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Abstract

Most current quality estimation (QE) models
for machine translation are trained and evalu-
ated in a static setting where training and test
data are assumed to be from a fixed distribu-
tion. However, in real-life settings, the test
data that a deployed QE model would be ex-
posed to may differ from its training data. In
particular, training samples are often labelled
by one or a small set of annotators, whose
perceptions of translation quality and needs
may differ substantially from those of end-
users, who will employ predictions in practice.
To address this challenge, we propose an on-
line Bayesian meta-learning framework for the
continuous training of QE models that is able
to adapt them to the needs of different users,
while being robust to distributional shifts in
training and test data. Experiments on data
with varying number of users and language
characteristics validate the effectiveness of the
proposed approach.

1 Introduction

Quality Estimation (QE) models aim to evaluate
the output of Machine Translation (MT) systems at
run-time, when no reference translations are avail-
able (Blatz et al., 2004; Specia et al., 2009). QE
models can be applied for instance to improve trans-
lation productivity by selecting high-quality trans-
lations amongst several candidates. A number of
approaches have been proposed for this task (Spe-
cia et al., 2009, 2015; Kim et al., 2017; Kepler et al.,
2019; Ranasinghe et al., 2020), and a shared task
yearly benchmarks proposed approaches (Fonseca
et al., 2019; Specia et al., 2020).

Different users of MT output have varying qual-
ity needs and standards, depending for instance on
the downstream task at hand, or the level of their
knowledge of the languages involved, and training
for the task. Thus, the perception of the quality

of MT output can be subjective, and therefore the
quality estimates obtained from a model trained on
data from one set of users may not serve the needs
of a different set users. However, most existing QE
models are trained and evaluated in a static setting
which assumes a fixed distribution of train and test
data. This consequently leads to suboptimal perfor-
mance when faced with test data from a different
set of users in practice.

The few previous approaches to develop QE
models that are able to learn from a continuous
stream of data suffer from the following limita-
tions: they do not have an explicit objective that
encourages the model to exploit common structures
shared among different users to continually adapt
efficiently for new users (Turchi et al., 2014), or as-
sume a fixed number of users, and that the identity
of each user is known in advance (de Souza et al.,
2015). In addition, these previous approaches do
not explicitly account for the underlying uncertain-
ties in the data in order to improve performance.

In contrast, we propose a continual meta-
learning framework that makes none of the afore-
mentioned assumptions, but instead considers each
user as a task and explicitly meta-learns the com-
mon structure shared among different users. This
approach further exploits the underlying uncertain-
ties in the streaming data through Bayesian infer-
ence to improve performance. In addition, the
proposed approach is applicable even in a setting
where no user identities are available, for instance
due to privacy concerns, but where we still want
to learn and adapt as efficiently as possible from
supervision data that arrives incrementally.

2 Background

2.1 Continual Learning

Continual learning (Ring, 1994; Thrun, 1996; Zhao
and Schmidhuber, 1996) aims to develop mod-
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els that are capable of learning from a continuous
stream of sequential tasks, T1, T2, .., TT , with each
task Tt having its associated train Dtrain

t , valida-
tion Dval

t and test Dtest
t splits. A major challenge

associated with learning in this setting is the issue
of catastrophic forgetting, where a model forgets
knowledge of how to perform previous tasks as
new tasks are encountered. Most recent work in
lifelong learning has focused on ways of mitigat-
ing catastrophic forgetting, and approaches pro-
posed include replay-based methods (Rebuffi et al.,
2017; Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2019), which replay either stored or gener-
ated samples to remind the model of how to per-
form previous tasks; regularization-based methods
(Kirkpatrick et al., 2017; Zenke et al., 2017), which
utilize an additional regularization term to enforce
retaining knowledge learned from previous tasks;
and parameter-isolation methods, which make use
of dedicated parameters for each task to prevent
interference among tasks (Rusu et al., 2016; Fer-
nando et al., 2017). Lange et al. (2019) presents
an overview of recent continual learning methods.
Research in continual learning can generally be
carried in one of two settings (Aljundi et al., 2019):
in a task-incremental continual learning setting,
where the learner is sequentially given access to
all the data of each task and is allowed to make
multiple passes over it, with task boundaries and
identities known to the learner; or in an online con-
tinual learning setting, where the learner is only
allowed a single pass over the data of each task,
and with no task identities or boundaries known to
the learner. In this work we conduct experiments
in the online continual learning setting.

