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Abstract

With the recent advancements in deep learning,
neural solvers have gained promising results in
solving math word problems. However, these
SOTA solvers only generate binary expression
trees that contain basic arithmetic operators
and do not explicitly use the math formulas.
As a result, the expression trees they produce
are lengthy and uninterpretable because they
need to use multiple operators and constants to
represent one single formula. In this paper, we
propose sequence-to-general tree (S2G) that
learns to generate interpretable and executable
operation trees where the nodes can be for-
mulas with an arbitrary number of arguments.
With nodes now allowed to be formulas, S2G
can learn to incorporate mathematical domain
knowledge into problem-solving, making the
results more interpretable. Experiments show
that S2G can achieve a better performance
against strong baselines on problems that re-
quire domain knowledge.1

1 Introduction

Math word problem (MWP) solving is a special
subfield of question answering. It requires machine
solvers to read the problem text, understand it, and
then compose the numbers and operators into a
meaningful equation (as shown in Table 1). This
process, even for the simplest problem in elemen-
tary school, demands language understanding and
numerical reasoning capabilities, making this task
a long-standing challenge in AI (Bobrow, 1964;
Zhang et al., 2019).

As with any QA task, solving an MWP requires
the introduction of external knowledge or domain
knowledge (Mishra et al., 2020). However, current
state-of-the-art solvers (Xie and Sun, 2019; Zhang
et al., 2020; Wu et al., 2020) do not address this

1Data and code are available at the GitHub repository:
https://github.com/doublebite/Sequence-to-General-tree/

Problem: The outer radius and the inner radius
of a circular annulus are 5m and 3m repsectively.
Find the area of this circular annulus.

Equation: x = 5 ∗ 5 ∗ 3.14− 3 ∗ 3 ∗ 3.14
Answer: 50.24

With formula: x = circle area(5) - circle area(3)

Table 1: Example problem that requires geometry
knowledge.

Figure 1: (a). binary expression tree and (b). operation
tree along with formulas for the problem in Table 1.

issue explicitly. They learn to map the problem text
into binary expression trees regardless of whether it
requires any knowledge. This is counterintuitive for
problems that need math concepts or formulas. As
illustrated in Figure 1(a), without explicitly using
the corresponding area formula, the expression tree
for the problem is lengthy and uninterpretable.

To address this issue, we propose a sequence-
to-general tree (S2G) architecture where the nodes

https://github.com/doublebite/Sequence-to-General-tree/


965

can be arbitrary math concepts or formulas with
arbitrary number of arguments. In this way, our
S2G model can learn to map the problem text into
executable operation trees that contain different
formulas across different domains. For example,
S2G can learn to generate tree nodes that contain
the required geometry formula for circles, as shown
in Figure 1(b), making the result more intuitive and
explainable.

In addition, we propose a knowledge-guided
mechanism to guide tree-decoding using a math-
ematical knowledge graph (KG). To evaluate our
model, we also construct a middle-sized dataset
consisting of 1,398 geometry word problems which
require a diversified set of formulas. Experimental
results show that our S2G model can provide better
performance and more interpretable results against
strong baselines on problems that require domain
knowledge.

The main contributions of this paper are:

1. We propose a seq-to-general tree model that
learns to map the problem text into operation
trees where the nodes can be formulas with
arbitrary number of arguments. This helps to
incorporate domain knowledge into problem
solving and produce interpretable results.

2. We design a knowledge-guided mechanism
that guides tree decoding using mathematical
knowledge graphs and GNNs.

3. We curate a middle-sized dataset that contains
1,398 geometry word problems. In addition,
we annotate them with detailed formulas that
can be readily converted into operation trees.

2 Seq2seq v.s. Seq2tree v.s. Seq2general

Our goal is to design a sequence-to-general tree
model that learns to map the problem text into its
corresponding operation tree. Before diving into
the model, we first compare the decoding mecha-
nisms between seq-to-seq, seq-to-tree and our seq-
to-general tree solvers. Figure 2 illustrates the tree
decoding process of these three types of model,
respectively.

For seq2seq models, their decoder basically does
two things: (1) predicting the current output and
(2) generating the next state. These two steps can
be conditioned on different information including
the current state, the current input, or a context vec-
tor calculated using attention. The decoder would
repeat these two steps until it outputs an end token.

