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Abstract

Early fusion models with cross-attention
have shown better-than-human performance
on some question answer benchmarks, while
it is a poor fit for retrieval since it prevents
pre-computation of the answer representations.
We present a supervised data mining method
using an accurate early fusion model to im-
prove the training of an efficient late fusion re-
trieval model. We first train an accurate clas-
sification model with cross-attention between
questions and answers. The cross-attention
model is then used to annotate additional pas-
sages in order to generate weighted training ex-
amples for a neural retrieval model. The result-
ing retrieval model with additional data signif-
icantly outperforms retrieval models directly
trained with gold annotations on Precision at
N (P@N) and Mean Reciprocal Rank (MRR).

1 Introduction

Open domain question answering (QA) involves
finding answers to questions from an open cor-
pus (Surdeanu et al., 2008; Yang et al., 2015; Chen
et al., 2017; Ahmad et al., 2019). The task has
led to a growing interest in scalable end-to-end
retrieval systems for question answering.

When QA is formulated as a reading comprehen-
sion task, cross-attention models like BERT (De-
vlin et al., 2019) have achieved better-than-human
performance on benchmarks such as the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016). Cross-attention models are especially
well suited for problems involving comparisons be-
tween paired textual inputs, as they provide early
fusion of fine-grained information within the pair.
This encourages careful comparison and integra-
tion of details across and within the two texts.

However, early fusion across questions and an-
swers is a poor fit for retrieval, since it prevents pre-
computation of the answer representations. Rather,

neural retrieval models independently compute em-
beddings for questions and answers, typically us-
ing dual encoders for fast scalable search (Hender-
son et al., 2017; Gillick et al., 2018; Yang et al.,
2019b; Karpukhin et al., 2020). Using dual en-
coders results in late fusion within a shared embed-
ding space.

For machine reading, early fusion using cross-
attention introduces an inductive bias to compare
fine grained text spans within questions and an-
swers. This inductive bias is missing from the sin-
gle dot-product scoring operation of dual encoder
retrieval models. Thus, late fusion is expected to
require more training data to learn the necessary
representations for fine grained comparisons.

To support learning improved representations
for retrieval, we explore a supervised data augmen-
tation approach leveraging a complex classifica-
tion model with cross-attention between question-
answer pairs. Given gold question passage pairs,
we first train a cross-attention classification model
as the supervisor. Then any collection of questions
can be used to mine potential question passage
pairs under the supervision of the cross-attention
model. The retrieval model training benefits from
additional training pairs annotated with the graded
predictions from the cross-attention model aug-
menting the existing gold data. Experiments on
MultiReQA-SQuAD and MultiReQA-NQ estab-
lish significant improvements on Precision at N
(P@N) and Mean Reciprocal Rank (MRR).

The supervised mining approach is closely con-
nected to the recently studied hard negative min-
ing for neural retrieval models (Xiong et al., 2020;
Lu et al., 2020). The key differences is that the
proposed approach finds the positive training ex-
amples, while the negative mining approaches find
the negative examples for training. The two ap-
proaches are complementary and can be combined.
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2 Neural Passage Retrieval for Open
Domain Question Answering

Open domain question answering systems usually
follow a two-step approach: first retrieve ques-
tion relevant passages, and then scan the returned
text to identify the answer span using a read-
ing comprehension model (Jurafsky and Martin,
2018; Kratzwald and Feuerriegel, 2018; Yang et al.,
2019a). Prior work has focused on the answer span
annotation task and has even achieved super hu-
man performance on some datasets. However, the
evaluations implicitly assume the trivial availabil-
ity of passages for each question that are likely to
contain the correct answer. While the retrieval task
can be approached using traditional keyword based
retrieval methods such as BM25, there is a growing
interest in developing more sophisticated neural re-
trieval methods (Lee et al., 2019; Guu et al., 2020;
Karpukhin et al., 2020).

3 Retrieval Question-Answering (ReQA)

Ahmad et al. (2019) introduced Retrieval Question-
Answering (ReQA), a task that has been rapidly
adopted by the community (Guo et al., 2020; Chang
et al., 2020; Ma et al., 2020; Zhao and Lee, 2020;
Roy et al., 2020). Given a question, the task is to
retrieve the answer sentence from a corpus of candi-
dates. ReQA provides direct evaluation of retrieval,
independent of span annotation. Compare to Open
Domain QA, ReQA focuses on evaluating the re-
trieval component and, by construction, avoids the
need for span annotation.

