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Abstract

Detecting Out-of-Domain (OOD) or unknown
intents from user queries is essential in a task-
oriented dialog system. A key challenge of
OOD detection is to learn discriminative se-
mantic features. Traditional cross-entropy loss
only focuses on whether a sample is correctly
classified, and does not explicitly distinguish
the margins between categories. In this pa-
per, we propose a supervised contrastive learn-
ing objective to minimize intra-class variance
by pulling together in-domain intents belong-
ing to the same class and maximize inter-class
variance by pushing apart samples from differ-
ent classes. Besides, we employ an adversar-
ial augmentation mechanism to obtain pseudo
diverse views of a sample in the latent space.
Experiments on two public datasets prove the
effectiveness of our method capturing discrim-
inative representations for OOD detection. 1

1 Introduction

Detecting Out-of-Domain (OOD) or unknown in-
tents from user queries is an essential component
in a task-oriented dialog system (Gnewuch et al.,
2017; Akasaki and Kaji, 2017; Tulshan and Dhage,
2018; Shum et al., 2018). It aims to know when a
user query falls outside their range of predefined
supported intents to avoid performing wrong opera-
tions. Different from normal intent detection tasks,
we do not know the exact number of unknown in-
tents in practical scenarios and can barely annotate
extensive OOD samples. Lack of real OOD ex-
amples leads to poor prior knowledge about these
unknown intents, making it challenging to identify
OOD samples in the task-oriented dialog system.

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.

1Our code is available at https://github.com/p
arZival27/supervised-contrastive-learnin
g-for-out-of-domain-detection.

Previous methods of OOD detection can be gen-
erally classified into two types: supervised and
unsupervised OOD detection. Supervised OOD
detection (Scheirer et al., 2013; Fei and Liu, 2016;
Kim and Kim, 2018; Larson et al., 2019; Zheng
et al., 2020; Zeng et al., 2021b) represents that
there are extensive labeled OOD samples in the
training data. In contrast, unsupervised OOD de-
tection (Bendale and Boult, 2016; Hendrycks and
Gimpel, 2017; Shu et al., 2017; Lee et al., 2018;
Ren et al., 2019; Lin and Xu, 2019; Xu et al., 2020;
Zeng et al., 2021a) means no labeled OOD samples
except for labeled in-domain data. Specifically, for
supervised OOD detection, Fei and Liu (2016); Lar-
son et al. (2019), form a (N+1)-class classification
problem where the (N + 1)-th class represents the
unseen intents. Further, Zheng et al. (2020) uses
labeled OOD data to generate an entropy regular-
ization term to enforce the predicted distribution
of OOD inputs closer to the uniform distribution.
However, these methods heavily rely on large-scale
time-consuming labeled OOD data. Compared to
these supervised methods, unsupervised OOD de-
tection first learns discriminative intent represen-
tations via in-domain (IND) data, then employs
detecting algorithms, such as Maximum Softmax
Probability (MSP) (Hendrycks and Gimpel, 2017),
Local Outlier Factor (LOF) (Lin and Xu, 2019),
Gaussian Discriminant Analysis (GDA) (Xu et al.,
2020) to compute the similarity of features between
OOD samples and IND samples. In this paper, we
focus on the unsupervised OOD detection.

A key challenge of unsupervised OOD detection
is to learn discriminative semantic features via IND
data. We hope to cluster the same type of IND
intents more tightly and separate different types
of IND intents further. Traditional softmax loss
(Hendrycks and Gimpel, 2017) only focuses on
whether the sample is correctly classified, and does
not explicitly distinguish the relationship between

https://github.com/parZival27/supervised-contrastive-learning-for-out-of-domain-detection
https://github.com/parZival27/supervised-contrastive-learning-for-out-of-domain-detection
https://github.com/parZival27/supervised-contrastive-learning-for-out-of-domain-detection
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Figure 1: The overall architecture of our proposed method. We first train an intent classifier on IND data using CE
or SCL+CE objectives. Then, we extract the intent representation of a test sample to detect OOD.

categories. Further, Lin and Xu (2019) proposes
a large margin cosine loss (LMCL) (Wang et al.,
2018) which maximizes the decision margin in the
latent space. LMCL forces the model to not only
classify correctly but also maximize inter-class vari-
ance and minimize intra-class variance. Following
the similar motivation, we aim to pull intents be-
longing to the same class together while simultane-
ously pushing apart samples from different classes
to further model discriminative semantic features.

