T-Error).

5.1 Trigger Extraction

5.1.1 Error Analysis
We first analyze the distribution of error types.
Specifically, we manually check 100 wrong pre-
dictions and show the counts in Figure 2(a). Only
the most frequent types are discussed here, and the
remaining can be found in Appendix E.1.1.
Subtle trigger (M-Error): This is the main in-
trinsic error from the TE model (17%). Event types
like DIE & EXECUTE, ATTACK & INJURE, and
MEET & PHONE-WRITE are especially confus-

http://blender.cs.illinois.edu/software/oneie
http://blender.cs.illinois.edu/software/oneie
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Figure 2: Error types in trigger and argument extraction in 100 wrong predictions. The count sum exceeds 100
since a prediction can contain multiple types of error. Colors/patterns indicate the origin of the error type.

ing. Though their definitions slightly differ, the
model fails to capture this level of subtlety.
Distracting & Insufficient context (U-Error):
Two other error types from our usage of the TE
model concern distracting (18%) or insufficient
(19%) contexts. An example of distracting context
is “The woman’s parents ... found the decomposing
body”. Given the word “decomposing”, the model
predicts it as a DIE event trigger, due to “body”
in the premise. In contrast, insufficient contexts
provide too little information. For example, in the
sentence “Turkey sent 1,000 troops ... and said it
would send more”, the TE model is asked to pre-
dict the event type of “send” but only sees “it send
more” as the premise, since ”troops” is not part
of the SRL arguments of ”send”. As a result, the
model predicts a TRANSFER-MONEY instead of
TRANSPORT event.
Hypothetical event & Annotation ambiguity (T-
Error): Finally, two error types stem from the
task itself: “hypothetical events” (10%) and “anno-
tation ambiguity” (4%) . Hypothetical events refer
to sentences like “They will not buy it if it is too
expensive”, where the TE model predicts “buy” as a
TRANSFER-OWNERSHIP event trigger. Though
such events should be annotated as per the ACE An-
notation Guideline (3.4), this is not always strictly
followed. Other cases of inconsistent annotation
also cause errors, e.g. among all occurrences of
“give birth to”, the trigger is “give” in some cases,
while “birth” in others.

5.1.2 Ablation Study

We further explore the two U-Error types, by mea-
suring their influence on the performance while

controlling for other factors. Only one type is in-
cluded in this section, and the remaining can be
found in Appendix E.1.2.
Premise design: To see the impact of insuf-
ficient & distracting context, we select all in-
stances of these two types, and change the premise
design. The re-prediction is done under gold-TI.
For insufficient contexts, the premise is now the en-
tire sentence. For distracting contexts, we adopt a
“minimal-pair premise” strategy: Premise A is the
original (e.g. “...decomposing body...”); Premise
B is formed by deleting the candidate trigger from
A (e.g. “...body...”). Then, we take the event type
with the highest entailment probability difference
between A and B as the prediction. Intuitively, this
difference signifies the semantic contribution of the
candidate trigger toward an event type.

After re-prediction, 59% errors are corrected on
insufficient contexts. Among the remaining 41%,
it is either the case that the model still ignores
the context, or that the longer context now brings
distraction.

On distracting contexts, only 18% errors are cor-
rected. The model still cannot overcome the distrac-
tion in most remaining errors, which suggests that
a more complicated strategy is needed in addition
to manipulating the premise.

5.2 Argument Extraction

5.2.1 Error Analysis
Likewise, we analyze 100 wrong argument predic-
tions and discuss several major error types. Fig-
ure 2(b) shows their respective counts. For a full
explanation, see Appendix E.2.1.
Competitive entity & Non-competitive NA ques-
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tions (M-Error): The QA model is intrinsically
weak on “competitive entities” (24%) and “non-
competitive NA questions” (13%).

When identifying an argument for the target
event, another entity of the same type, i.e. a “com-
petitive entity”, can co-occur in the context. For
example, the sentence “A unit ... meets in confiden-
tial sessions to review terrorist activities in Europe”
has a MEET event. When asked “Where is the
meeting”, our model answers “Europe” whereas
the gold answer is empty, since “in Europe” is at-
tached to “activities”. We find that models trained
on extractive QA data are easily fooled by such
entities, if they are of the desired type asked by the
question. Note that competitive entities can occur
for both HA and NA questions.

