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Abstract

The introduction of pretrained language mod-
els has reduced many complex task-specific
NLP models to simple lightweight layers. An
exception to this trend is coreference resolu-
tion, where a sophisticated task-specific model
is appended to a pretrained transformer en-
coder. While highly effective, the model has
a very large memory footprint – primarily due
to dynamically-constructed span and span-pair
representations – which hinders the process-
ing of complete documents and the ability to
train on multiple instances in a single batch.
We introduce a lightweight end-to-end coref-
erence model that removes the dependency
on span representations, handcrafted features,
and heuristics. Our model performs competi-
tively with the current standard model, while
being simpler and more efficient.

1 Introduction

Until recently, the standard methodology in NLP
was to design task-specific models, such as BiDAF
for question answering (Seo et al., 2017) and ESIM
for natural language inference (Chen et al., 2017).
With the introduction of pretraining, many of these
models were replaced with simple output layers,
effectively fine-tuning the transformer layers below
to perform the traditional model’s function (Rad-
ford et al., 2018). A notable exception to this trend
is coreference resolution, where a multi-layer task-
specific model (Lee et al., 2017, 2018) is appended
to a pretrained model (Joshi et al., 2019, 2020).
This model uses intricate span and span-pair repre-
sentations, a representation refinement mechanism,
handcrafted features, pruning heuristics, and more.
While the model is highly effective, it comes at
a great cost in memory consumption, limiting the
amount of examples that can be loaded on a large
GPU to a single document, which often needs to
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be truncated or processed in sliding windows. Can
this coreference model be simplified?

We present start-to-end (s2e) coreference reso-
lution: a simple coreference model that does not
construct span representations. Instead, our model
propagates information to the span boundaries (i.e.,
its start and end tokens) and computes mention and
antecedent scores through a series of bilinear func-
tions over their contextualized representations. Our
model has a significantly lighter memory footprint,
allowing us to process multiple documents in a sin-
gle batch, with no truncation or sliding windows.
We do not use any handcrafted features, priors, or
pruning heuristics.

Experiments show that our minimalist approach
performs on par with the standard model, despite
removing a significant amount of complexity, pa-
rameters, and heuristics. Without any hyperparam-
eter tuning, our model achieves 80.3 F1 on the
English OntoNotes dataset (Pradhan et al., 2012),
with the best comparable baseline reaching 80.2
F1 (Joshi et al., 2020), while consuming less than
a third of the memory. These results suggest that
transformers can learn even difficult structured pre-
diction tasks such as coreference resolution without
investing in complex task-specific architectures.1

2 Background: Coreference Resolution

Coreference resolution is the task of clustering mul-
tiple mentions of the same entity within a given
text. It is typically modeled by identifying entity
mentions (contiguous spans of text), and predicting
an antecedent mention a for each span q (query)
that refers to a previously-mentioned entity, or a
null-span ε otherwise.

Lee et al. (2017, 2018) introduce coarse-to-fine
(c2f), an end-to-end model for coreference resolu-

1Our code and model are publicly available: https://
github.com/yuvalkirstain/s2e-coref

https://github.com/yuvalkirstain/s2e-coref
https://github.com/yuvalkirstain/s2e-coref
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tion that predicts, for each span q, an antecedent
probability distribution over the candidate spans c:

P (a = c|q) = exp(f(c, q))∑
c′ exp(f(c

′, q))

Here, f(c, q) is a function that scores how likely c
is to be an antecedent of q. This function is com-
prised of mention scores fm(c), fm(q) (i.e. is the
given span a mention?) and a separate antecedent
score fa(c, q):

f(c, q) =

{
fm(c) + fm(q) + fa(c, q) c 6= ε

0 c = ε

Our model (Section 3) follows the scoring function
above, but differs in how the different elements
fm(·) and fa(·) are computed. We now describe
how fm and fa are implemented in the c2f model.

Scoring Mentions In the c2f model, the mention
score fm(q) is derived from a vector representation
vq of the span q (analogously, fm(c) is computed
from vc). Let xi be the contextualized representa-
tion of the i-th token produced by the underlying
encoder. Every span representation is a concate-
nation of four elements: the representations of the
span’s start and end tokens xqs ,xqe , a weighted
average of the span’s tokens x̂q computed via self-
attentive pooling, and a feature vector φ(q) that
represents the span’s length:

vq = [xqs ;xqe ; x̂q;φ(q)]

The mention score fm(q) is then computed from
the span representation vq:

fm(q) = vm · ReLU(Wmvq)

where Wm and vm are learned parameters. Then,
span representations are enhanced with more global
information through a refinement process that inter-
polates each span representation with a weighted
average of its candidate antecedents. More recently,
Xu and Choi (2020) demonstrated that this span
refinement technique, as well as other modifica-
tions to it (e.g. entity equalization (Kantor and
Globerson, 2019)) do not improve performance.