Figure 2: Comparison between three types of decoding:
(a) seq2seq, (b) seq2tree, and (c) seq-to-general tree.

For seq2tree models, however, this process is
slightly different. The decoder predicts the current
output as in seq2seq, but it will decide whether to
generate the next state based on the current output.
If the current output is a arithmetic operator, the de-
coder knows it should produce two child states, and
these states are used to expand into its left and right
children. If the current output is a number, then the
decoder would end the decoding process, so the
current node becomes a leaf node. As a result, the
whole decoding process resembles generating an
expression tree in a top-down manner.

In our work, we generalize the decoding process
by making the decoder produce a variable number
of children based on the type of the current output.
If the output is a number or operator, the decoder
would produce zero or two child states as before.
If the output is a formula, the decoder will generate
the pre-specified number of child states for this
formula.
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3 Sequence-to-General Tree Model

In this section, we give a detailed description for
each part of our S2G model.

3.1 Encoder
The main function of the encoder is to encode the
problem text P = (x1, x2, ..., xn) into a sequence
of hidden states (h1, h2, ..., hn) and their summary
state hencoder. The hidden states h1 to hn are ex-
pected to contain the information for each input
token x1 to xn, while the summary state hencoder
is expected to capture the overall information of
the problem.

Specifically, we use bidirectional gated recur-
rent units (GRU) (Cho et al., 2014) as our en-
coder. Given the current input xt, the previous
state ht−1, and the next state ht+1, the current state
ht ∈ (h1, h2, ..., hn) can be calculated with:

−→
ht = GRU(xt,

−−→
ht−1), (1)

←−
ht = GRU(xt,

←−−
ht+1), (2)

where the arrows represent different directions in
the bidirectional encoding. After calculating the
hidden state for each input token, we combine the
last state of the forward and backward directions to
get the summary state for the encoder:

hencoder =
←−
h0 +

−→
hn (3)

3.2 Geometry Knowledge Graph
To incorporate domain knowledge into problem
solving, we propose to utilize the knowledge from
mathematical knowledge graphs. The main idea is
that given a formula predicted as the current node,
we could use the physical meaning of its arguments
to help us better predict its children. For example,
if the current node is the formula for rectangle area,
then we know its child nodes should be related
to ”length ” and ”width”. We can thus use the
node embeddings of ”length” and ”width” from a
geometry KG to provide additional information for
our solver.

We manually collect a geometry knowledge
graph which contains the common geometry shapes
(e.g., square, circle) and their geometry quantities
(e.g., area, length), and we link these nodes to each
other if they belong to the same shape. To embed
this KG, we employ a graph convolutional network
(GCN) (Kipf and Welling, 2017) that transforms
the KG into some vector space and calculates the

embedding of each node. Given the feature matrix
X and the adjacency matrix A of the KG, we use a
two-layer GCN to encode it as follows:

Z = GCN(X,A), (4)

where Z = (z1, ..., zn) are the node embeddings
for each node in the graph. Then, we can use the
embedding to represent the physical meaning of a
certain formula argument in the decoding process.

3.3 General Tree Decoder
In the decoding stage, the decoder learns to produce
the target operation trees in a recursive manner. It
first predicts the current output yt in order to deter-
mine the number of children of the current node.
Given the current decoder state st, the embedding
of the last output e(yt−1), and the node embedding
zt which represents the physical meaning in the
knowledge graph, the probability of the current
output P (yt) is calculated using:

ct = Attention(e(yt−1), h
n
1) (5)

z′t = Attention(zt, h
n
1) (6)

P (yt) = Softmax(Wy[st; e(yt−1); ct; z
′
t]), (7)

where hn1 is the encoder states (h1, ..., hn), ct is the
context vector of e(yt−1) with respect to hn1 , and z′t
is another context vector calculated using the node
embedding zt and hn1 . Specifically, we use additive
attention (Bahdanau et al., 2015) to calculate these
context vectors and use hencoder as the first decoder
state s0. Given the probability P (yt), we can then
determine the output token ŷt:

ŷt = argmaxP (yt). (8)

