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Abstract

Existing approaches for the Table-to-Text task
suffer from issues such as missing information,
hallucination and repetition. Many approaches
to this problem use Reinforcement Learning
(RL), which maximizes a single manually de-
fined reward, such as BLEU. In this work, we
instead pose the Table-to-Text task as Inverse
Reinforcement Learning (IRL) problem. We
explore using multiple interpretable unsuper-
vised reward components that are combined
linearly to form a composite reward function.
The composite reward function and the de-
scription generator are learned jointly. We
find that IRL outperforms strong RL baselines
marginally. We further study the generaliza-
tion of learned IRL rewards in scenarios in-
volving domain adaptation. Our experiments
reveal significant challenges in using IRL for
this task.

1 Introduction

Table-to-Text generation focuses on explaining tab-
ular data in natural language. This is increasingly
relevant due to the vast amounts of tabular data cre-
ated in domains including e-commerce, healthcare
and industry (for example, infoboxes in Wikipedia,
tabular product descriptions in online shopping
sites, etc.). Table-to-Text can make data easily
accessible to non-experts and can automate certain
pipelines like auto-generation of product descrip-
tions. Traditional methods approached the general
problem of converting structured data to text using
slot-filling techniques (Kukich, 1983; Reiter and
Dale, 2000; McKeown, 1992; Cawsey et al., 1997;
Konstas and Lapata, 2013; Flanigan et al., 2016).
While recent advances in data-to-text generation
using neural networks (Sutskever et al., 2011; Mei
et al., 2015; Gardent et al., 2017; Wiseman et al.,
2017; Song et al., 2018; Zhao et al., 2020) have
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led to improved fluency, current systems still suf-
fer from issues such as lack of coverage (where
the generated text misses information present in
the source), repetition (where the generated text
repeats information) and hallucination (where the
generated text asserts information not present in
the source)(Lee et al., 2019). A significant reason
for these issues is that models often lack explicit
inductive biases to avoid these problems. Most
extant approaches utilize Reinforcement Learning-
based (RL) training, using a single reward (such
as BLEU or task-specific rewards) that optimizes
for a specific aspect. For example, Liu et al. (2019)
and Nishino et al. (2020) use domain-specific re-
wards to improve the accuracy of medical report
generation.

However, defining a single reward that addresses
all of the above-described issues is difficult. To
use multiple reward components with RL, one
has to manually find an optimal set of weights of
each component either through a trial-and-error
approach or expensive grid search which gets infea-
sible as the number of such reward components in-
creases. Inverse Reinforcement Learning (Abbeel
and Ng, 2004; Ratliff et al., 2006; Ziebart et al.,
2008) can be a natural approach for this task since
it can learn an underlying composite reward func-
tion from labeled examples incorporating multiple
rewards. Motivated by existing applications of IRL
in other domains and tasks (Finn et al., 2016; Fu
et al., 2017; Shi et al., 2018), we explore its utility
for Table-to-Text generation. We diverge from pre-
vious work on IRL in designing a set of intuitive
and interpretable reward components that are lin-
early combined to get the reward function. Figure
1 illustrates the overall idea of this work. We learn
a “Description Generator” (also referred as policy
later) to generate descriptions given a table. The
IRL framework includes “Reward Approximator”
that leverages the “expert” or the ground-truth de-
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Figure 1: We frame the Table-to-Text task under In-
verse Reinforcement Learning framework using multi-
ple reward components

scriptions corresponding to tables to jointly learn
the underlying composite reward function combin-
ing multiple reward components such as “Recall”,
“Fluency”, etc. This composite reward function
quantifies the quality of the generated descriptions.
We see IRL performs at par with RL baselines. For
investigating when IRL helps and when it does
not, we conduct experiments to evaluate general-
ization capabilities of IRL in limited data setting
and identify challenges involved in IRL training.
Our contributions are:
• We formulate a set of interpretable reward com-

ponents and learn the composite linear reward
function in a data-driven manner for Table-to-
Text generation1.

• We study the utility of IRL for Table-to-Text
generation.

2 Method

The training data for this task consists of pairs of
tables and corresponding natural language descrip-
tions, as shown in Figure 1. A table T is a sequence
of tuples of slot types (e.g. “Name”) and slot val-
ues (e.g. “Asgar”) and let D denote the expert
description. We formulate the “Table-to-Text” task
as generating D from source table T . In the rest
of this section, we first explain how to formulate
Table-to-Text under the IRL framework, followed
by the formulation of the reward components and
a brief description of the text generation network

1Code and dataset splits for the paper are pro-
vided in https://github.com/issacqzh/IRL_
Table2Text

that is at the core of our method.