The other type involves NA questions without
any competitive entity. For example, given the sen-
tence “Iraqi forces responded with artillery fire”,
the question “When is the fire” has no answer, and
there is no Time-type entity to distract the model.
However, the model can still give arbitrary answers
(e.g. “artillery”) with very high confidence, due to
its inherent incapacity for NA questions.
Ungrammatical question (U-Error): This rel-
atively frequent error type (15%) is attributable
to our usage of the QA model. To facilitate the
model to better locate the target event, we em-
bed the trigger in the questions whenever possible,
which sometimes unavoidably makes them ungram-
matical. For example, our question for the Place
argument in a TRANSFER-OWNERSHIP event is
“Where is the {trigger}”. This is only grammatical
when the trigger is a noun. Thus, the QA model
may be confused by such questions.

5.2.2 Ablation Study
To isolate A-Ext, we perform the ablation study
under the gold TI+TC setting. We explore four
error types involving both M-Error and U-Error,
two of which are included in this section, the rest
in Appendix E.2.2.
Pretraining data: To examine the influence of
NA questions, we compare QA models trained on
QAMR (He et al., 2020) and SQuAD2.0, only the
latter of which has NA questions. Results show
that the one trained on QAMR greatly outperforms
the one on SQuAD (+16.9 on AI; +13.6 on AC). To
unveil why it is the case, we propose three hypothe-
ses: (1) QAMR and ACE both have one-sentence
contexts, while SQuAD has paragraphs. (2) The
NA questions in SQuAD “confuses” the model, i.e.

SQuAD and ACE have similar types of HA ques-
tions, while different types of NA questions. (3)
The density of answers per sentence is high in both
QAMR and ACE, while low in SQuAD. We test
each hypothesis using controlled experiments, but
none of them turns out to provide a full explanation
of the performance difference12.

Moreover, we train a binary classifier for HA
and NA questions on a balanced sample of SQuAD,
resulting in over 86 in-domain accuracy. On ACE,
this number drops to 57. This shows that the QA
model cannot even distinguish well between HA
and NA questions when it comes to a new dataset,
let alone answer them.
Question grammaticality: To see the impact
of ungrammatical questions, we manually cor-
rect the grammatical error and re-predict with the
model. Among all relevant wrong predictions, 40%
are now correct. The rest 60% are mostly also NA
questions that prove to require more than just fixing
the grammar to solve.

6 Conclusions
We propose the first complete zero-shot event ex-
traction system via transfer learning from TE and
QA. While QA/TE models perform exceptionally
well on standard benchmarks (SQuAD, QAMR,
MNLI), they do not generalize as expected when
being used on EE datasets. We analyze the limited
success and several main challenges of the current
approach, and provide insights for future improve-
ments.
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A Dataset Statistics

The pretraining datasets we use include MNLI
(Williams et al., 2018), BoolQ (Clark et al., 2019),
QAMR (Michael et al., 2018), and SQuAD2.0 (Ra-
jpurkar et al., 2018). Our evaluation dataset is ACE-
2005 (LDC2006T06) and ERE (LDC2015E29).
Table 4 shows the number of examples in each
dataset.

Dataset Train Dev Test
MNLI 392,702 20,000 20,000
BoolQ 9,427 3,270 3,245
QAMR 73,561 27,535 26,994
SQuAD2.0 130,319 11,873 8,862
ACE-2005 17,172 923 832
ERE - - 2,069

Table 4: Number of examples in all datasets used.

B Details on Pretrained Models

We use three different pretrained representations,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and BART (Lewis et al., 2020). All mod-
els are implemented with HuggingFace Transform-
ers13.

The pretrained model checkpoints we
use include: bert-base-uncased (110M
parameters), bert-large-uncased (336M

13https://github.com/huggingface/
transformers

parameters), roberta-base (125M param-
eters), roberta-large (335M parameters),
facebook/bart-base (373M parameters),
facebook/bart-large (406M parameters)14.

For TE and Yes/No QA, we finetune
the pretrained models using the stan-
dard SequenceClassification pipeline.
For extractive QA, we finetune the
models using the QuestionAnswering

pipeline15. The finetuning scripts are
adapted from the text-classification

and question-answering examples in the
HuggingFace Transformers repository16. The
hyperparameter values and pretrained models will
be made available via the HuggingFace model
sharing service.

We run our experiments on an NVIDIA GeForce
RTX 2080 Ti GPU, with half-precision floating
point format (FP16) with O1 optimization. The
finetuning take 3 hours to 20 hours depending on
the task.

C Details on Event Extraction System

We include here a full list of hyperparameter config-
urations explored in building our event extraction
system. To select the optimal configuration, we
perform grid-search on the development set based
on the F1 score.