Next, we predict the child states conditioned on
the required number of children for ŷt. Unlike
previous binary-tree decoders that use two distinct
DNNs to predict the left and right children respec-
tively (Xie and Sun, 2019; Zhang et al., 2020; Wu
et al., 2020), we employ a GRU to predict a variable
number of children. Given the current state st, its
child states st1 , ..., stn are generated in a recurrent
manner:

sti = Decoder(sti−1 ; e(yt); ct), (9)

where we generate the first child st1 using st, and
the following child state sti using its previous sib-
ling sti−1until we reach the required number of
children. The decoder is basically a GRU followed
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by a linear projection layer and an activation func-
tion:

s′ti = GRU([e(yt); ct], sti−1), (10)

sti = ReLU(Wss
′
ti), (11)

where the input of GRU is the concatenation of e(yt)
and ct, Ws is the linear projection layer, and ReLU
is used as the activation function. After getting
these child states, we push them into a stack and
repeat the steps from Equation (5) to Equation (11)
until all the states are realized into tokens.

3.4 Training Objective

For a problem and operation tree pair (P, T), we
follow previous seq2tree work (Xie and Sun, 2019;
Wu et al., 2020) and set our objective to minimize
the negative log likelihood:

L(T, P ) =

n∑
t=1

−logP (yt|st, P,KG). (12)

4 Dataset

To evaluate our S2G model on problems that re-
quire formulas, we curate a middle-sized dataset,
GeometryQA, that contains 1,398 geometry word
problems. These problems are collected from
Math23K (Wang et al., 2017) using the keywords
of common geometric objects (e.g., circle, square,
etc.) and their shapes (e.g., rectangular, circular,
etc.). Then, we re-annotate each problem with
their associated formulas if the problem belongs
to one of the six major shapes: square, cubic, rect-
angle, cuboid, triangle and circle. Table 2 shows
the overall statistics of GeometryQA and Table 7
in Appendix B shows the 11 formulas we used to
annotate these problems.

Note that not all problems in GeometryQA are
annotated with formulas. About 16% of the prob-
lems belong to other shapes (e.g., parallelogram,
rhombus, etc.) which currently are not covered
in our formula set. About 40% are problems that
contain geometric keywords but do not actually
require any formulas. Table 3 shows such an exam-
ple. We use these problems to test the robustness
of our model. That is, S2G has to learn to apply
the correct formulas or equations from misleading
keywords (as shown in Table3) and has to learn to
generate both binary expression trees and operation
trees as a whole.

GeometryQA

Number of problems 1,398
Number of sentences/words 5.4k / 41.1k
Vocabulary size 2,872

Annotated with formulas 604 (43.20%)
Problems of other shapes 225 (16.09%)
Formulas not required 569 (40.70%)

Table 2: Dataset statistics of GeometryQA

Problem: The perimeter of a rectangular swim-
ming pool is 300 m. If you place a chair every
10 m all the way around its perimeter, how many
chairs do you need?

Equation: x = 300/10
Answer: 30

Table 3: Example problem that contains misleading
keywords (perimeter, rectangular) but do not require
any geometry formulas.

5 Experiments

5.1 Implementation Details

We implement our S2G model and the GNN mod-
ule using Pytorch2 and Pytorch Geometric3. We set
the dimension of word embedding to 128 and the
dimension of the hidden state of GRU and GNN
to 512. The dropout rate (Srivastava et al., 2014)
is set to 0.5 and the batch size is 64. For optimiza-
tion, we use ADAM (Kingma and Ba, 2015) with a
learning rate of 10−3 and a weight decay of 10−5.
Besides, we use a learning rate scheduler to reduce
the learning rate by half every 20 epochs. Dur-
ing evaluation, we use beam search (Wiseman and
Rush, 2016) with a beam size of 5.

5.2 Experimental Results on GeometryQA

We evaluate our S2G model on GeometryQA to
check whether it can learn to predict the corre-
sponding operation tree for the geometry word
problems. Table 4 shows the results of our S2G
against other seq2tree SOTA models. S2G is
trained using the re-annotated equations that con-
tain formulas, while the baselines are trained using
the original equations.