In this paper, we propose a supervised con-
trastive learning (SCL) model to learn discrimi-
native semantic intent representation for OOD de-
tection. SCL aims to minimize intra-class vari-
ance by pulling together IND intents belonging to
the same class and maximize inter-class variance
by pushing apart samples from different classes.
Empirical results demonstrate the effectiveness of
discriminative representation for OOD detection.
Besides, to enhance the diversity of data augmen-
tation in SCL, we employ an adversarial attack
mechanism to obtain pseudo hard positive samples
in the latent space by computing model-agnostic
adversarial worst-case perturbations to the inputs.
Our contributions are three-fold: (1) To the best
of our knowledge, we are the first to apply super-
vised contrastive learning to OOD detection. (2)
Compared to cross-entropy (CE) loss, SCL+CE
can maximize inter-class variance and minimize
intra-class variance to learn discriminative seman-
tic representation. (3) Extensive experiments and
analysis on two public datasets demonstrate the
effectiveness of our method.

2 Methodology

Overall Architecture Fig 1 shows the overall ar-
chitecture of our proposed method. As Fig 1(a)
displays, we first train an IND intent classifier us-

ing CE or SCL+CE objectives in the training stage.
Then in the test stage, we extract the intent feature
of a test sample and employ the detection algo-
rithms MSP (Hendrycks and Gimpel, 2017), LOF
(Lin and Xu, 2019) or GDA (Xu et al., 2020) to de-
tect OOD. 2 Fig 1(b) demonstrates the effectiveness
of our method capturing discriminative intent rep-
resentations, where SCL+CE can maximize inter-
class variance and minimize intra-class variance.

Supervised Contrastive Learning We first re-
view the classic cross-entropy (CE) loss and its im-
proved version, large margin cosine loss (LMCL).
Then we explain our supervised contrastive loss
(SCL) in detail. Given an IND sample xi and its
intent label yi, we adopt a BiLSTM (Hochreiter
and Schmidhuber, 1997) or BERT (Devlin et al.,
2019) encoder to get the intent representation si.
The CE loss and LMCL are defined as follows 3:

LCE =
1

N

∑
i

− log
eW

T
yi
si/τ∑

j e
WT

j si/τ
(1)

LLMCL=
1

N

∑
i

−log eW
T
yi
si/τ

eW
T
yi
si/τ+

∑
j 6=yi

e(W
T
j si+m)/τ

(2)
where N denotes the number of training samples,
yi is the ground-truth class of the i-th sample, τ is
the temperature factor, Wj is the weight vector of
the j-th class, and m is the cosine margin. Com-
pared to CE, LMCL adds a normalized decision
margin on the negative classes and forces the model
to explicitly distinguish positive class and negative
classes. Our experiment 3.2 shows LMCL can
slightly improve the performance of OOD detec-

2In this paper, we focus on the first training stage. Thus
we dive into the details about the detection algorithms MSP,
LOF and GDA in the appendix.

3For brevity, we omit the L2 normalization on both fea-
tures and weight vectors for LMCL.
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Models
CLINC-Full CLINC-Small

IND OOD IND OOD
ACC F1 Recall F1 ACC F1 Recall F1

LSTM

CE 86.34 87.73 63.72 65.23 84.24 84.30 60.40 61.07
LMCL 86.83 87.90 64.14 65.79 84.46 84.87 60.72 61.89
SCL+CE(ours) 87.01 88.28 66.80 67.68 85.73 86.61 63.96 64.44
SCL+LMCL(ours) 87.37 88.60 66.92 68.04 85.93 87.02 64.16 64.70

BERT

CE 88.13 88.98 64.24 66.17 86.68 86.20 61.64 62.58
LMCL 88.57 89.12 64.76 66.80 86.76 86.64 62.20 63.11
SCL+CE(ours) 88.97 89.57 66.84 68.03 87.65 88.07 64.44 64.52
SCL+LMCL(ours) 89.20 90.03 67.28 68.21 87.87 88.30 64.64 65.01

Table 1: Performance comparison on CLINC-Full and CLINC-Small datasets (p < 0.05 under t-test).

tion. To further model discriminative intent repre-
sentations, motivated by recent contrastive learning
work (Chen et al., 2020; He et al., 2020; Khosla
et al., 2020; Gunel et al., 2020), we propose a su-
pervised contrastive learning objective to minimize
intra-class variance and maximize inter-class vari-
ance:

LSCL =
N∑
i=1

− 1

Nyi − 1

N∑
j=1

1i 6=j1yi=yj

log
exp (si · sj/τ)∑N

k=1 1i 6=k exp (si · sk/τ)

(3)

where Nyi is the total number of examples in the
batch that have the same label as yi and 1 is an
indicator function. Note that we only perform SCL
on the IND data since we focus on the unsupervised
OOD detection where no labeled OOD data exists.
As Fig 1(b) shows, SCL aims to pull together IND
intents belonging to the same class and pushing
apart samples from different classes, which helps
recognize OOD intents near the decision boundary.
In the implementation, we first pre-train the intent
classifier using SCL, then finetune the model using
CE or LMCL, both on the IND data. We compare
iterative training and joint training in the appendix.

Adversarial Augmentation Chen et al. (2020)
has proved the necessity of data augmentation for
contrastive learning. However, there is no simple
and effective augmentation strategy in the NLP
area, which requires much handcrafted engineer-
ing. Thus, we apply adversarial attack (Goodfellow
et al., 2015; Kurakin et al., 2016; Jia and Liang,
2017; Zhang et al., 2019; Yan et al., 2020) to gen-
erate pseudo positive samples to increase the diver-
sity of views for contrastive learning. Specifically,
we need to compute the worst-case perturbation
δ that maximizes the original cross-entropy loss
LCE : δ = argmax

‖δ′‖≤ε
LCE

(
θ,x+ δ′

)
, where θ

represents the parameters of the intent classifier and
x denotes a given sample. ε is the norm bound of

the perturbation δ. We apply Fast Gradient Value
(FGV) (Rozsa et al., 2016) to approximate the per-
turbation δ:
δ = ε

g

||g||
;where g = ∇xLCE(f(x;θ), y) (4)

We perform normalization to g and then use a
small ε to ensure the approximate is reasonable.
Finally, we can obtain the pseudo augmented sam-
ple xadv = x+ δ in the latent space. The pseudo
samples are applied to augment positive views per
anchor in SCL. Ablation study 3.3 shows adversar-
ial augmentation significantly improves the perfor-
mance of SCL for OOD detection.

3 Experiments

3.1 Setup

Datasets We use two benchmark OOD datasets,
CLINC-Full and CLINC-Small (Larson et al.,
2019). We report IND metrics: Accuracy(Acc)
and F1, and OOD metrics: Recall and F1. OOD
Recall and F1 are the main evaluation metrics in
this paper. Baselines We adopt LSTM and BERT
as our intent classifier and compare SCL with CE
and LMCL. Since only using SCL can’t classify
in-domain intents directly, we first pre-train the
classifier using SCL, then finetune the model using
CE or LMCL, both on the IND data. We use three
OOD detection algorithms MSP, LOF and GDA
to verify the generalization capability of SCL. We
present dataset statistics, implementation details,
and results on MSP and LOF in the appendix.

3.2 Main Results

Tab 1 displays the main results on GDA. Com-
bining SCL and CE/LMCL significantly outper-
forms all the baselines, both on OOD and IND met-
rics. For OOD metrics, using SCL+CE in LSTM
outperforms CE by 3.08%(Recall) and 2.45%(F1)
on CLINC-Full, 3.56%(Recall) and 3.37%(F1) on
CLINC-Small. Similar improvements based on
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models min max mean median

LSTM
CE 1.13E-07 2.63E-04 4.23E-05 1.61E-05
SCL+CE 4.35E-08 1.85E-04 3.23E-05 1.39E-05

BERT
CE 8.26E-08 2.23E-04 3.84E-05 1.56E-05
SCL+CE 2.86E-08 1.67E-04 3.05E-05 1.36E-05

Table 2: Intra-class variance statistics.
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Figure 2: Comparison between inter-class distances.

LMCL are observed. The results prove the ef-
fectiveness of SCL for OOD detection. For IND
metrics, using SCL+CE in LSTM outperforms CE
by 0.67%(ACC) and 0.55%(F1) on CLINC-Full,
1.49%(ACC) and 2.31%(F1) on CLINC-Small.
The results confirm SCL also helps IND intent de-
tection. The difference between OOD and IND
improvements is probably attributed to metric scale
and data imbalance in the original test set. Besides,
SCL gains higher improvements on CLINC-Small
than CLINC-Full, which displays the advantage of
our approach in the few-shot scenario (see details
in Section 3.3). SCL also gets consistent improve-
ments on BERT by 2.60%(Recall) and 1.86%(F1)
on CLINC-Full OOD metrics, 0.84%(ACC) and
0.59%(F1) on CLINC-Full IND metrics, substan-
tiating our method is model-agnostic for different
OOD detection architectures.