C.1 Preprocessing

We adapt the preprocessing script from Lin et al.
(2020)17. In addition, we use several general-
purpose NLP tools to further process the text, in-
cluding a Part-of-Speech Tagger, a Dependency
Parser, a Constituency Parser18.

C.2 Trigger Extraction Module

Pretrained representation As said in Ap-
pendix B, we experiment with three representations
(BERT, RoBERTa, and BART) with their base and
large versions.

14All models above are available at https://
huggingface.co/transformers/pretrained_
models.html

15Both pipelines are available from https:
//huggingface.co/transformers/model_doc/

16https://github.com/huggingface/
transformers/tree/master/examples/legacy

17http://blender.cs.illinois.edu/
software/oneie

18The POS tagger is from http://www.nltk.org/;
the rest are from https://demo.allennlp.org/.
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Pretraining task We have two pretraining task
choices, TE (using MNLI as training data) and
Yes/No QA (using BoolQ as training data).
SRL constituents in the premise For each pred-
icate, we only include itself and a few core argu-
ments to form the premise. The combinations we
try include: Predicate only; Predicate, Arg0, Arg1,
Arg2; Predicate and all arguments.
Confidence threshold For an SRL predicate to
be identified as an event trigger, we require that
the confidence score of the TE model on the
“Entailment” label (resp. the Yes/No QA model
on the “Yes” label) exceeds a threshold. We
search the threshold value within the range of
[0.80, 0.85, 0.90, 0.95, 0.99].
Hypothesis format We experiment with two
strategies to phrase the hypothesis:

• Topical: The hypothesis is in the format
of “This text is about {topic}”, where the
“{topic}” is predefined for each event type.
For example, for ATTACK, the hypothesis is
“This text is about an attack”.

• Natural: The hypothesis is in a natural lan-
guage format. For example, for ATTACK, it
is “Someone is attacked”19.

The optimal configuration for trigger extraction is:
- Pretrained representation: RoBERTa-large;
- Pretraining task: TE;
- SRL arguments in the premise: Predicate, Arg0,
Arg1, Arg2;
- Confidence threshold: 0.99;
- Hypothesis format: Topical.

C.3 Argument Extraction Module
Pretrained representation As said in Ap-
pendix B, we experiment with three representations
(BERT, RoBERTa, and BART) with their base and
large versions.
Pretraining data We have two extractive QA
datasets for pretraining, SQuAD2.0 and QAMR
(and also their combination).
Question format We experiment with two ques-
tion formats:

• Static: The questions are fixed for each event
type. For example, the question for the Place
argument in an ATTACK event is always
“Where is the attack?”.

19See the Supplemental Material for a list of all hypotheses.

• Contextualized: The questions are instantiated
with the trigger of event instances when pos-
sible. For example, the question for the Place
argument in an ATTACK event is “Where is
the {trigger}?”, where “{trigger}” is the spe-
cific trigger token(s) of the current event in-
stance20.

Confidence threshold For the extractive QA
model to predict a non-empty answer, we require
that its confidence score should be higher than
a threshold. We search within the range of
[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99].

The optimal configuration for argument extraction
is:
- Pretrained representation: RoBERTa-large;
- Pretraining data: QAMR;
- Question format: Contextualized;
- Confidence threshold: 0.0 (the threshold value
makes almost no difference, since most model
prediction confidence scores are over 0.99).

D Full Results

Complementary to Section 4, Table 5 and Table 6
shows the full results including Precision, Recall,
and F1 score on ACE and ERE respectively.

E Analysis (Continued)

This section elaborates on the remaining error types
and ablation study experiments not covered by Sec-
tion 5.

E.1 Trigger Extraction
E.1.1 Error Analysis
Ignoring context (M-Error): This is another
prevalent error type (11%), which can also be at-
tributed to the TE model. The model focuses too
much on the candidate trigger itself while disregard-
ing the context. Consider the sentence “He was in-
strumental in creating such shows as ‘married with
children’...”. The word “married” is wrongly pre-
dicted as a MARRY event trigger. The TE model
identifies it as an actual event rather than the name
of a show.
SRL coverage (U-Error): Among all errors, 3%
originate from the fact that the target trigger is not
covered by SRL in the first place. This is a matter

20See the Supplemental Material for a list of all questions.
21Trained on 10 event types; tested on unseen ones.
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Setting System TI TI+TC AI AI+AC
P R F P R F P R F P R F

scratch (Lin et al. 2020) - - 78.2 - - 74.7 - - 59.2 - - 56.8(supervised)

scratch
(zero-shot)