We explore the proposed approach on
MultiReQA-NQ and MultiReQA-SQuAD (Guo
et al., 2020).1 MultiReQA (Guo et al., 2020)
established standardized training / dev / test splits.
Statistics for each tasks are listed in Table 1.

Dataset Training Pairs Test
Questions Candidates

NQ 106,521 4,131 22,118
SQuAD 87,133 10,485 10,642

Table 1: Statistics of MutiReQA NQ and SQuAD tasks:
# of training pairs, # of questions, # of candidates.

4 Methodology

In this section we describe the proposed approach
using a neural retrieval model augmented with su-

1https://github.com/
google-research-datasets/MultiReQA
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Figure 1: Use of a cross-attention model for the su-
pervised mining of additional QA pairs. Our accurate
cross-attention model supervises the mining process by
identifying new previously unannotated positive pairs.
Mined QA pairs augment the original training data for
the dual encoder based neural passage retrieval model.

pervised data mining. Figure 2 illustrates our ap-
proach using a cross-attention classifier to super-
vise the data augmentation process for training a
retrieval model. After training the cross-attention
model, we retrieve additional potential answers
to questions using an off-the-shelf retrieval sys-
tem2. The predicted scores from our classifier with
cross-attention are then used to weight and filter the
retrieved candidates with positive examples serv-
ing as additional training data for the dual encoder
based retrieval model.

4.1 BERT Classification Model

Cross-attention models like BERT are often used
for re-ranking after retrieval and can significantly
improve performance as they allow for fine-grained
interactions between paired inputs (Nogueira et al.,
2019; Han et al., 2020). Here we formalize a binary
classification task for predicting question answer
relatedness. We use the question-answer pairs from
the training set as our positive examples. Negatives
are sampled for each question using the following
strategies with a 1:1:1 ratio: (1) A sentence from
the top 10 nearest neighbors returned by a term
based BM25 (Robertson and Zaragoza, 2009) over
a sentence pool containing all supporting docu-
ments in a corpus. (2) A sentence from the top
10 nearest neighbors using the Universal Sentence
Encoder - QA (USE-QA) (Yang et al., 2019b). (3)
A sentence randomly sampled from its supporting
documents, excluding the question’s gold answer.
The sampled non-answer sentences are paired with
their questions as negative examples. A BERT
model is fine-tuned following the default setup
from the Devlin et al. (2019).

https://github.com/google-research-datasets/MultiReQA
https://github.com/google-research-datasets/MultiReQA
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Figure 2: The BERT dual encoder architecture. The
answer and context are concatenated and fed into the
answer encoder. Figure from (Guo et al., 2020).

4.2 Dual-Encoder Retrieval Model

We follow Guo et al. (2020) and employ a BERT
based dual-encoder model for retrieval. The model
architecture is illustrated in figure ??. The dual-
encoder model critically differs from the cross-
attention model in that there is no early interac-
tions (cross-attention) between the question and
answer. The resulting independent encodings are
only combined in the final dot-product scoring a
pair. The same BERT encoder is used for questions
and answers with the output of the CLS token taken
as the output encoding. For answers, the answer
and context are concatenated and segmented using
the segment IDs from the original BERT model.
A learned input type embedding is added to each
input token representation to distinguish questions
and answers within the encoding model.

The BERT dual-encoder model can be fine-tuned
using the in batch sampled softmax loss (Gillick
et al., 2018):

J =
∑

(x,y)∈Batch

eφ(x,y)∑
ȳ∈Y e

φ(x,ȳ)
(1)

Where x is the question, y is the correct answer, Y
is all answers in the same batch that are used as
sampled negatives, and φ(x, y) is the dot product
of question and answer representations. Note that
the dot product is scaled by X100 during training,
which is a critical component when applying l2
normalization to the embeddings.

2Note the approach can also be applied to any collection
of questions, even for those without ground truth answers.

4.3 Mining Augmented Training Pairs

We create an augmented training set for the re-
trieval model using our cross-attention based QA
model. For each question in the training set, we em-
ploy USE-QA to mine the top 10 nearest neighbors
from the entire training set, and then remove those
retrieved pairs which are true positives. Next the
cross-attention based QA model is used to score
the retrieved pairs. The dual-encoder based neural
retrieval model is then trained on the combination
the additional scored positive pairs and the original
QA pairs from the training set. The original pairs
are assigned a score 1.

