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Abstract
Learning prerequisite chains is an essential
task for efficiently acquiring knowledge in
both known and unknown domains. For ex-
ample, one may be an expert in the natural
language processing (NLP) domain but want
to determine the best order to learn new con-
cepts in an unfamiliar Computer Vision do-
main (CV). Both domains share some com-
mon concepts, such as machine learning basics
and deep learning models. In this paper, we
propose unsupervised cross-domain concept
prerequisite chain learning using an optimized
variational graph autoencoder. Our model
learns to transfer concept prerequisite relations
from an information-rich domain (source do-
main) to an information-poor domain (target
domain), substantially surpassing other base-
line models. Also, we expand an existing
dataset by introducing two new domains––CV
and Bioinformatics (BIO). The annotated data
and resources, as well as the code, will be
made publicly available.

1 Introduction

With the rapid growth of online educational re-
sources in diverse fields, people need an efficient
way to acquire new knowledge. Building a con-
cept graph can help people design a correct and
efficient study path (ALSaad et al., 2018; Yu et al.,
2020). There are mainly two approaches to learn-
ing prerequisite relations between concepts: one is
to extract the relations directly from course content,
video sequences, textbooks, or Wikipedia articles
(Yang et al., 2015b; Pan et al., 2017; Alzetta et al.,
2019), but this approach requires extra work on
feature engineering and keyword extraction. Our
method follows a different approach of inferring
the relations within a concept graph (Liang et al.,
2018; Li et al., 2019, 2020).

In a concept graph, we define p → q as the
notion that learning concept p is a prerequisite to
learning concept q. Existing methods formulate

Figure 1: Cross-domain prerequisite chains.

this question as a classification task. A typical
method is to encode concept pairs and train a clas-
sifier to predict if there is a prerequisite relation
(Alzetta et al., 2019; Yu et al., 2020). However, this
method requires annotated prerequisite pairs dur-
ing training. Alternatively, others have used graph-
based models to predict prerequisite relations. Gor-
don et al. (2016) proposed information-theoretic
approaches to infer concept dependencies. Li et al.
(2019) modeled a concept graph using Variational
Graph Autoencoders (VGAE) (Kipf and Welling,
2016), training their model to infer unseen prerequi-
site relations in a semi-supervised way. While most
of the previous methods were supervised or semi-
supervised, Li et al. (2020) introduced Relational-
VGAE, which enabled unsupervised learning on
prerequisite relations.

Existing work mainly focuses on prerequisite
relations within a single domain. In this paper, we
tackle the task of cross-domain prerequisite chain
learning, by transferring prerequisite relations be-
tween concepts from a relatively information-rich
domain (source domain) to an information-poor
domain (target domain). As an example, we illus-
trate in Figure 1, a partial concept graph from the
Natural Language Processing (NLP) domain and
a partial concept graph from the Computer Vision
(CV) domain. Prerequisite relations among con-
cepts in the NLP domain are known, and we seek
to infer prerequisite relations among concepts in
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the CV domain. These two domains share some
concepts, such as Convolutional Neural Network.
We assume that being aware of prerequisite rela-
tions among concepts in the source domain helps
infer potential relations in the target domain. More
specifically, in the figure, knowing that Convolu-
tional Neural Network→Document Classification
helps us determine that Convolutional Neural Net-
work→Image Classification.

Our contributions are two-fold. First, we
propose cross-domain variational graph autoen-
coders to perform unsupervised prerequisite chain
learning in a heterogeneous graph. Our model
is the first to do domain transfer within a single
graph, to the best of our knowledge. Second,
we extend an existing dataset by collecting and
annotating resources and concepts in two new
target domains. Data and code will be made
public in https://github.com/Yale-LILY/

LectureBank/tree/master/LectureBankCD.

2 Dataset

LectureBank2.0 (Li et al., 2020) dataset contains
1,717 lecture slides (hereon called resources) and
322 concepts with annotated prerequisite relations,
largely from NLP. We treat this dataset as our
information-rich source domain (NLP). Also, we
propose an expansion dataset, LectureBankCD, by
introducing two new target domains in the same
data format: CV and Bioinformatics (BIO). We re-
port statistics on the dataset in Table 1. For each do-
main, we identify high-quality lecture slides from
the top university courses, collected by domain ex-
perts, and we choose concepts by crowd-sourcing.
We end up with 201 CV concepts and 100 BIO con-
cepts. In each domain, we ask two graduate-level
annotators with deep domain knowledge to add pre-
requisite chain annotations for every possible pair
of concepts. The Cohen’s kappa agreement scores
(McHugh, 2012) are 0.6396 for CV and 0.8038
for BIO. Cohen’s kappa between 0.61–0.80 is con-
sidered substantial, so our annotations are reliable.