(Huang et al. 2018)21 85.7 41.2 55.6 75.5 36.3 49.1 28.2 27.3 27.8 16.1 15.6 15.8
(Zhang et al. 2020) 58.9 57.8 58.3 54.6 53.5 54.0 19.8 38.9 26.3 9.4 18.5 12.5
Ours 34.7 66.3 45.5 31.7 60.6 41.7 20.2 40.4 27.0 12.6 25.2 16.8

gold TI
(zero-shot)

(Huang et al. 2018) - - - - - 33.5 - - - - - 14.7
(Zhang et al. 2020) - - - - - 82.9 - - - - - -
Ours - - - - - 83.7 35.1 43.7 38.9 21.8 27.2 24.2

gold TI+TC
(zero-shot)

(Liu et al. 2020) - - - - - - - - - 25.5 26.0 25.8
Ours - - - - - - 39.4 50.7 44.3 24.4 31.4 27.4

Table 5: The full performance on ACE-2005.

Setting System TI TI+TC AI AI+AC
P R F P R F P R F P R F

scratch (Lin et al. 2020) - - 68.4 - - 57.0 - - 50.1 - - 46.5(supervised)
scratch

Ours

34.5 68.2 45.8 30.2 59.7 40.1 18.2 37.9 25.1 12.1 24.3 16.1
gold TI - - - - - 80.0 33.6 41.1 37.0 21.0 25.7 23.1
gold TI+TC - - - - - - 39.4 50.6 44.3 24.4 31.3 27.4
(zero-shot)

Table 6: The full performance on ERE.

of our usage of the TE model. Specifically, current
SRL systems cannot handle nominal triggers per-
fectly, and cannot detect multi-word triggers like
“step aside” or adjectival triggers like “dead” at all.
Others: Other less-frequent error types besides
those mentioned in the main text are related to
coreference (e.g. when pronouns like “this” are
triggers, ), proper names (e.g. historical events like
“intifada”), confidence scores being too low (thus
not identifying a gold trigger), ambiguity of the
hypothesis (e.g. a “nuclear test” is predicted as a
TRIAL-HEARING event because of the word “test”
and the hypothesis “There is a trial or hearing”.)

E.1.2 Ablation Study
SRL models: To examine the influence of SRL
coverage, we experiment with two more SRL mod-
els: Illinois SRL (Punyakanok et al., 2008)22, and
one that identifies almost every verb and nominal23.
None of the three can identify adjectival/multi-
word predicates. In comparison, every model can
cover over 90% verb triggers, while the nominal
trigger coverage varies from 60% to 95%. On
T-Ext, the highest-coverage model performs the
best (+4.0 F1 on TI, +6.8 on TC over the lowest-
coverage model), proving that the gain from greedy
identification does compensate for the cost in pre-
cision.
Pretraining task: Our results show that the TE-

22https://cogcomp.seas.upenn.edu/page/
software_view/SRL

23Also from https://github.com/CogComp/
SRL-English.

based TC far outperforms its Yes/No QA counter-
part (by 52.6%). One hypothesis is that the pretrain-
ing data for the TE model (MNLI; about 400K ex-
amples) is much larger than that for the QA model
(BoolQ; about 9K). To verify that, we retrain a
TE model on a portion of MNLI of the same size
as BoolQ. As a result, the gap shrinks to 31.4%,
though still quite large. This proves the importance
of the training data size. It also implies that in order
to further improve the current TE-based method,
using larger-scale training data might be promising.
Hypothesis design: It is observed that the hy-
pothesis format also plays a nontrivial role. As
said in Appendix C.2, we experiment with two hy-
pothesis designs, topical and natural. Experiments
show that “topical” is better than “natural” by 1.9%
on TC, suggesting the sensitivity of current TE
systems to the phrasing of texts.

E.2 Argument Extraction

E.2.1 Error Analysis

Too broad argument type (M-Error/U-Error):
For this error type (9%), both the model and our
usage are to blame. Though ACE has a strict def-
inition of arguments, the QA model sometimes
interprets them too broadly. For instance, with the
context “A blindfolded woman was shot in the head
by a hooded militant”, given the question “Where
is the shot”, the model answers “in the head”. This
is not technically wrong, but certainly not the de-
sired Place argument either. We cannot hold the
QA model entirely accountable, since the questions