2.1 Table-to-Text as IRL

We pose Table-to-Text under the IRL framework
where we aim to jointly learn a policy for generat-
ing description from the table and the underlying
composite reward function. At the core of our ap-
proach, we have a neural description generator that
we adapt from Wang et al. (2018). The description
generator is first trained using maximum likelihood
estimation (MLE) followed by fine-tuning it using
Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL) (Ziebart et al., 2008). Under
the MaxEnt IRL framework, we iteratively perform
two steps: (1) approximate the underlying com-
posite reward function by leveraging the expert
descriptions and the current policy for description
generation; (2) Using the updated reward function,
we update the current policy for description gener-
ation using RL. In this work, we model the com-
posite reward Rφ(D) as a linear combination of
multiple reward components.

Rφ(D) =

τ∑
t=1

φᵀCt (1)

where φ is a weight vector, Ct is the vector of
reward component values at step t in a generated
description and τ denotes total steps.

Following the MaxEnt IRL paradigm, we as-
sume the expert descriptions come from a log-
linear distribution (pφ(D)) on reward values. The
objective of the reward approximator (Jr(φ)) is
to maximize the likelihood of the expert descrip-
tions. The partition function for this distribution
(pφ(D)) is approximated by using importance sam-
pling from the learned description generation pol-
icy. For sake of brevity, we skip the mathematical
derivation here. Please refer to Appendix A.1 for
detailed derivation. We draw N expert descriptions
and M descriptions from the learned policy. The
gradient of the objective (Jr(φ)) w.r.t. reward func-
tion parameters φ is then the difference between
the expected expert reward and expected reward
obtained by the policy (Ziebart et al., 2008):

∇φJr(φ) =
1

N

N∑
i=1

∇φRφ(Di)−
1∑
j βj

M∑
j=1

βj∇φRφ(D′j)

(2)

where Di and D′j are drawn from the training data
and the learned policy respectively and β’s are im-
portance sampling weights.

https://github.com/issacqzh/IRL_Table2Text
https://github.com/issacqzh/IRL_Table2Text
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The linear functional form of the reward simpli-
fies individual weight updates as a simple differ-
ence of the expected expert and the expected roll
out reward component from policy. Weight update
for component c is:

∇φJr(φ)c =
1

N

N∑
i=1

ci −
1∑
j βj

M∑
j=1

βjc
′
j (3)

where ci is total value of reward component over
all steps for ith expert description and c′j is total
value of reward component over all steps for jth

generated description. To stabilize training when
learning the policy for description generation we
mix in weighted MLE loss with the policy gradi-
ent loss before backpropagation. Please refer to
supplementary material (Appendix A.5) for model
training details.

2.2 Reward Components

We aim to find a reward function that can combine
multiple characteristics present in a good descrip-
tion such as faithfulness to the table and fluency.
To encourage faithfulness, we use recall and recon-
struction as reward components, while to charac-
terize grammatical correctness and fluency we use
repetition and perplexity. We also consider BLEU
score as a reward component. BLEU is a super-
vised reward component as it requires ground-truth
descriptions for its computation. However, all other
reward components are unsupervised.
• Recall: Fraction of slot values in the table men-

tioned in the description.
• Reconstruction: We use QA models to extract

answers from the description against a few “ex-
tractor” slot types (for example, “What is the
name of the person in the description?” is used
as a question for the slot type “Name ID”). De-
tails about other extractor slot types are provided
in Appendix A.3. Reconstruction score is the
average of lexical overlap scores between pre-
dicted and true slot values, corresponding to the
extractor slot types present in the table.

• Repetition: Fraction of unique trigrams in the
description.

• Perplexity: This is the normalized perplexity of
the description calculated using GPT-2 model
(Radford et al., 2019).

• BLEU: This is the BLEU score (Papineni et al.,
2002) of the description.

Additional details on implementation of reward
components are in Appendix A.3.

3 Experiments and Results

In this section we describe our experiments and
their results in detail.

3.1 Data and Metrics
Wang et al. (2018) proposed a dataset of tables and
their corresponding descriptions related to people
and animals from Wikipedia. However, the original
released dataset is noisy (many descriptions have
low precision/recall, most examples have very few
distinct slot types, etc.). For our experiments, we
filtered this dataset to get a smaller high-quality
dataset of 4623 examples using the following cri-
teria : (1) Recall (defined in §2.2) of 1.0 (2) High
precision (fraction of entities in the description
mentioned in the table) greater than 0.7 (3) number
of distinct slot types greater than 6. We split the
entire dataset as 80%, 10% and 10% for training,
validation and testing respectively. Details of the
dataset are provided in Appendix A.2. To aid re-
producibility we make the data splits used by us
publicly available2.