2.2 Meta-Learning

The goal of meta-learning, also known as learn-
ing to learn (Schmidhuber, 1987; Thrun and Pratt,
1998), is to develop models that can learn more
efficiently over time, by generalizing from knowl-
edge of how to solve related tasks from a given
distribution of tasks. Given a learner model fw, for
instance a neural network parametrized by w, and
a distribution p(T ) over tasks T , gradient-based
meta-learning approaches such as MAML (Finn
et al., 2017) seek to learn the parameters of the
learner model which can be quickly adapted to new
tasks sampled from the same distribution of tasks.
In formal terms, these approaches seek parameters

that optimize the meta-objective:

min
w

ET ∼p(T ) [LT (Uk (w;DT ))] (1)

where LT is the loss and DT is training data from
task T , and Uk denotes k steps of a gradient descent
learning rule such as SGD.

In order to account for uncertainty and improve
robustness, Bayesian approaches to meta-learning
have also been proposed (Kim et al., 2018; Finn
et al., 2018; Ravi and Beatson, 2019; Wang et al.,
2020; Nguyen et al., 2020).

2.3 Meta-Learning for Continual Learning

Meta-learning for continual learning methods gen-
erally make use of the meta-learning objective one
task at a time to ensure that learning on the current
task does not lead to catastrophic forgetting on pre-
vious tasks. For instance, both Riemer et al. (2019)
and Obamuyide and Vlachos (2019) propose to
combine REPTILE (Nichol and Schulman, 2018),
a first order meta-learning algorithm, together with
experience replay to improve performance during
continual learning. Javed and White (2019) pro-
posed an online-aware meta-learning (OML) objec-
tive for learning representations that are less prone
to catastrophic forgetting during continual learning.
Holla et al. (2020) proposed to combine the OML
objective together with experience replay for im-
proved continual learning performance. Recently,
Gupta et al. (2020) proposed Look-Ahead MAML
(LA-MAML), which meta-learns per-parameter
learning rates to help adapt to changing data distri-
butions during continual learning.

These approaches have demonstrated that meta-
learning can yield performance improvements for
continual learning. Our work builds on these ap-
proaches and additionally demonstrates that the
performance of meta-learning for continual learn-
ing can be further improved with the combination
of an adaptive learning rate and Bayesian inference.

2.4 Bayesian Inference with Stein Variational
Gradient Descent

Stein Variational Gradient Descent (SVGD) (Liu
and Wang, 2016) is a Bayesian inference method
which works by initializing a set of samples, also
known as particles, from a simple distribution and
iteratively updating the particles to match samples
from a target distribution. Because its particle up-
date rule is deterministic and differentiable, it can
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be used to perform Bayesian inference in the meta-
learning inner loop, since the entire update pro-
cess can still be differentiated through for gradient-
based updates from the outer loop.

In order to obtain N samples from a posterior
P (w), SVGD maintains N samples of model pa-
rameters, and iteratively transports the samples to
match samples from the target distribution. Let the
samples be represented by W = {wn}Nn=1. At
each successive iteration t, SVGD updates each
sample with the following update rule:

wt+1 ← wt + αtφ (wt) (2)

where φ (wt) =

1

N

N∑
n=1

[
k (wn

t ,wt)∇wn
t
log p (wn

t ) +∇wn
t
k (wn

t ,wt)
]

(3)

αt is a step-size parameter and k (., .) is a positive-
definite kernel, such as the RBF kernel.

Intuitively, the first term in Equation 3 im-
plies that a particle determines its update direction
through a weighted aggregate of the gradients from
the other particles, with the kernel distance between
the particles serving as the weight. Thus, closer
particles have more weight in the aggregate. The
second term of the equation can be understood as
a repulsive force that prevents the particles from
collapsing to a single point. For the case when
the number of particles is one, the SVGD update
procedure reduces to standard gradient ascent on
the objective p(w) for any kernel with the property
∇wk (w,w) = 0, such as the RBF kernel. SVGD
has been applied in a wide range of settings, in-
cluding reinforcement learning (Liu et al., 2017;
Haarnoja et al., 2017), uncertainty quantification
(Zhu and Zabaras, 2018) and to improve perfor-
mance in an offline meta-learning setup (Kim et al.,
2018) which requires all tasks ahead of training. In
this work we adapt SVGD to an online continual
meta-learning setting for a natural language task.

3 Meta-Learning for Continual Learning
with Adaptive SVGD

Learning continually from a stream of observa-
tions with varying underlying distributions involves
dealing with various sources of uncertainty, which
a model should properly account for in order to
enhance its continual learning performance. One
source of uncertainty is in the learning rate, that
is, how fast learning should proceed on new data

in order to both reduce catastrophic forgetting and
enhance performance on the current task. Another
source is the inherent uncertainty in the values of
the model’s parameters themselves. Learning an
adaptive learning rate, for instance as proposed
in Gupta et al. (2020), can help account for the
first source of uncertainty, and Bayesian inference
can be used to help a model account for the other
source of uncertainty. In order to properly model
both sources of uncertainty during continual learn-
ing, we propose to both perform inference of model
parameters with SVGD, and meta-learn an adap-
tive per-parameter learning rate for SVGD updates.
Thus, the SVGD update in Equation 2 now be-
comes:

wt+1 ← wt +αt · φ (wt) (4)

where αt is a learnable parameter containing per-
parameter learning rates, and · is the dot product.

