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Abstract

Implicit discourse relation classification is a
challenging task, in particular when the text
domain is different from the standard Penn
Discourse Treebank (PDTB; Prasad et al.,
2008) training corpus domain (Wall Street
Journal in 1990s). We here tackle the task of
implicit discourse relation classification on the
biomedical domain, for which the Biomedi-
cal Discourse Relation Bank (BioDRB; Prasad
et al., 2011) is available. We show that entity
information can be used to improve discourse
relational argument representation. In a first
step, we show that explicitly marked instances
that are content-wise similar to the target rela-
tions can be used to achieve good performance
in the cross-domain setting using a simple un-
supervised voting pipeline. As a further step,
we show that with the linked entity informa-
tion from the first step, a transformer which is
augmented with entity-related information (K-
BERT; Liu et al., 2020) sets the new state of
the art performance on the dataset, outperform-
ing the large pre-trained BioBERT (Lee et al.,
2020) model by 2% points.

1 Introduction

Discourse relation classification (DRC) involves
automatically inferring the logical link between dif-
ferent text segments (such as causal, contrastive,
temporal etc.). It has been shown to be a valuable
preprocessing step to many downstream natural
language processing tasks such as machine transla-
tion (Guzmán et al., 2014; Meyer et al., 2015), text
summarization (Gerani et al., 2014) and question-
answering (Jansen et al., 2014). A main obstacle to
a wider usage of automatic DR classifiers however
lies in getting the classifiers to work reliably on do-
mains other than the WSJ, that discourse relation
parsers are usually trained on PDTB (Prasad et al.,
2008) and RST (Carlson et al., 2003).

Moving to a different domain is particularly chal-
lenging in DRC because the overall distribution of
relations typically differs between domains, and
because many of the content words that classifiers
may rely on are very different between domains.
We here focus on the most challenging subtask
of implicit discourse relation classification, which
involves classifying those relations that are not
linked by any explicit connectives like “because”
or “but”. In order to correctly recognize implicit
relations, the classifier needs to recognize subtle
surface cues (which may differ between domains)
and learn about typical content-related relations.
For instance, from the example “it’s hot outside,
therefore I’d like to eat an icecream”, the words
“hot outside” and “icecream” are relevant cues for
the relation. An overview of typical cues for deter-
mining a coherence relation is provided in Das and
Taboada (2018).

The key to improving automatic DRC on a new
domain hence consists of better encoding of the
discourse relational arguments. As we will show
below (in line with earlier findings by Shi and Dem-
berg, 2019b), it makes a big difference to have at
least a small amount of in-domain discourse anno-
tated data.

We here explore DRC on the biomedical do-
main, which seems particularly suitable because a
discourse-annotated corpus is available (BioDRB;
Prasad et al., 2011), which we can use for evalua-
tion, as well as a setting with a small amount of in-
domain training data. Furthermore, the biomedical
domain does have large raw text corpora available.
An example instance from BioDRB (Prasad et al.,
2011) is shown below:

1. [These abnormalities in active RA are thought
to be induced mainly after chronic expo-
sure to high concentrations of IL-6.]Arg1

(Implicit=thus) [The limited efficacy of IL-10
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treatment of RA patients may be explained
in part by the unresponsiveness to IL-10 of
inflammatory cells, including T cells .]Arg2

—Implicit, Contingency.Cause

Scientific texts such as those from the biomed-
ical domain are well known to express much of
the content in nominal phrases, and less in verb
phrases (Halliday, 2006). Concretely, for the above
example, understanding the relation between the
RA (Rheumatoid Arthritis) and inflammatory cells
(including T cells) is important to correctly un-
derstanding the relation. The high importance of
entities in these texts is a crucial insight on which
we base our approach.

In this paper, we first propose an unsupervised
method using information retrieval and knowledge
graph techniques for identifying text passages that
are similar content-wise to the coherence relation
we want to label. The underlying assumption here
is that if two instances share the same entities in
both the relational arguments, it is possible that
they have the same or a similar discourse relation.
This part of the method is applicable to any do-
main for which large amounts of in-domain text
are available, but no in-domain discourse relation
annotations. We find that this method helps to im-
prove results substantially compared to a Bi-LSTM
baseline model, but doesn’t reach state of the art
performance (which is set by transformer models).