For evaluation, we report BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) along with their
harmonic mean (called F1 hereon). Additionally,
we report the mean reward value for Recall and
Perplexity as proxies for faithfulness and fluency
of generated descriptions respectively.

MODEL B R F1 REC. PPL

MLE 23.78 42.11 30.40 0.82 -73.38

RL with
B 28.03 43.75 34.17 0.87 -42.17
Rec., B 28.02 43.77 34.16 0.88 -39.43
Rec., B, PPL 28.22 43.12 34.11 0.89 -43.91
All 28.21 43.23 34.14 0.89 -40.77

IRL with
Rec., B 27.96 43.52 34.04 0.88 -40.27
Rec., B, PPL 28.25 43.81 34.35 0.89 -40.19
All 28.42 43.19 34.28 0.89 -40.11

IRL (using multipliers) with
Rec., B 28.41 43.53 34.38 0.89 -38.53
Rec., B, PPL 28.16 43.35 34.14 0.90 -40.86

Table 1: Test set performance for various models mea-
sured using BLEU (B), ROUGE(R), F1, Recall(Rec.)
and Perplexity (PPL). Using IRL instead of RL gives
marginal improvement in performance

3.2 Automatic Evaluation
Table 1 shows the performance of models trained
using maximum likelihood estimation (MLE), RL

2Data splits are provided in https://github.com/
issacqzh/IRL_Table2Text

https://github.com/issacqzh/IRL_Table2Text
https://github.com/issacqzh/IRL_Table2Text
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and IRL. For RL and IRL we report results with
various sets of reward components. When using
multiple reward components with RL we consider
the total reward as the uniformly weighted sum of
each component. We note that while IRL variants
achieve higher performance than RL methods for
all metrics, the gain in performance is marginal.

In Table 1 we choose the best model for each
setting based on the performance on the validation
split. For the best IRL (All) model, we find the
learned weights for repetition, recall, BLEU, re-
construction and perplexity are 0.02, 0.12, 0.65,
0.05 and 0.15 respectively. However, we noticed
that the weights of the IRL reward components
failed to converge in our training runs. This is a
consequence of the fact that reward components
such as BLEU achieve their maximum value for
the ground-truth description, and the value quickly
drops as descriptions diverge from the ground truth
description. Thus the gap between the expert value
and the value achieved by the model for BLEU is
always large, hindering the convergence of weights
in IRL (Eqn 3). This results in a peaked distribu-
tion of weights where the model tends to favor the
BLEU reward component excessively. We attempt
scaling down the expert BLEU reward values by
using multiplier. We dynamically update the multi-
plier using an adaptive binary search method (refer
to Appendix A.4 for details) to induce convergence
in weights. We observe that the multiplier acts as a
“regularizer” in learning a more balanced weight for
the reward components considered. For example,
when we train IRL with BLEU, recall and perplex-
ity without using multiplier, the learned weights
of the components are 0.72, 0.15 and 0.13 respec-
tively. On using multipliers for IRL training, the
learned weights for BLEU, recall and perplexity
are 0.45, 0.31 and 0.24 respectively. The model
variants using multipliers get the best F1 score as
seen in the second last row of Table 1.

We also find that having more reward compo-
nents does not help IRL improve significantly. We
note that IRL using all reward components gets the
best BLEU but suffers a marginal drop in ROUGE.

3.3 Domain adaptation

To evaluate if rewards learned using IRL generalize
better to unseen data distributions, we evaluate it
for scenarios involving domain adaptation. For this,
we divide the dataset into disjoint subsets of cate-
gories involving people in sports, academia, art, etc.

(category details in Appendix A.2). Each category
has different table schemas. We train RL and IRL
models on one category and test them on a different
category. Since training on a single category limits
the amount of labelled data, we consider training
with unsupervised rewards that do not rely on the
ground truth. Table 2 shows the F1 results when
using IRL and RL with recall, perplexity and re-
construction. For each training category, we show
results of the test category with the highest absolute
value of relative change in F1. We notice mixed
results. For instance, when training on the “Sports”
domain, IRL’s performance is much worse than RL.
This may be because slot types with high frequency
in the “Sports” category are significantly different
from all other categories. Thus, IRL may be sus-
ceptible to learning a reward function that overfits
the domain and actually generalizes worse than a
fixed reward function. However, in several cases
IRL leads to big improvements in performance (e.g.
when training on Politics, Law, and Military) indi-
cating the promise of this method in limited data
settings.