4.4 Weighted In-batch Softmax for
Dual-Encoder Retrieval Model

The neural retrieval model is trained using the batch
negative sampling loss (Gillick et al., 2018) in equa-
tion 2. We modify the standard formulation to in-
clude a weight, w(x, y), for each pair.

J ′ =
∑

(x,y)∈Batch

w(x, y)
eφ(x,y)∑
ȳ∈Y e

φ(x,ȳ)
(2)

We setw(x, y) to 1 if (x, y) is a ground truth pos-
itive pair and p(x, y)2, otherwise, whereby p(x, y)
is the probability from the cross-attention model.

5 Evaluation

In this section we evaluate the proposed approach
using the MultiReQA evaluation splits for NQ
and SQuAD. Models are assessed using Precision
at N (P@N) and Mean Reciprocal Rank (MRR).
Following the ReQA setup (Ahmad et al., 2019),
we report P@N for N=[1, 5, 10]. P@N evaluates
whether the true answer sentence appears in the
top-N ranked candidates. MRR is calculated as
MRR = 1

N

∑N
i=1

1
ranki

, where N is the total num-
ber of questions, and ranki is the rank of the first
correct answer for the ith question.

5.1 Configurations

Our cross-attention QA models are fine-tuned from
the public English BERT for 10 epochs, using a
batch size of 256 and a weighted Adam optimizer
with learning rate 3e-5. We experiment with both
BERTBase and BERTLarge. All hyper-parameters
are set using a dev set split out from the training
data (10%). When mining for silver data, we only
keep candidate pairs with positive cross-attention
QA model scores (≥ 0.5).
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Models NQ SQuAD
ACC AUC-PR ACC AUC-PR

Majority 73.7 – 74.8 –
BERTdual encoder 75.8 49.3 80.3 62.0
(x-attn) BERTBase 84.3 92.8 92.6 96.5
(x-attn) BERTLarge 84.9 93.5 93.6 97.1

Table 2: Accuracy (ACC) and area under the precision-
recall curve (AUC-PR) for the classification task. Ma-
jority is a simple baseline that always predicts false.
(x-attn) indicates cross-attention QA models.

The BERTBase model is used to initialize the dual
encoder retrieval model. During training we use a
batch size of 64, and a weighted Adam optimizer
with learning rate 1e-4. The maximum input length
is set to 96 for questions and 384 for answers. Mod-
els are trained for 200 epochs. The embeddings
are l2 normalized. Hyper-parameters are manually
tuned on a held out development set.

5.2 Performance for the Classification Task

The classification data created using the method
from section 4.1 contains a total of 531k and 469k
training examples for NQ and SQuAD, respectively.
Test sets extracted from the SQuAD and NQ test
splits contain 15k and 41k examples.3

Table 2 provides the performance of the cross-
attention models, compared to a majority baseline
which always predict false and a BERTdual encoder
retrieval model without any mined examples that
uses cosine similarity for prediction. Cross-
attention based models outperform the baselines
by a wide margin,4 with BERTLarge achieving the
highest performance on all metrics. This is consis-
tent with our hypothesis that early fusion models
outperform late fusion based retrieval models. Both
models achieve better performance on SQuAD than
NQ. The SQuAD task has higher token overlap, as
described in section 3, making the task somewhat
easier. We use the BERTLarge model to supervise
the data augmentation in the next section.

5.3 Mined Examples

We mined the SQuAD and NQ training data to
construct additional QA pairs. After collecting
and scoring addition pairs using the method de-
scribed in section 4.3, we obtained 53% (56,148)
and 12% (10,198) more examples for NQ and

3The positive / negative ratio is roughly 1:3.
4The poor performance of BERTdual encoder is also aligned

with the hypothesis that cosine similarity score is not a globally
consistent measurement of how good a pair (Guo et al., 2018).

SQuAD, respectively. Table 4 illustrated the exam-
ples retrieved by USE-QA and predicted as positive
examples by our cross-attention QA classification
model. Both examples are clear positive QA pairs.

Much less data is mined for SQuAD then NQ.
We believe it is because of the way SQuAD was
created, whereby workers write the questions based
on the content of a particular article. The result-
ing questions are much more specific and biased
toward a particular question types, e.g. what ques-
tions Ahmad et al. (2019). Additionally, the can-
didate pool for SQuAD is only half that of NQ,
resulting in questions having fewer opportunities
to be matched to good additional answers.