3.3 Analysis

Analysis of IND feature distribution. We ana-
lyze the representation distribution of IND data on
CLINC-Full dataset from two perspectives, intra-
class and inter-class. We choose SCL+CE based
on GDA to perform analysis. Tab 2 shows the
statistics of intra-class variance, which can indi-
cate the degree of clustering of intra-class data
representations. Specifically, we average the vari-
ances of each sample normalized representation
with the same intent label to its cluster center in
the test set as cluster intra-class variance, then re-
port min/max/mean/median values on all cluster
intra-class variances. Results show SCL effectively
decreases intra-class variances, especially in terms
of max and mean values, which confirms SCL can

Proportion 10% 20% 30% 40% 50%

IND F1
CE 63.31 70.77 77.84 81.55 84.30
SCL+CE 69.50 75.14 81.45 84.18 86.61
Relative↑ 9.78% 6.17% 4.64% 3.23% 2.74%

OOD F1
CE 42.16 48.34 53.00 57.92 61.07
SCL+CE 50.10 54.43 58.61 62.12 64.44
Relative↑ 18.83% 12.60% 10.58% 7.25% 5.52%

Table 3: Effect of training data size.
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Figure 3: Effect of Adversarial Perturbation Norm.

converge intra-class intent representations.
Fig 2 shows the inter-class distances. We aver-

age dot product distances between each class center
to its k nearest class centers, then average results
of all classes as inter-class distance. The X-axis
denotes the number of k. We observe a significant
increase in SCL+CE compared to CE. When k is
smaller, the increase is more obvious. It verifies
SCL can maximize inter-class variance and distin-
guish intent classes. We also provide visualization
analysis in the appendix. In summary, SCL can
pull together IND intents belonging to the same
class and push apart samples from different classes,
which makes representations more discriminative.
Effect of IND Training Data Size. Tab 3 shows
the effect of IND training data size. We randomly
choose training data with a certain proportion from
CLINC-Full IND data and use the original test set
for evaluation. We use the LSTM+GDA setting.
Results show SCL+CE consistently outperforms
CE. Besides, with the decrease of training data
size, the relative improvements gradually increase.
It proves SCL has strong robustness for improving
OOD detection, especially in the few-shot scenario.
Analysis of Adversarial Perturbation Norm.
Fig 3 shows the effect of adversarial perturbation
norm ε on OOD detection performance. We con-
duct the experiments on CLINC-Full dataset, using
LSTM and GDA. The X-axis denotes the value
of ε. The CE+GDA dashed line means no SCL
pre-training and ε = 0.0 in the SCL+CE+GDA
solid line means no adversarial augmentation. In
general, both SCL and adversarial augmentation
contribute to the improvements and ε ∈ (1.0, 2.0)
achieves better performances. Compared with the
baseline without SCL, the SCL+CE method with
a smaller adversarial perturbation can still obtain
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Figure 4: Visualization of in-domain representation distribution.

settings IND OOD
dimension batch size ACC F1 Recall F1
128 50 87.01 88.28 66.80 67.68
128 100 87.52 88.60 67.08 68.12
128 200 88.10 89.05 67.56 68.63
256 50 87.17 88.40 66.96 67.92
256 100 87.85 88.96 67.32 68.37
256 200 88.37 89.24 67.76 68.94
512 50 87.35 88.78 67.32 68.47
512 100 88.14 89.22 67.64 68.69
512 200 88.54 89.50 68.00 69.27

Table 4: Parameter analysis of batch size and represen-
tation dimension.