Scoring Antecedents The antecedent score
fa(c, q) is derived from a vector representation of
the span pair v(c,q). This, in turn, is a function
of the individual span representations vc and vq,
as well as a vector of handcrafted features φ(c, q)

such as the distance between the spans c and q,
the document’s genre, and whether c and q were
said/written by the same speaker:

v(c,q) = [vc;vq;vc ◦ vq;φ(c, q)]

The antecedent score fa(c, q) is parameterized with
Wa and va as follows:

fa(c, q) = va · ReLU(Wav(c,q))

Pruning Holding the vector representation of ev-
ery possible span in memory has a space complex-
ity of O(n2d) (where n is the number of input to-
kens, and d is the model’s hidden dimension). This
problem becomes even more acute when consider-
ing the space of span pairs (O(n4d)). Since this is
not feasible, candidate mentions and antecedents
are pruned through a variety of model-based and
heuristic methods.

Specifically, mention spans are limited to a cer-
tain maximum length `. The remaining mentions
are then ranked according to their scores fm(·),
and only the top λn are retained, while avoiding
overlapping spans. Antecedents (span pairs) are fur-
ther pruned using a lightweight antecedent scoring
function (which is added to the overall antecedent
score), retaining only a constant number of an-
tecedent candidates c for each target mention q.

Training For each remaining span q, the training
objective optimizes the marginal log-likelihood of
all of its unpruned gold antecedents c, as there may
be multiple mentions referring to the same entity:

log
∑
c

P (a = c|q)

Processing Long Documents Due to the c2f
model’s high memory consumption and the limited
sequence length of most pretrained transformers,
documents are often split into segments of a few
hundred tokens each (Joshi et al., 2019). Recent
work on efficient transformers (Beltagy et al., 2020)
has been able to shift towards processing complete
documents, albeit with a smaller model (base) and
only one training example per batch.

3 Model

We present start-to-end (s2e) coreference resolu-
tion, a simpler and more efficient model with re-
spect to c2f (Section 2). Our model utilizes the
endpoints of a span (rather than all span tokens) to
compute the mention and antecedent scores fm(·)
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Figure 1: The antecedent score fa(c, q) of a query mention q = (qs, qe) and a candidate antecedent c = (cs, ce)
is defined via bilinear functions over the representations of their endpoints cs, ce, qs, qe. Solid lines reflect factors
participating in positive examples (coreferring mentions), and dashed lines correspond to negative examples.

and fa(·, ·) without constructing span or span-pair
representations; instead, we rely on a combination
of lightweight bilinear functions between pairs of
endpoint token representations. Furthermore, our
model does not use any handcrafted features, does
not prune antecedents, and prunes mention candi-
dates solely based on their mention score fm(q).

Our computation begins by extracting a start and
end token representation from the contextualized
representation x of each token in the sequence:

ms = GeLU(Ws
mx) me = GeLU(We

mx)

We then compute each mention score as a biaffine
product over the start and end tokens’ representa-
tions, similar to Dozat and Manning (2017):

fm(q) = vs ·ms
qs + ve ·me

qe +ms
qs ·Bm ·me

qe

The first two factors measure how likely the span’s
start/end token qs/qe is a beginning/ending of an
entity mention. The third measures whether those
tokens are the boundary points of the same entity
mention. The vectors vs,ve and the matrix Bm

are the trainable parameters of our mention scor-
ing function fm. We efficiently compute mention
scores for all possible spans while masking spans
that exceed a certain length `.2 We then retain only
the top-scoring λn mention candidates to avoid
O(n4) complexity when computing antecedents.

Similarly, we extract start and end token repre-
sentations for the antecedent scoring function fa:

as = GeLU(Ws
ax) ae = GeLU(We

ax)

Then, we sum over four bilinear functions:

fa(c, q) = ascs ·B
ss
a · asqs + ascs ·B

se
a · aeqe

+ aece ·B
es
a · asqs + aece ·B

ee
a · aeqe

Each component measures the compatibility of the
spans c and q by an interaction between different

2While pruning by length is not necessary for efficiency,
we found it to be a good inductive bias.

boundary tokens of each span. The first compo-
nent compares the start representations of c and
q, while the fourth component compares the end
representations. The second and third facilitate a
cross-comparison of the start token of span c with
the end token of span q, and vice versa. Figure 1
(bottom) illustrates these interactions.

This calculation is equivalent to computing a
bilinear transformation between the concatenation
of each span’s boundary tokens’ representations:

fa(c, q) = [ascs ;a
e
ce ] ·Ba · [asqs ;a

e
qe ]

However, computing the factors directly bypasses
the need to create n2 explicit span representations.
Thus, we avoid a theoretical space complexity of
O(n2d), while keeping it equivalent to that of a
transformer layer, namely O(n2 + nd).

4 Experiments

Dataset We train and evaluate on two datasets:
the document-level English OntoNotes 5.0 dataset
(Pradhan et al., 2012), and the GAP coreference
dataset (Webster et al., 2018). The OntoNotes
dataset contains speaker metadata, which the base-
lines use through a hand-crafted feature that indi-
cates whether two spans were uttered by the same
speaker. Instead, we insert the speaker’s name to
the text every time the speaker changes, making
the metadata available to any model.

Pretrained Model We use Longformer-Large
(Beltagy et al., 2020) as our underlying pretrained
model, since it is able to process long documents
without resorting to sliding windows or truncation.