The aim is then to meta-learn both the parame-
ters of the model and the per-parameter learning
rates that enhance continual learning performance.
The advantage of this approach is that it allows for
greater flexibility to adapt to non-stationary data
distributions during continual learning. In the ex-
periments, we demonstrate that this change leads
to improved performance for the task of contin-
ual quality estimation. The proposed approach is
illustrated in Algorithm 1.

We first initialize the parameters of the QE
model, and the learning rate (line 1). Then for
each mini-batch in a task t that arrives, we store its
training instances in the buffer with a probability p
(lines 2-6). In the inner loop, we performK SVGD
updates (using Equation 4) starting from the initial
model parameters W0 (lines 7-9). In the outer loop,
instances in the current mini-batch are augmented
with instances sampled from the buffer (line 10).
Finally, the augmented mini-batch is used to per-
form a meta-update on the learning rate (line 11),
and on the parameters of the QE model (line 12).
Because this approach can also be considered the
online counterpart to the Bayesian Model Agnos-
tic Meta-Learning approach of Kim et al. (2018),
we refer to it as Continual Quality Estimation with
Online Bayesian Meta-Learning (CQE-OBML).

4 Experiments and Results

The QT21 Dataset We evaluate our approach
with the publicly available QT21 (Specia et al.,
2017), a large-scale dataset containing translations
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Algorithm 1 Continual Quality Estimation with
Online Bayesian Meta-Learning (CQE-OBML)
Require: QE model fW0 , learning rates α0, β
Require: Buffer B, update probability p
1: Initialize W0 , α0

2: for t = 1,2,3,... do
3: for each (Xt, Yt) in Dtrain

t do
4: if random() < p then
5: Update B ← B ∪ (Xt, Yt)
6: end if
7: for k = 1,..K do
8: Wk = SV GD(Wk−1,α0, Xt, Yt)
9: end for

10: (Xv, Yv)← (Xt, Yt) ∪ sample(B)
11: α0 ← α0 − β∇α0Lt (fWk (Xv), Yv)
12: W0 ←W0 −αo · ∇W0Lt (fWk (Xv), Yv)
13: end for
14: end for

PE ID Train Dev Test

PE1 1440 360 200
PE2 2160 540 300
PE3 1444 361 195
PE4 1834 459 244
PE5 4866 1217 617
PE6 1677 420 203
PE7 1567 392 241

Total 14988 3749 2000

(a) QT21 en-lv (nmt)

PE ID Train Dev Test

PE1 9952 2488 559
PE2 3445 862 193
PE3 8770 2193 537
PE4 4579 1145 276
PE5 7651 1913 435

Total 34397 8601 2000

(b) QT21 en-cs (smt)

Table 1: Number of instances per post-editor (PE) for
the QT21 dataset.

from both statistical (smt) and neural (nmt) ma-
chine translation systems in multiple language di-
rections.1 This is the largest dataset with annota-
tor information available. We use data from the
English-Latvian (en-lv) and English-Czech (en-cs)
language pairs. These languages were chosen as
they contain the largest number of annotators. Each
instance in the dataset is a tuple of source sen-
tence, its machine translation, the corresponding
post-edited translation by a professional translator
(post-editor), a reference translation and other in-
formation such as (anonymized) post-editor identi-
fier. We construct a QE dataset from this corpus by

1http://www.qt21.eu/resources/data/

computing the HTER (Snover et al., 2006) values
between each source sentence and its post-edited
translation. We thereafter split the data into train,
dev and test splits for each post-editor. A break-
down of the number of train, dev and test instances
per post-editor is available in Table 1.

Benchmark Approaches SEQUENTIAL is a
baseline trained sequentially over the streaming
data of each task. In each round, the model param-
eters are initialized from that of the previous round;
A-GEM (Chaudhry et al., 2019) is a continual learn-
ing method which utilizes the gradients of samples
of previous tasks saved in a buffer as an optimiza-
tion constraint to prevent catastrophic forgetting;
OML-ER (Holla et al., 2020) augments the Online-
Aware Meta-Learning approach of Javed and White
(2019) with experience replay from a buffer; LA-
MAML (Gupta et al., 2020) learns per-parameter
learning rates using meta-learning; MTL-IID is
trained on the concatenated and shuffled data from
all users for multiple epochs in multi-task fashion.
It assumes i.i.d access to the data from all users, and
thus serves as an upper-bound for the performance.