We therefore proceed to enrich a transformer
model with the knowledge extracted from the unla-
belled texts, using the K-BERT model (Liu et al.,
2020). The model is fine-tuned on the discourse-
annotated in-domain BioDRB data. We show that
this setting sets the new state of the art on discourse
relation classification on the biomedical domain,
achieving an accuracy of 69.57%.

2 Related Work

Early approaches on BioDRB use probabilistic clas-
sifiers such as Naı̈ve Bayes, Maximum Entropy, etc.
to predict the relation (Xu et al., 2012). Bai and
Zhao (2018) combine representations from differ-
ent types of embeddings including contextualized
word vectors from ELMo (Peters et al., 2018) and
achieve 55.9% accuracy on BioDRB for in-domain
training, and 29.52% in the cross-domain setting
(reported in Shi and Demberg (2019b)).

Shi and Demberg (2019b) also explore the per-
formance of BERT (Devlin et al., 2019) models

on the DRC task on BioDRB using cross-domain
(fine-tuning on PDTB, testing on BioDRB) as well
as in-domain (fine-tuning on BioDRB and testing
on BioDRB) settings. They find a very good perfor-
mance of the BERT model, which they attribute to
its “next sentence prediction” task in pre-training.
Comparing the original BERT model to BioBERT
(Lee et al., 2020), which was trained on biomedical
text, they however find that BioBERT has only a
limited ability for learning domain specific repre-
sentations: Cross-domain performance is no better
than for the BERT model, and in-domain perfor-
mance improvements are moderate at only 1.5%
points. Given that the entities play an important
role in inferring implicit discourse relation in sci-
entific texts, putting an emphasis on entities seems
vital for achieving further improvements.

In contrast with previous studies that (largely
unsuccessfully) attempted to train on explicit dis-
course relations for learning to classify implicit
classifiers in supervised ways, such as Marcu and
Echihabi (2002); Sporleder and Lascarides (2008);
Biran and McKeown (2013); Qin et al. (2017); Shi
et al. (2017) etc., we here propose an unsupervised
voting pipeline and achieve good performance even
comparing with supervised models like BERT and
BioBERT. We believe that the key difference lies
in the fact that previous methods tried to learn sur-
face cues from explicit relations and tried to use
them for implicits (which does not work, because
these features differ between explicits and implicits,
see e.g., Sporleder and Lascarides (2008); Asr and
Demberg (2012)), while our method focuses on the
content of the discourse relational arguments.

3 Unsupervised Method with
Information Retrieval System

The successful usage of a memory network in Shi
and Demberg (2019a) showed that instances that
share the same relation have close representations.
We believe that for sparse data like BioDRB, which
has only around 2,000 labeled implicit instances in
total, it is essential to use similar explicit instances
to help find the latent patterns they share. In this
section, we introduce an unsupervised method for
implicit DRC, which is inspired by a recent infor-
mation retrieval method.

The core idea is as follows: we use informa-
tion retrieval methods to identify explicitly marked
coherence relations from the corpus which are
content-wise similar to the relation we want to la-
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bel. We then automatically label these explicitly
marked instances (relying on the high DRC accu-
racy of ca. 96% for explicit relations) and assign
the majority label from the explicit instances to the
implicit instance from our test set.

3.1 Retrieval of similar instances from a
large corpus

Figure 1 illustrates the overall pipeline of the pro-
posed method. First, each instance from BioDRB
(Prasad et al., 2011) is seen as a query and fed into
the PubMed1 and PMC2 databases.

PubMed and PMC are free full-text archives of
biomedical and life sciences journal literature at
NIH National Library of Medicine. The database
we use here is a corpus created from a subset of the
whole PubMed and PMC collections, consisting of
7,079 documents in total (1,376 for pubMed and
5,703 for PMC).

With the query and candidate documents, we
employ TF-IDF to extract the top 10 relevant docu-
ments. The candidate documents are then fed into a
discourse parser; we here use the PDTB-style end-
to-end parser by Lin et al. (2014). The outputs of
the parser contain the two arguments, the explicit
discourse connective and a discourse relation label.