better results but lower than the results with an
optimal range of perturbation, while large norms
tend to damage the effect of SCL. Our method still
performs well with a broad range of adversarial
perturbation and is insensitive to hyperparameters.
Parameter Analysis. As our proposed SCL is
a method involving contrastive learning, we an-
alyze batch sizes and representation dimensions to
further verify the effectiveness, whose results are
presented in Table 4. We conduct experiments in
CLINC-Full dataset, using LSTM and SCL+CE
objective for training and GDA for detection. With
the increase of batch size and representation dimen-
sion, both in-domain and OOD metrics are slightly
improved. However, compared with the method
proposed in this paper, the improvement is rela-
tively limited. In general, our proposed method is
not sensitive to hyperparameters and can show the
expected effect under a wide range of reasonable
settings.
Feature Visualization. As shown in Fig 4, we
extract several groups of similar classes for PCA
visualization analysis. The three pictures in the

upper part represent training using only CE, while
the three pictures in the lower part use SCL+CE for
training. In the same column, we sample the same
classes for observation. It is worth noting that the
scale of the image has been adjusted adaptively in
order to display all the data. The actual distance
can be sensed by observing the marking of the
coordinate axis. After SCL is added, the distance
between similar classes is significantly expanded,
and the data in the same classes are more closely
clustered.

4 Conclusion

In this paper, we focus on the unsupervised OOD
detection where no labeled OOD data exist. To
learn discriminative semantic intent representations
via in-domain data, we propose a novel supervised
contrastive learning loss (SCL). SCL aims to min-
imize intra-class variance by pulling together in-
domain intents belonging to the same class and
maximize inter-class variance by pushing apart
samples from different classes. Experiments and
analysis confirm the effectiveness of SCL for OOD
detection. We hope to provide new guidance for
future OOD detection work.
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Broader Impact

Task-oriented dialog systems have demonstrated
remarkable performance across a wide range of
applications, with the promise of a significant posi-
tive impact on human production mode and lifeway.
However, in scenarios where information is com-
plex and rapidly changing, models usually face
input that is meaningfully different from typical ex-
amples encountered during training. Current mod-
els are prone to make unfounded predictions on
these inputs, which may affect human judgment
and thus impair the safety of models in practical
applications. In domains with the greatest potential
for societal impacts, such as navigation or medical
diagnosis, models should be able to detect poten-
tially agnostic OOD and be robust to high-entropy
inputs to avoid catastrophic errors. This work pro-
poses a novel unsupervised OOD detection method
that using supervised contrastive learning to learn
discriminative semantic intent representations. The
effectiveness and robustness of the model are sig-
nificantly improved by adding a supervised con-
trastive learning pre-training stage, which takes
a step towards the ultimate goal of enabling the
safe real-world deployment of task-oriented dialog
systems in safety-critical domains. The experimen-
tal results have been reported on standard bench-
mark datasets for considerations of reproducible
research.
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A Dataset Details

Table 5 shows the details of two benchmark OOD
dataset4 CLINC-Full and CLINC-Small (Larson
et al., 2019). They both contain 150 in-domain
intents across 10 domains. It is worth noting that
our paper does not use labeled OOD data from the
training set in the training stage.

CLINC Full Small
Avg utterance length 9 9
Intents 150 150
Training set size 15100 7600
Training samples per class 100 50
Training OOD samples amount 100 100
Development set size 3100 3100
Development samples per class 20 20
Development OOD samples amount 100 100
Testing Set Size 5500 5500
Testing samples per class 30 30
Development OOD samples amount 1000 1000

Table 5: Statistics of the CLINC datasets.

B Baseline Details

We compare many types of unsupervised OOD de-
tection models. Therefore, the model proposed in
this paper can be divided into the training stage and
detection stage. For each model LSTM or BERT,
we use different detection methods to verify its per-
formance. The innovation of this paper focuses
mainly on the training stage. Due to the limitation
of space, we do not detailed introduce the detection
methods in the main body. We will supplement the
relevant contents as follows:
MSP (Maximum Softmax Probability)(Hendrycks
and Gimpel, 2017) applies a threshold on the max-
imum softmax probability where the threshold is
set to 0.5 according to the dev set.
LOF (Local Outlier Factor)(Lin and Xu, 2019)
uses the local outlier factor to detect unknown in-
tents. The motivation is that if an example’s lo-
cal density is significantly lower than its k-nearest
neighbor’s, it is more likely to be considered as the
unknown intents.
GDA (Gaussian Discriminant Analysis)(Xu et al.,
2020) is a generative distance-based classifier
for out-of-domain detection with Euclidean space.
They estimate the class-conditional distribution on
feature spaces of DNNs via Gaussian discriminant
analysis (GDA) to avoid over-confidence problems

4https://github.com/clinc/oos-eval

and use Mahalanobis distance to measure the con-
fidence score of whether a test sample belongs to
OOD. GDA is the state-of-the-art detection meth-
ods till now, so we adopt GDA as our main de-
tection algorithm. We also report MSP and LOF
results in Section D.