https://cogcomp.seas.upenn.edu/page/software_view/SRL
https://cogcomp.seas.upenn.edu/page/software_view/SRL
https://github.com/CogComp/SRL-English
https://github.com/CogComp/SRL-English
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are indeed too generic as well.
Inexact span (U-Error): 15% errors are because
of the inexact match of gold and predicted ar-
gument spans. For instance, the gold is “Satur-
day morning” while the predicted is “morning”.
Though in our evaluation, we compare only heads
of the phrases whenever possible, not all ACE argu-
ments (i.e. those of the “value” type instead of the
“entity” type) have head annotations. Under this cir-
cumstance, the current evaluation framework does
not give credit to a partial match, which can be an
imperfection for potential improvement.
Insufficient context (U-Error): Like in trigger
extraction, the model is sometimes given insuffi-
cient context when predicting arguments (11%).
The target argument can be entirely outside the
SRL constituents of the predicate, thus making it
impossible to extract.
Coreference & Annotation ambiguity (T-
Error): Error types ascribed to the task include
“coreference” (5%) and “annotation ambiguity”
(17%). The former refers to the case when the
model predicts a coreferent of the gold argument.
However, the current evaluation framework still
takes it as an error. The latter happens when
the model makes a sensible prediction, yet it is
inconsistent with the annotation. For example, in
the sentence “Iraqi forces responded with artillery
fire”, the model recognizes “artillery” as the
Instrument for the ATTACK event triggered by
“fire”. However, no Instrument is annotated. Future
evaluation framework should consider allowing
multiple correct answers in such cases of human
disagreement.
Others: Other errors are related to multiple argu-
ments (i.e. the model only predicts one of them),
lacking document-level knowledge (i.e. the sen-
tence itself is not informative enough), and also
arbitrary predictions with no obvious reason.

E.2.2 Ablation Study
Pretraining data: Continuing from the “Pretrain-
ing data” paragraph in Section 5.2.2, we test three
hypotheses for the gap between training on QAMR
and SQuAD.

Hypothesis(1): QAMR and ACE both have one-
sentence contexts, while SQuAD has paragraphs.

We try to verify it by retraining a QA model on
a new version of QAMR with longer contexts, sub-
ject to the same length distribution of SQuAD. This
is done by either a) adding random sentences, or b)
repeating the original sentence. It is observed that

a) almost doesn’t hurt AI at all but AC a little (3%),
and b) lowers AI by 4% and AC by 3%. Therefore,
though longer contexts do weaken the performance
slightly, it is not the main reason behind the gap
between QAMR and SQUAD.

Hypothesis(2): The NA questions in SQuAD
“confuses” the model, i.e. SQuAD and ACE have
similar types of HA questions, while different types
of NA questions.

To test this hypothesis, we retain all HA ques-
tions in SQuAD to make a new dataset. We also
construct a control set of the same size, but with
both NA and HA questions randomly sampled from
the original SQuAD. We retrain a QA model on
each dataset, and find that the HA-only set brings
about an increment by 7% on AI but a drop by
2% on AC, compared to the control set. This sug-
gests that the addition of NA questions in SQuAD
does have mixed effects on event extraction. Future
research should focus on how to better transfer a
model’s ability to identify NA questions to a differ-
ent domain.

Hypothesis (3): The density of answers per sen-
tence is high in both QAMR and ACE, while low
in SQuAD.

To see if this is the cause, we construct a new
version of QAMR by retaining only one QA pair
for each sentence. A control set of the same size,
but with multiple QA pairs per sentence, is also
constructed by randomly deleting sentences (along
with all their QA pairs) from the original QAMR.
Results show that the low-density set is only worse
than the control set on AI by 0.5% and on AC by
0.2%, indicating that the density of answers is not
a critical aspect.
Type constraints in question: Since generic
questions may have been a cause for too broad
argument types, we experiment with a new set of
question templates that contain specific entity-type
requirements whenever possible. For example, in-
stead of “Where is the shot”, we ask “What is the
location of the shot”, which may prevent the model
from answering “in the head”. However, only 11%
errors are fixed after re-prediction, indicating that
encoding type constraints is non-superficial.
Question design: Like the hypothesis format
in trigger extraction, the design of questions also
makes a difference for arguments. As mentioned in
Appendix C.3, we explore two formats, static and
Contextualized. Experiments show that switching
from “static” to “contextualized” boosts AI by 7%
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while impairs AC by 3%, suggesting that contex-
tualized questions overall helps the model better
locate the event.
Context design: To measure the influence of in-
sufficient context, we now use the entire sentence
as the context on these instances, similar to trig-
ger extraction. Results show that 27% of them are
now correct, and another 27% are partially correct
(inexact span).