The Quasi Knowledge Graphs System, proposed
by Lu et al. (2019), is designed to answer com-
plex questions. It is a novel method that computes
answers by dynamically building up a knowledge
graph that fits the query. It consists of several steps
including the extraction of subject-predicate-object
(SPO) triples, knowledge graph construction, and
a graph algorithm. We here only use the first step
from this pipeline, extracting SPO triples, and ac-
tually only use the subject and object, not the pred-
icate, to match with the noun phrases in the query.
For example, from the relation instance in Exam-
ple 1 above, the system would extract SPO triples
(NETosis, enhanced in, RA) and (autoantibodies,
known risk factors for, RA), from which we further
employ only NETosis, RA; autoantibodies, RA.

After extracting the SPO triples from all the ex-
plicit discourse instances, we employ two types of
matching strategies to connect them with the query:

1PubMed [Internet]. Bethesda (MD): National Library
of Medicine (US). [1946]. Available from: https://www.
ncbi.nlm.nih.gov/pubmed/

2PubMed Central (PMC) [Internet]. Bethesda (MD): Na-
tional Library of Medicine (US), National Center for Biotech-
nology Information; 2000. Available from: https://www.
ncbi.nlm.nih.gov/pmc/

Methods Cross-domain
Majority class 20.66
Bai and Zhao (2018) 29.52
Bi-LSTM + Word2Vec 32.97
BERT 44.79
BioBERT 44.33

Hard-matching 35.29
Soft-matching 41.95

Table 1: Performances on BioDRB across domains.
Across domains means that the model is trained on
PDTB and tested on BioDRB. Majority class here is
the majority relation of explicits.

(i) Hard matching, which means that if the sub-
ject or object appear in the query, we count it as
a vote. (ii) Soft matching. We find that with the
hard matching, lots of positive samples have been
filtered out and very few explicit instances are iden-
tified. Therefore, we use the cosine similarity be-
tween the subject or object and the noun phrases in
the query, to detect similar entities. Cosine similar-
ities are estimated based on the BioBERT encoding
of the entities. We define a threshold for deciding
when an explicit instance is similar enough to be
counted as a valid vote or not. It is seen in the train-
ing phase as a hyper-parameter to be fine-tuned
on the validation set. This method for detecting
similar explicit instances is also used in our second
approach described in Section 4.

With the steps described above, eventually each
query has been connected to a number of similar
explicit instances and the prediction for the query
is the majority vote from all of them with their
explicit discourse sense labels.

3.2 Experiments and results

On average 813.99 explicit instances are extracted
for each query. With the hard matching, 7.91 sim-
ilar entities are matched with the Subject or the
Object in the query. For the soft matching, we ran-
domly choose 10% of the total instances acting as
validation set in order to help set the threshold for
the cosine similarity score.

The experimental results are shown in Table 1.
We compare the results with related work by Bai
and Zhao (2018) as well as several models reported
in Shi and Demberg (2019b).

Our proposed unsupervised method achieves
an accuracy of 35.29% with hard-matching and
41.95% with soft-matching. These results outper-

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.ncbi.nlm.nih.gov/pmc/
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Figure 1: The Pipeline of the Proposed Method.

form other non-transformer approaches by a large
margin. Comparing the hard and soft matching
variants, our results show that identifying instances
with similar entities leads to a larger set of relevant
documents, which then help to increase robustness
in the majority vote.

The table also shows that the approach almost
reaches the performance of recent very strong trans-
former models: the BERT model achieves a per-
formance of 44.79% accuracy in the cross-domain
setting (Shi and Demberg, 2019b).

The approach proposed here could be further
refined by using better argument representations
than simple matching of subject and object entities,
and by learning the classification decisions instead
of using simple majority voting, and by moving
to transformer architectures. Our second approach
addresses these points by employing a transformer
architecture which can take the SPO triple infor-
mation into account for more richly encoding the
relational arguments.

4 DRC with an entity-augmented
transformer

Integrating external domain-specific knowledge
into the model is beneficial for this task has been
found by Kishimoto et al. (2018), who integrated
the ConceptNet relations as additional knowledge
into the LSTM network and achieved better perfor-
mance on the PDTB.