Baseline We consider Joshi et al.’s (2019) expan-
sion to the c2f model as our baseline. Specifically,
we use the implementation of Xu and Choi (2020)
with minor adaptations for supporting Longformer.
We do not use higher-order inference, as Xu and
Choi (2020) demonstrate that it does not result in
significant improvements. We train the baseline
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Model MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1

c2f + SpanBERT-Large 85.7 85.3 85.5 79.5 78.7 79.1 76.8 75.0 75.9 80.2
c2f + Longformer-Base 85.0 85.0 85.0 77.8 77.8 77.8 75.6 74.2 74.9 79.2
c2f + Longformer-Large 86.0 83.2 84.6 78.9 75.5 77.2 76.7 68.7 72.5 78.1

s2e + Longformer-Large 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3

Table 1: Performance on the test set of the English OntoNotes 5.0 dataset. c2f refers to the course-to-fine approach
of Lee et al. (2017, 2018), as ported to pretrained transformers by Joshi et al. (2019).

Masc Fem Bias Overall

c2f + SpanBERT-Large 90.5 86.3 0.95 88.4
c2f + Longformer-Base 87.6 82.3 0.94 84.9
c2f + Longformer-Large 90.1 85.4 0.95 87.8

s2e + Longformer-Large 90.6 85.8 0.95 88.3

Table 2: Performance on the test set of the GAP coref-
erence dataset. The reported metrics are F1 scores.

model over three pretrained models: Longformer-
Base, Longformer-Large, and SpanBERT-Large
(Beltagy et al., 2020; Joshi et al., 2020).

Hyperparameters All models use the same hy-
perparameters as the baseline. The only hyperpa-
rameters we change are the maximum sequence
length and batch size, which we enlarge to fit as
many tokens as possible into a 32GB GPU.3 For
our model, we use dynamic batching with 5,000
max tokens, which allows us to fit an average of
5-6 documents in every training batch. The base-
line, however, has a much higher memory foot-
print, and is barely able to fit a single example
with Longformer-Base (max 4,096 tokens). When
combining the baseline with SpanBERT-Large or
Longformer-Large, the baseline must resort to slid-
ing windows to process the full document (512 and
2,048 tokens, respectively).

Performance Table 1 and Table 2 show that, de-
spite our model’s simplicity, it performs as well
as the best performing baseline. Our model with
Longformer-Large achieves 80.3 F1 on OntoNotes,
while the best performing baseline achieves 80.2
F1. When the baseline model is combined with
either version of Longformer, it is not able to reach
the same performance level as our model. We see
similar trends for GAP. Our findings indicate that
there is little to lose from simplifying the corefer-

3We made one exception, and tried to tune the Longformer-
Large baseline’s hyperparameters. Despite our efforts, it still
performs worse than Longformer-Base.

Model Memory (GB)

c2f + SpanBERT-Large 16.2
c2f + Longformer-Base 12.0
c2f + Longformer-Large 15.7

s2e + Longformer-Large 4.3

Table 3: Peak GPU memory usage during inference on
OntoNotes, when processing one document at a time.

ence resolution architecture, while there are poten-
tial gains to be had from optimizing with larger
batches.

Efficiency We also compare our model’s mem-
ory usage using the OntoNotes development set.
Table 3 shows that our implementation is at least
three times more memory efficient than the base-
line. This improvement results from a combination
of three factors: (1) the fact that our model is lighter
on memory and does not need to construct span or
span-pair representations, (2) our simplified frame-
work, which does not use sliding windows, and
(3) our implementation, which was written “from
scratch”, and might thus be more (or less) efficient
than the original.

5 Related Work

Recent work on memory-efficient coreference res-
olution sacrifices speed and parallelism for guar-
antees on memory consumption. Xia et al. (2020)
and Toshniwal et al. (2020) present variants of the
c2f model (Lee et al., 2017, 2018) that use an iter-
ative process to maintain a fixed number of span
representations at all times. Specifically, spans
are processed sequentially, either joining existing
clusters or forming new ones, and an eviction mech-
anism ensures the use of a constant number of clus-
ters. While these approach constrains the space
complexity, their sequential nature slows down the
computation, and slightly deteriorates the perfor-
mance. Our approach is able to alleviate the large
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memory footprint of c2f while maintaining fast
parallel processing and high performance.

CorefQA (Wu et al., 2020) propose an alterna-
tive solution by casting the task of coreference
resolution as one of extractive question answer-
ing. It first detects potential mentions, and then
creates dedicated queries for each one, creating a
pseudo-question-answering instance for each candi-
date mention. This method significantly improves
performance, but at the cost of processing hundreds
of individual context-question-answer instances for
a single document, substantially increasing execu-
tion time. Our work provides a simple alternative,
which can scale well in terms of both speed and
memory.

6 Conclusion

We introduce a new model for coreference reso-
lution, suggesting a lightweight alternative to the
sophisticated model that has dominated the task
over the past few years. Our model is competitive
with the baseline, while being simpler and more
efficient. This finding once again demonstrates the
spectacular ability of deep pretrained transformers
to model complex natural language phenomena.
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