5.4 Results on the Retrieval QA

Table 3 gives P@N and MRR@100 for retrieval
models on MultiReQA-SQuAD and MultiReQA-
NQ. The first two rows show the result from two
simple baselines: BM25 (Robertson and Zaragoza,
2009), USE-QA, and USE-QAfinetune reported by
Guo et al. (2020). BM25 remains a strong base-
line, especially with 62.8% P@1 and 70.5% MRR
for SQuAD. BM25’s performance on NQ is much
lower, as there is much less token overlap between
NQ questions and answers. USE-QA matches the
performance of BM25 on NQ but performs worse
on SQuAD.5 BERTdual encoder performs well com-
pared to other baselines, especially on NQ with
a +6.6 point improvement compared to the USE-
QAfinetune model.6 Its P@1 on SQuAD performs
better than USE-QA and BM25, but -3.1 points
MRR worse than USQ-QAfinetune. On average,
BERTdual encoder is the best among those baselines.

Performance improves by a large margin using
augmented training data from our cross-attention
QA model, obtaining a +8.6 and +7.0 improve-
ment on NQ P@1 and MRR. Compare to NQ,
the improvement on SQuAD is rather marginal.
The augmented BERTdual encoder retrieval model
only achieves slightly improved performance on
SQuAD, with +1 points for both P@1 and MRR.
As discussed in section 5.3, we mine much less
data from SQuAD compare to NQ, with only 10%
more data than the original training set. As demon-
strated by the strong BM25 performance and shown
in (Guo et al., 2020), the SQuAD QA pairs have
high token overlap between question and answers,

5USE-QA can be fine-tuned, which usually significantly
outperforms the default USE-QA model (Guo et al., 2020).

6Our Bertdual encoder performs better than the one reported
in Guo et al. (2020), likely due to additional training epochs.
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Models NQ SQuAD
P@1 P@5 P@10 MRR P@1 P@5 P@10 MRR

BM25 24.7 – – 36.6 62.8 – – 70.5
USE-QA 24.7 – – 34.7 51.0 – – 62.1
USE-QAfinetune 38.0 – – 52.3 66.8 – – 75.9
BERTdual encoder 44.7 77.1 85.1 58.9 62.8 85.4 91.0 72.8
BERTdual encoder Augmented 53.3 82.3 88.5 65.9 63.8 86.1 91.6 73.7

Table 3: Precision at N(P@N) (%) N=[1, 5, 10] and Mean Reciprocal Rank (MRR) (%) on the MultiReQA tasks.

Score Silver QA Pair

0.92

Q: what are the names of the two old muppets in the
balcony that heckle everyone ?
A: Statler and Waldorf are a pair of Muppet char-
acters known for their cantankerous opinions and
shared penchant for heckling.

0.90

Q: where the phrase dressed to the nines come from
A: It appears in book six of Jean - Jacques Rousseau
’s Confessions , his autobiography ...

Table 4: Mined positive examples identified using our
cross-attention QA classification model.

minimizing the advantage of the neural methods in
capturing more complex semantic relationships.

Effectiveness of Weighted Softmax. We further
experimented the Retrieval QA tasks using the
model with the non-modified softmax using the
augmented data. All other configurations are keep
the same. The MRR of the model using non-
modified softmax is 60.1 on MultiReQA-NQ and
71.9 on MultiReQA-SQuAD, which are much
worse than the model using weighted softmax. This
result indicates the weighted softmax is important
for the proposed approach.

6 Conclusion

In this paper, we propose a novel approach for mak-
ing use of an early fusion classification model to
improve late fusion retrieval models. The early fu-
sion model is used for data mining to augment the
training set for the late fusion model. The proposed
approach mines 53% (56,148) and 12% (10,198)
more examples for MultiRQA-NQ and MultiRQA-
SQuAD, respectively. Compared to the models
directly trained with gold annotations, the result-
ing retrieval models improve +8.6% and +1.0%
P@1 on NQ and SQuAD respectively. The cur-
rent pipeline assumes there exists annotated in-
domain question answer pairs to train the cross-
attention model. With a strong general purpose
cross-attention model, our method could be mod-
ified to train in-domain retrieval models without
gold data. We leave this to the future work.
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