C Implementation Details

We use the public pre-trained 300 dimensions
GloVe embeddings (Pennington et al., 2014)5 or
bert-base-uncased (Devlin et al., 2019)6 model to
embed tokens. We use a single-layer BiLSTM as a
feature extractor and set the dimension of hidden
states to 128. The dropout value is fixed at 0.5.
We use Adam optimizer (Kingma and Ba, 2014) to
train our model. We set a learning rate to 1E-03 for
GloVe+LSTM and 1E-04 for Bert. In the training
stage, 100 epochs of supervised contrastive train-
ing are first conducted, then 10 epochs of finetune
training are conducted with CE or LMCL. Both
phases are training only on in-domain labeled data.
The training stage has an early stop setting with
patience equal to 5. We use the best F1 scores on
the validation set to calculate the GDA threshold
adaptively. Each result of the experiments is tested
5 times under the same setting and gets the average
value. The norms of adversarial perturbation are
obtained by the heuristic method, in which MSP
and LOF are 1.0 and GDA is 1.5. The training
stage of our model lasts about 10 minutes using
GloVe embeddings, and 18 minutes using Bert-
base-uncased, both on a single Tesla T4 GPU(16
GB of memory). The average value of the trainable
model parameters is 3.05M.

D Supplementary Experimental Results

Various Detection Methods In this paper, the
experiments and analysis are mainly conducted
around the training stage. Different detection mod-
els are used to verify the generalization of our pro-
posed method. Due to the limitation of space, we
use GDA for most of the presentation in the main
body. The main experiments of LOF and MSP
using LSTM feature extractor are shown in Table
6. It is worth noting that using different detection
methods can obtain the same analysis results as the
main experimental in the main body.
Combining two training stages in different
ways We display results of different combining

5https://github.com/stanfordnlp/GloVe
6https://github.com/google-research/bert
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Models
CLINC-Full CLINC-Small
IND OOD IND OOD
ACC F1 Recall F1 ACC F1 Recall F1

LOF

CE 85.46 85.80 57.40 58.78 82.45 82.73 52.88 53.90
LMCL 85.87 86.08 58.32 59.28 82.83 82.98 53.96 54.63
SCL+CE(ours) 86.52 86.80 60.72 61.80 83.13 83.39 56.88 57.48
SCL+LMCL(ours) 86.94 87.15 61.88 63.03 83.40 83.57 57.92 58.60

MSP

CE 85.76 86.27 27.12 34.91 83.81 84.12 20.40 22.76
LMCL 87.36 87.62 31.28 36.66 85.02 85.30 24.16 25.72
SCL+CE(ours) 87.44 87.87 33.68 39.34 85.54 85.95 27.24 27.43
SCL+LMCL(ours) 88.89 89.21 35.40 41.75 86.87 87.20 29.28 31.02

Table 6: Supplementary experimental results of LOF and MSP.

models
IND OOD
ACC F1 Recall F1

CE 86.34 87.73 63.72 65.23
CE+SCL 82.29 83.59 61.96 63.40
multitask 86.69 88.02 65.76 67.25
SCL+CE 87.01 88.28 66.80 67.68

Table 7: Results of combining two training stages in
different ways

ways of two training stages on CLINC-Full dataset
using LSTM and GDA detection method in Ta-
ble 7. CE is the baseline that only uses the cross-
entropy loss function to train the feature extrac-
tor. SCL+CE follows the paradigm of pre-training
first and then finetuning, which achieves the best
performance. Besides, we try two different com-
binations to explore the relationship between the
two training stages. CE+SCL means that we first
conduct training to minimize cross-entropy loss,
and then conduct supervised contrastive learning.
The results show that the subsequent SCL leads
to a decline in metrics, especially on in-domain.
This is because SCL, while optimizing the repre-
sentation distribution, compromises the mapping
relationship with labels. Multitask means to opti-
mize two losses simultaneously. This setting leads
to mutual interference between two tasks, which
affects the convergence effect and damages the per-
formance and stability of the model. In general,
SCL should be used as a pre-training method and
CE as a finetuning method. The best results can be
achieved by first using SCL to learn discriminative
representation and then finetuning the model by
CE.