QE Model The quality estimation model used by
all continual learning methods is based on multi-
lingual DistilBERT (Sanh et al., 2019), a smaller
version of multi-lingual BERT (Devlin et al., 2019)
trained with knowledge distillation (Buciluǎ et al.,
2006; Hinton et al., 2015). It accepts as input the
source and machine translation outputs concate-
nated as a single text, separated by a ‘[SEP]’ token
and prepended with a ‘[CLS]’ token. The repre-
sentation of the ‘[CLS]’ token is then passed to a
linear layer to predict HTER (Snover et al., 2006)
values as regression targets.

Evaluation We report Pearson’s r correlation
scores and Mean Absolute Error (MAE) between
model output and gold labels, both standard evalu-
ation metrics in QE.

Each experiment is repeated across five (5) differ-
ent orders of the tasks and five (5) different random
seeds, and we report the average.

4.1 Comparison with Benchmark
Approaches

The results of our approach in comparison with
other benchmark approaches are presented in Table
2. We can observe that naively training sequentially
on the data of each task as it arrives (SEQUEN-
TIAL) leads to poor results.
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Method
en-lv en-cs

Pearson ↑ MAE ↓ Pearson ↑ MAE ↓
MTL-IID 59.17 0.1450 54.79 0.1547

SEQUENTIAL 47.07 0.1773 50.08 0.1689
A-GEM 46.29 0.1794 46.49 0.1736
OML-ER 52.58 0.1621 50.40 0.1635
LA-MAML 52.86 0.1621 50.56 0.1631

CQE-OBML 53.67 0.1596 51.19 0.1619

Table 2: Comparison with benchmark approaches.

OML-ER outperforms both SEQUENTIAL and
A-GEM, likely because of its combination of meta-
learning and experience replay, which makes it
better able to combat forgetting. LA-MAML
slightly improves over the results of OML-ER,
as a result of its meta-learned learning rate. We
find that our approach, CQE-OBML, which com-
bines a meta-learned adaptive learning rate together
with Bayesian inference, outperforms previous ap-
proaches. This demonstrates the effectiveness of
adequately modelling the various sources of uncer-
tainty in continual meta-learning.

4.2 Analysis of Model Components

We investigate the effect of the various compo-
nents of our approach through an ablation study.
As shown in Table 3, our approach (CQE-OBML)
without the adaptive learning rate (-LR (α)) has a
drop in performance, especially for en-cs. With-
out inference with SVGD (-SVGD), we observe a
larger reduction in performance on both datasets,
demonstrating the usefulness of incorporating
Bayesian inference into the continual meta-learning
of quality estimation models.

Method
en-lv en-cs

Pearson ↑ MAE ↓ Pearson ↑ MAE ↓

CQE-OBML 53.67 0.1596 51.19 0.1619
- LR (α) 53.48 0.1598 50.94 0.1623
- SVGD 52.86 0.1621 50.56 0.1631

Table 3: Ablation of model components.

5 Conclusions

We proposed a framework for the continual meta-
learning of machine translation quality estimation
models, which is able to learn continually from the
streaming data of multiple quality estimation users.
We further incorporate an adaptive learning rate to-
gether with online Bayesian inference for improved

performance. In experiments on quality estimation
data from two language directions, we demonstrate
improved performance over recent state-of-the-art
continual learning methods.
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A Additional Results

We present additional results on the WPTP12
dataset (Koponen et al., 2012),which is a small
English-Spanish (en-es) translation dataset con-
sisting of documents from the news domain. It
features translations from eight different machine
translation systems. Each instance in the dataset in-
cludes the corresponding post-edited translation
along with post-editing time and HTER scores
computed between the translation and the corre-
sponding post-edit. Statistics about the number of
instances per post-editor are in Table 4.

Table 5 contains the results obtained on this
dataset. As a result of its size, all methods gener-
ally find it challenging, with reduced performance
across-the-board. Despite reduced performance in
terms of mean absolute error, our approach obtains
better Pearson correlation than all previous meth-
ods.

PE ID Train Dev Test

A1 121 40 42
A2 121 40 42
A3 121 40 42
A4 121 40 42
A5 121 40 42
A6 121 40 42
A7 121 40 42
A8 121 40 42

Total 968 320 336

Table 4: Number of instances per Post Editor (PE) for
the WPTP12 dataset.

Method
WPTP12

Pearson ↑ MAE ↓
SEQUENTIAL 33.05 0.2061
A-GEM 38.95 0.2066
OML-ER 39.17 0.1786
LA-MAML 38.89 0.1772
CQUEST-OBML 40.11 0.1780

Table 5: Averaged performance for all methods.

B Additional Experimental Details

All models make use of the same values for hyper-
parameters such as learning rate and batch size,
selected by manual search in initial experiments.
These are provided in Table 6.

Hyper-parameter Value

Learning rate 3e-5
Mini-batch size 16

Max. sequence length 100

Table 6: Hyper-parameter values for all compared ap-
proaches