Domain Files Pages Tks/pg Con. PosRel

NLP 1,717 65,028 47 322 1,551
CV 1,041 58,32 43 201 871
BIO 148 7,13 135 100 234

Table 1: LectureBankCD statistics on NLP, CV and
BIO domain: Tks/pg (Tokens per slide page), Con.
(Number of concepts), PosRel (Positive Relations).
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Figure 2: Cross-Domain Concept-Resource Graph: we
model the resource nodes (solid nodes) and concept
nodes (hollow nodes) from two domains (in blue and
orange) in a heterogeneous graph. We show a subset of
nodes and edges.

We take the union of the positive annotations for
our experiments: 871 positive relations for CV and
234 positive relations for BIO.

3 Methodology

Inspired by Li et al. (2020), we build a cross-
domain concept-resource graph G = (X,A) that
includes resource nodes and concept nodes from
both the source and target domains (Figure 2). To
obtain the node feature matrix X , we use either
BERT (Devlin et al., 2019) or Phrase2Vec (Artetxe
et al., 2018) embeddings. We consider four edge
types to build the adjacency matrix A: Ac,s: edges
between source concept nodes;Arc: edges between
all resource nodes and concept nodes; Ar: edges
between resource nodes only; and Ac,t: edges be-
tween target concept nodes. In unsupervised pre-
requisite chain learning, Ac,s—concept relations
of the source domain—are known, and the task
is to predict Ac,t—concept relations of the target
domain. For Arc and Ar, we calculate cosine simi-
larities based on node embeddings, consistent with
previous works (Li et al., 2019; Chiu et al., 2020).

Cross-Domain Graph Encoder VGAE (Kipf
and Welling, 2016) contains a graph neural network
(GCN) encoder (Kipf and Welling, 2017) and an
inner product decoder. In a GCN, the hidden repre-
sentation of a node i in the next layer is computed
using only the information of direct neighbours
and the node itself. To account for cross-domain
knowledge, we additionally consider the domain
neighbours for each node i. These domain neigh-
bours are a set of common or semantically similar

https://github.com/Yale-LILY/LectureBank/tree/master/LectureBankCD
https://github.com/Yale-LILY/LectureBank/tree/master/LectureBankCD
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concepts from the other domain.1 We define the
cross-domain graph encoder as:

h
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where Ni denotes the set of direct neighbours of
node i, ND

i is the set of domain neighbours, and
WD and W are trainable weight matrices. To de-
termine the domain neighbors, we compute cosine
similarities and match the concept nodes only from
source domain to target domain: cosine(hs, ht).
The values are then normalized into the range of
[0,1], and we keep the top 10% of domain neigh-
bors.2

DistMult Decoder We optimize the original in-
ner product decoder from VGAE. To predict the
link between a concept pair (ci, cj), we apply the
DistMult (Yang et al., 2015a) method: we take the
output node features from the last layer, X̂ , and
define the following score function to recover the
adjacency matrix Â by learning a trainable weight
matrix R: Â = X̂RX̂ . A Sigmoid function is used
to predict positive/negative labels from Â.

4 Evaluation

We evaluate on our new corpus LectureBankCD,
treating the NLP domain as the source domain
and transferring to the two new target domains:
NLP→CV and NLP→BIO. Consistent with Kipf
and Welling (2017); Li et al. (2019), we randomly
split the positive relations into 85% training, 5%
validation, and 10% testing. To account for imbal-
anced data, we randomly select negative relations
such that the training set has the same number of
positive and negative relations. We do the same
for the validation and test sets. We report average
scores over five different randomly seeded splits.

To encode concepts and resources, we test BERT
and P2V embeddings. For BERT, we applied a pre-
trained version from Google3. We trained P2V
using all the resource data. Both methods only
require free-text for training and encoding.

Baseline Models We concatenate the
BERT/P2V embeddings of each pair of con-

1In Figure 2, the two labeled nodes are domain neighbors.
2Parameter is selected using validation dataset.
3https://github.com/google-research/

bert, (version with L = 12 and H = 768)

cepts and feed the result into a classifier (CLS +
BERT and CLS + P2V). We train the classifier on
the source domain only, then evaluate on the target
domain. We report the best performance among
Support Vector Machine, Logistic Regression,
Gaussian Naı̈ve Bayes, and Random Forest. In
addition, we train the VGAE model Li et al.
(2019) on the source domain and test on the
target domain, initializing the VGAE input with
BERT and P2V embeddings separately (VGAE
+ BERT and VGAE + P2V). Given that GAE is
structurally similar to VGAE, we leave this for
future work. Other graph-based methods including
DeepWalk (Perozzi et al., 2014) and Node2vec
(Grover and Leskovec, 2016) are not applicable in
this setting as both models require training edges
from the target domain in order to generate node
embeddings for target concepts.