First, we find that S2G has about 3.8% perfor-

2https://pytorch.org/
3https://pytorch-geometric.readthedocs.io/en/latest/
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mance gain over its baselines (with p-value< 0.01).
We attribute this to the fact that operation trees
are easier to learn and generate since they are less
lengthy and complex than binary expression trees.
Hence, there is a better chance for S2G to produce
the correct trees and arrive at the correct answers.

Second, there is a small performance gain by
adding Geometry KG. However, the improvement
is not significant (with p-value≈0.8). We guess that
is because the dataset currently has only six geomet-
ric objects, which is not complex enough to show
the effectiveness of adding knowledge graphs.

Model Accuracy(%)

KA-S2T (Wu et al., 2020) 49.61%
GTS (Xie and Sun, 2019) 51.01%
S2G 54.79%
S2G + Geometry KG 54.99%

Table 4: Answer accuracy of S2G and other SOTA
seq2tree models on GeometryQA (all evaluated with
5-fold cross validation).

6 Conclusion

In this work, we proposed a sequence-to-general
tree model (S2G) that aims to generalize previous
seq2tree architectures. Our S2G can learn to gen-
erate executable operation trees where the nodes
can be formulas with arbitrary number of argu-
ments. By explicitly generating formulas as nodes,
we make the predicted results more interpretable.
Besides, we also proposed a knowledge-guided
mechanism to guide the tree decoding using KGs
and constructed a dataset in which problems are
annotated with associated formulas. Experimental
results showed that our S2G model can achieve
better performance against strong baselines.
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A Data Preprocessing

In this section, we describe the data preprocessing
steps required for our S2G model.

A.1 Converting to prefix notation

To perform top-down tree decoding, we follow (Xie
and Sun, 2019) to convert the equations into their
prefix notation, where the operators are placed in
front of their operands, rather than in between. In
this way, the order of the equation tokens would
match the order of decoding. In our case, we also
need to consider the formulas used in the equation.
For a formula in the form ”F (arg1, arg2)”, we
turn it into ”[F, arg1, arg2]” so that it can fit into
the prefix notation. Table 5 shows an example of
this infix-to-prefix conversion for an equation with
formulas.

Problem: The outer radius and inner radius of
a circular annulus are 5m and 3m respectively.
Find the area of this circular annulus.

Equation: x = circle area(5) - circle area(3)
Prefix form: [ -, circle area, 5, circle area, 3]

Table 5: Infix-to-prefix conversion for an equation with
formulas.

A.2 Vocabulary

We follow the canonical sequence-to-sequence ar-
chitecture (Sutskever et al., 2014) to prepare for
the source vocabulary. For the target vocabulary,
however, we have to take into consideration the
way that humans solve MWPs. To solve a math
problem, we use the numbers from the problem
text (a dynamic vocabulary) and the mathematical
operators learned before (a static vocabulary) and
try to compose them into an equation. Sometimes,
we also need to use external constant numbers (a
static vocabulary) that are not in the problem text
but would appear in the equation (e.g., 1, 2, or
3.14). These three types of vocabulary make up the
vocabulary for the equations in arithmetic problems
(equation 13).

Varith = Vnumber ∪ Vop ∪ Vconst (13)

We follow (Xie and Sun, 2019) to use a copy mech-
anism (Gu et al., 2016) to copy the numbers from
the problem text. Hence, we can dynamically get
the problem numbers during decoding. Besides, we

Vocab Type Instances
Operator +, -, *, /, ˆ
Number 〈N0〉, 〈N1〉, 〈N2〉, ...
Constant 1, 2, 3.14

*Formula
circle area, square area,
rectangle perimeter, and
so on.

Table 6: Types of the vocabulary.

extend the original vocabulary by adding domain-
specific formulas into it so that the decoder can
generate formulas during decoding (equation 14).
Table 6 shows the overall vocabulary that we use
for our decoder.

Vtarget = Vnumber∪Vop∪Vconst∪Vformula (14)

B GeometryQA

Table 7 shows the 11 formulas used for annotation.