We here aim to explore whether model per-
formance can be further improved by exploiting
richer entity representations in specialized texts

Figure 2: The structure of K-BERT. It is equipped with
an editable knowledge graph which can be adapted to
its application domain. Picture taken from Liu et al.
(2020).

like the biomedical domain. The pipeline with soft-
matching proposed in the above section provides
us with SPO triples from related documents for
each implicit relation instance in the test set. We
here employ the recently proposed Knowledge-
enabled Language Representation model (Liu
et al., 2020, K-BERT) to integrate the external en-
tity knowledge into the pre-trained language model
for better argument representations.

4.1 K-BERT

Due to the domain gap between the pre-training and
fine-tuning, unsupervised language models (such



929

as BERT etc.) do not perform well on knowledge-
driven tasks (Liu et al., 2020). Integrating domain
specific knowledge into pre-trained model can alle-
viate this problem. However, the process of knowl-
edge acquisition can be inefficient and expensive.

In order to tackle the heterogeneous embedding
space and knowledge noise problems, Liu et al.
(2020) proposed a Knowledge-enabled Bidirec-
tional Encoder Representation from Transformers
(K-BERT), as illustrated in Figure 2. With the
knowledge layer and the external knowledge graph,
the input sentence has been expanded into a sen-
tence tree, which is then fed into into the embed-
ding layer and the “seeing” layer. The seeing layer
controls when the model has access to the original
sentence and when it has access to the additional
information.

However, knowledge graphs are not available
for all domains. We therefore here replace infor-
mation from the knowledge graph with the SPO
triples extracted from related raw texts. Compared
to a general knowledge graph, our extracted SPO
triples have attached more importance on the dis-
course relations since that they are extracted from
the explicit instances, and are specifically selected
to be on-topic. For each input sentence, we attach
the top 2 (default number from the K-BERT) simi-
lar SPO triples to the entities and convert it into a
sentence tree. We train K-BERT on the BioDRB
as a classification task. The input sequence of the
Example 1 is shown below, where the words in
italics are the linked entities.

2. These abnormalities in active NETosis en-
hanced in autoantibodies known risk factors
for RA result in Neutrophil Chemotaxis are
thought to be induced mainly after chronic
exposure to high concentrations of IL-6. The
limited efficacy of IL-10 treatment of RA pa-
tients reduced complement activation may be
explained in part by the unresponsiveness to
IL-10 of inflammatory cells, including T cells
isolated from CTCL patient.

The whole sentence tree has been flattened into
a sequence with the position index. The visible
matrix is generated to keep the interactions of each
of the tokens within the original sentence and also
inside the knowledge graph triples. The visible
matrix controls the self-attention layers in the trans-
former not to look into tokens other than the corre-
sponding entities.

Methods In-domain
Bai and Zhao (2018) 55.90
Bi-LSTM + Word2Vec 46.49
BERT 63.02
BioBERT 67.58

proposed model using K-BERT 69.57*

Table 2: Performances on BioDRB within domain.
Within domain here means 5-folds cross validation (see
also Shi and Demberg (2017)) on BioDRB. * denotes
significant improvement over BioBERT with p<0.05.

4.2 Experiments and Results

The experimental results are illustrated in Table 2.
We compare the results with the previous state of
the art on the BioDRB dataset (Shi and Demberg,
2019b). K-BERT, which is initialized with the orig-
inal BERT parameters, achieves 69.57% accuracy
and outperforms BERT without entity augmenta-
tion by 6.5% points, and the the gigantic in-domain
continuously pre-trained BioBERT by around 2%.
In addition, we tried to remove the relevant en-
tities. The model then performed similar to the
basic BERT, which is consistent with the results
reported in Liu et al. (2020). These results con-
firm that adding related entities improves argument
encoding and help improve the DRC task.

5 Conclusion

In this paper, we address the task of implicit dis-
course relation classification on BioDRB in the
biomedical domain. Due to the importance of
entities in scientific text, we decided to address
this problem by identifying explicitly marked re-
lations containing the same instances, and using a
simple majority voting system. While this setting
showed good performance in the unsupervised set-
ting, much better results are achieved when at least
a small amount of labelled data is available. We
show that when a transformer model is augmented
with entity information from the domain, the previ-
ous state of the art on the task is exceeded by 2%
points.
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