Proposed Method We report results of our pro-
posed model, CD-VGAE, initialized with BERT
and P2V node embeddings separately. Consistent
with the work from Li et al. (2019) and Li et al.
(2020), P2V embeddings yield better results than
BERT embeddings in general. One possible reason
for this difference is that BERT embeddings have a
large number of dimensions, making it very easy
to overfit. The two CLS models yield a negative re-
sult, with F1 worse than random guess. A possible
reason is that treating concept pairs independently
from the source domain may not be beneficial for
the target domains. The VGAE models have a bet-
ter performance when considering the concepts in
a large graph. As shown in the table, our method
performs better than the chosen baselines on both
accuracy and F1 score, by incorporating informa-
tion from domain neighbors. In particular, it yields
much higher recall than all the baseline models.
We provide further analysis in a later section.

Upper Bound Performance Finally, we con-
duct in-domain experiments on CV and BIO (su-
pervised training and testing in the target domain),
to show an upper bound for cross-domain perfor-
mance. We test a variety of methods including tradi-
tional classifiers as well as graph-based approaches,
including DeepWalk, Node2vec, and GraphSAGE
(Hamilton et al., 2017).

5 Analysis

Next, we conduct quantitative analysis and case
studies on the target domain concept graphs re-
covered by our model (CD-VGAE+P2V) and two

https://github.com/google-research/bert
https://github.com/google-research/bert
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NLP→CV NLP→BIO
Method F1 Acc Pre Rec F1 Acc Pre Rec

Baseline Models
CLS + BERT 0.4277 0.5480 0.5743 0.3419 0.3930 0.6000 0.7481 0.2727
CLS + P2V 0.4881 0.5757 0.6106 0.4070 0.2222 0.5333 0.6000 0.1364
VGAE + BERT (Li et al., 2019) 0.5885 0.5477 0.5398 0.6488 0.6011 0.6091 0.6185 0.5909
VGAE + P2V (Li et al., 2019) 0.6202 0.5500 0.5368 0.7349 0.6177 0.6273 0.6521 0.6091

Proposed Method
CD-VGAE + BERT 0.6391 0.5593 0.5441 0.7884 0.6289 0.6273 0.6425 0.6364
CD-VGAE + P2V 0.6754 0.5759 0.5468 0.8837 0.6512 0.6591 0.6667 0.6364

Supervised Performance - Upper Bound
CLS + Node2vec (Grover and Leskovec, 2016) 0.8172 0.8197 0.8223 0.8140 0.8060 0.7956 0.7547 0.8727

Table 2: Evaluation results on two target domains. Underlined scores are the best among the baseline models.
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Figure 3: Case Study in BIO: direct neighbors of BLAST, including successors and prerequisites, from the ground
truth, VGAE, and our proposed CD-VGAE model. SVD stands for Singular Value Decomposition. Correct nodes
are marked in blue, incorrect nodes are marked in red. (Best viewed in color!)

baseline models (CLS + P2V, VGAE + P2V), to
take a closer look at the results.

Quantitative Analysis We first apply the three
trained models to recover the concept graph in the
CV domain. Compared to the ground truth with
871 positive relations, the baseline model predicts
527, VGAE predicts 963, and our model predicts
1,209. Similarly, in the BIO domain with 234 pos-
itive relations, the baseline model predicts only
128 positive edges, VGAE predicts 261, and our
model predicts 303. Since our model tends to pre-
dict more positive edges, it has a higher recall. A
higher recall is preferred in real-world applications
as a system should not miss any relevant concepts
when designing a user’s study path.

Concept Graph Recovery We now provide
case studies of the recovered concept graphs. In
Table 3, we show successors of the concept Image
Processing from the CV domain, i.e. concepts for
which Image Processing is a prerequisite. Both the
baseline model and VGAE miss many successor
concepts, whereas our model can recover a correct
list without any missing concepts.

We illustrate another case study from the BIO
domain in Figure 3 using the concept BLAST (short
for “basic local alignment search tool ”), an algo-
rithm for comparing primary biological sequence
information. In the ground truth, BLAST has

three prerequisite concepts (Dynamic Program-
ming, DNA and Sequence Alignment), and one suc-
cessor concept (Homology Model). We observe
that VGAE predicts only one prerequisite, DNA,
and misses all the others. In contrast, our model
successfully includes all the ground truth relations,
although it predicts some extra ones compared to
VGAE. A closer look at the extra predictions re-
veals that these are still relevant topics, even though
they are not direct prerequisites. For example, Se-
quence Alignment, BLAST and Graph Theory are
all associated with sequence analysis and share
some common algorithms (i.e. De Bruijn Graph).