Name Formula # args

Square
square area side * side 1
square perimeter 4 * side 1

Cubic
cubic volume side*side*side 1

Circle
circle area π * radiusˆ2 1
circumference r 2 * π * radius 1
circumference d π * diameter 1

Triangle
triangle area base*height / 2 2

Rectangle
rectangle area length * width 2
rectangle perimeter 2 * (l+w) 2

Cuboid
cuboid volume l* w* height 3
cuboid surface 2*(l*w+w*h+l*h) 3

Table 7: Eleven geometry formulas used in annotating
GeometryQA.

C Related Work

In this section, we briefly introduce the progress of
MWP solvers, and then we focus on topics that are
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closer to our work, including seq2tree solvers and
knowledge graphs for problem solving.

C.1 Math Word Problem Solving
Ever since 1960s, efforts have been made to build
automatic math word problem solving systems
(Feigenbaum et al., 1963; Bobrow, 1964). Sta-
tistical solvers learn to map problem features into
corresponding equation templates or operations to
solve the problem (Kushman et al., 2014; Hosseini
et al., 2014; Mitra and Baral, 2016; Liang et al.,
2016, 2018; Roy and Roth, 2018). For example,
Kushman et al. (2014) propose to align MWPs to
their templates, while Hosseini et al. (2014) pro-
pose to find the operations by verb categorization.
Semantic parsing approaches, on the other hand,
parse the problem into intermediate representations
using semantic parsers (Shi et al., 2015; Koncel-
Kedziorski et al., 2015; Huang et al., 2017).

Recently, neural architectures have emerged as a
dominant paradigm in math word problem solving.
Wang et al. (2017) first attempt to use a seq2seq
solver that utilize encoder-decoder architectures
to encode the problem text and then decode into
equations in a way similar to machine translation.
Copy mechanism (Huang et al., 2018) or atten-
tion mechanisms (Li et al., 2019) are introduced
to improvement the performance of seq2seq mod-
els. These seq2seq models, however, suffer from
producing invalid equations, like a binary opera-
tor with three operands, because there is no gram-
matical constraint on its sequential decoding. To
solve this problem, seq2tree models are proposed
to bring into the grammatical constraints (Xie and
Sun, 2019; Liu et al., 2019). We will give a more
detailed introduction to seq2tree models in Section
C.2.

C.2 Sequence-to-Tree Models
To convert text into structured representations, sev-
eral research strands have utilized sequence-to-tree
models. Dong and Lapata (2016) first use seq2tree
on semantic parsing to translate text into structured
logical forms. Similar frameworks are also adopted
for code generation (Yin and Neubig, 2017; Ra-
binovich et al., 2017) where they translate code
snippets into executable representations or abstract
syntax trees (ASTs).

Inspired by their ideas, MWP solving also adopts
seq2tree to map the problem text into expression
trees. This introduces a constraint that the non-leaf
nodes of the tree should be operators and leaf nodes

be numbers, and thus the resulted equations are al-
ways guaranteed to be valid. Most seq2tree solvers
choose bidirectional LSTM or GRU as their text
encoder and use two separate models to predict the
left and right nodes during decoding respectively
(Xie and Sun, 2019; Zhang et al., 2020; Wu et al.,
2020; Li et al., 2020). Our model differs from the
previous that we use a single RNN-based decoder
to predict a variable number of children nodes dur-
ing decoding. In addition, our model can predict
formulas as nodes that increase the interpretability
of the model outputs, while previous solvers can
only predict basic arithmetic operators.

C.3 Knowledge Graph for Math Word
Problem Solving

To incorporate external knowledge into problem
solving, some solvers utilize graph convolutional
networks (Kipf and Welling, 2017) or graph atten-
tion networks (Veličković et al., 2018) to encode
knowledge graphs (KGs) as an additional input.
Wu et al. (2020) proposed to incorporate common-
sense knowledge from external knowledge bases.
They constructed a dynamic KG for each problem
to model the relationship between the entities in the
problem. For example, ”daisy” and ”rose” would
be linked to their category ”flower” so that the
solver can use this hyperonymy information when
counting the number of flowers. Zhang et al. (2020)
proposed to build graphs that model the quantity-
related information using dependency parsing and
POS tagging tools (Manning et al., 2014). Their
graphs provide better quantity representations to
the solver. Our model differs from previous models
that we aim to incorporate domain knowledge from
mathematical KGs rather than from commonsense
knowledge bases.