We provide a case study in the CV domain,
shown in Figure 4, by selecting concept node Ob-
ject Localization. The ground truth shows that it
has 14 direct neighbors. The VGAE model only
predicts five neighbors, while our model predicts
more. Our model has two wrong predictions, but it
gets 12 correct ones. In contrast, the VGAE model
misses up to 10 neighbors, which is not accept-
able in an application scenario of an educational
platform leading students to miss very useful infor-
mation.

6 Conclusion

In this paper, we proposed the CD-VGAE model to
solve the task of cross-domain prerequisite chain
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Figure 4: Case Study in CV: direct neighbors of Object Localization.

Base VGAE

Image Representation Image Representation
OCR Computer graphics

Eye Tracking

CD-VGAE Ground Truth

Video/Image augmentation Video/Image augmentation
Image Representation Image Representation

Face Detection Face detection
Emotion Recognition Emotion Recognition

Feature Extraction Feature Extraction
Feature Learning Feature Learning

OCR OCR
Computer Graphics Computer Graphics

Eye Tracking Eye Tracking

Table 3: Successors of the concept Image Processing,
i.e. concepts for which Image Processing is a prerequi-
site (OCR stands for Optical Character Recognition).

learning. Results show that our model outperforms
previous unsupervised graph-based models by a
large margin, especially with respect to the F1 and
recall scores. In addition, we created a new dataset
that contains resources and concepts from two do-
mains along with annotated prerequisite relations.
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A Supervised Results

Method Acc F1 Pre Rec

GS+BERT 0.7491 0.7513 0.7404 0.7628
GS+P2V 0.7457 0.7423 0.7486 0.7372
CLS+P2V 0.7642 0.757 0.7754 0.7395
CLS+BERT 0.7572 0.7495 0.7677 0.7326
DeepWalk 0.7988 0.791 0.8182 0.7674
Node2vec 0.8197 0.8172 0.8223 0.8140

Table 4: Supervised evaluation results: CV→CV.
GS:GraphSAGE.

Method Acc F1 Pre Rec

GS+BERT 0.7289 0.7355 0.7104 0.7727
GS+P2V 0.7911 0.7904 0.7787 0.8091
CLS+P2V 0.72 0.7367 0.6874 0.8091
CLS+BERT 0.7067 0.7189 0.683 0.7727
DeepWalk 0.7911 0.8079 0.7334 0.9091
Node2vec 0.7956 0.8060 0.7547 0.8727

Table 5: Supervised evaluation results: BIO→BIO.
GS:GraphSAGE.

As a supplementary experiment, we present
in-domain results in Table 4, 5: CV→CV and
BIO→BIO respectively. While we show in the
main paper that CLS + Node2vec yields the best
result, which serves as an upper bound on cross-
domain performance, we additionally show our
experimental results for other supervised methods:

CLS + P2V/BERT We encode concept pairs
with P2V/BERT, concatenate the embeddings of
both concepts within each possible pair, and then
train a binary classifier. We report the best perfor-
mance among Support Vector Machine, Logistic
Regression, Gaussian Naı̈ve Bayes, and Random
Forest.

DeepWalk, Node2vec DeepWalk (Perozzi et al.,
2014) randomly samples a node and traverses to a
neighbor node until it reaches a maximum length,
updating the latent representation of each node af-
ter each “walk ”to maximize the probability of
each node’s neighbors given a node’s represen-
tation. Node2Vec (Grover and Leskovec, 2016)
improves DeepWalk by providing the additional
flexibility of placing weights on random walks. For
both methods, we input the training prerequisite
relations and obtain concept node embeddings. Af-
ter generating embeddings for each concept in the
target domain, we concatenate the embeddings of
both concepts in each concept pair and pass the con-
catenated representation into a classifier to predict

the relation. Again, we report the best performance
from the same four classifiers.

GraphSAGE + P2V/BERT GraphSAGE
(Hamilton et al., 2017) is an inductive framework
to generate node embeddings for unseen data
by leveraging existing node features. We first
treat it as a node embedding method, as done
with DeepWalk and Node2vec. After generating
concept node embeddings, we train a classifier
to predict concept relations and report in-domain
results. In addition, we investigate GraphSAGE
for the out-of-domain setting. We assume that,
because there are unseen topics when transferring
to new domains, such an inductive method like
GraphSAGE may fit in our scenario. However, we
end up with negative results as the original Graph-
SAGE may not fit in to this specific application.
We leave further investigation for future work.