TRAIN CAT. TEST CAT. RL IRL

Politics Sports 18.59 21.04
Law Academia 28.54 31.17

Military Politics 30.07 32.01
Art Academia 32.78 31.37

Academia Sports 21.25 20.67
Sports Academia 24.43 22.25

Table 2: F1 scores on using IRL and RL for domain
adaptation. IRL leads to higher F1 scores in a few set-
tings indicating its usefulness for domain adaptation.
However, IRL performs worse than RL when trained on
domains which have significantly different slot types
with high frequency (e.g. “Sports”).

4 Discussion

We highlight some challenges with IRL training
that potentially hinder IRL to get significantly bet-
ter than RL baselines. Further, we discuss qualita-
tive differences between RL and IRL models.

4.1 Challenges in IRL training

Importance of reward components: During
training, for most reward components, their val-
ues for expert and generated descriptions are close.
However, the values of BLEU for generated de-
scriptions are quite smaller than the BLEU value
for expert descriptions. This shadows the contri-
bution of other reward components irrespective of
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the weights assigned to them. Since BLEU opti-
mizes for n-gram overlap with the expert text, it is
undesirable to drop this component as it leads to
text degeneration. As described in Section 3.2, we
use adaptive multipliers to alleviate its dominance.
However, its effect is limited and the method does
not correspond to optimizing a fixed objective.
Unstable training: To stabilize training, we mix
the weighted MLE loss (cross-entropy loss) and the
policy gradient objective. However, these losses
can differ largely in scale. Having a larger weight
to MLE loss diminishes the contribution of reward
components, while larger weight to policy gradient
leads to degeneration.

These observations indicate the need for future
research on training paradigms and better-designed
reward components to address these challenges.

4.2 Qualitative analysis
Using only BLEU as a reward leads to gener-
ated descriptions that fit a general template resem-
bling descriptions from the most common cate-
gory (“Sports”). Including other reward compo-
nents helps the model avoid this behavior. We
still observe hallucination from both IRL and RL
fine-tuned models. However, hallucinated informa-
tion generated from IRL fine-tuned models often
matches the overall theme (for example, it gener-
ates incorrect football league names but gets the
name of the club mentioned in the table correct).
Appendix A.7 shows an example of description
generated by IRL (All) model.

5 Conclusion

We present an approach using IRL for Table-to-
Text generation using a set of interpretable reward
components. While the approach outperforms RL,
improvements are marginal, and we identify sev-
eral challenges. In particular, using metrics like
BLEU as reward components is problematic, since
they affect weight convergence for IRL. Based on
our study, the application of IRL for Table-to-Text
generation would broadly benefit from designing
better-calibrated reward components and improve-
ments in training paradigms. We hope our explo-
ration encourages the community to engage in in-
teresting directions of future work.
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of a description is sum of rewards at each step. Let
qθ(D) be the policy for description generation. We
maximise the log-likelihood of the samples in the
training set (Equation 5).

Jr(φ) =
1

N

N∑
n=1

log(pφ(Dn)) =
1

N

N∑
n=1

Rφ(Dn)− logZ

(5)

The gradient w.r.t. reward parameters is given by

∇φJr(φ) =
1

N

∑
n

∇φRφ(Dn)

− 1

Z

∫
D
exp(Rφ(D))∇φRφ(D)dD

= ED∼pdata∇φRφ(D)− ED∼pφ(D)
∇φRφ(D)

(6)

The partition function requires enumerating all
possible descriptions which makes this intractable.
This is tackled by approximating the partition func-
tion by sampling descriptions from the policy using
importance sampling. The importance weight βi
for a generated description Di is given by

βi ∝
exp(Rφ(Di))

qθ(Di)
(7)

The gradient is now approximated as:

∇φJr(φ) =
1

N

N∑
i=1

∇φRφ(Di)−
1∑
j βj

M∑
j=1

βj∇φRφ(D′j)

(8)

where Di and D′j are drawn from training data and
qθ(D) respectively.

A.2 Dataset statistics
We split the entire dataset as 80%, 10% and 10% for
training, validation and testing respectively. Table
3 shows the statistics for our dataset.

Table 4 shows the various disjoint category splits
of our data.

A.3 Detailed description of some reward
components

• Reconstruction: We use Question Answer-
ing models to extract answers from the de-
scription corresponding to few slot types. For
example, to extract the name from the descrip-
tion we ask a question “What is the name of
the person?”. The questions corresponding to
each slot type is pre-determined. We extract
values for four most common slot types occur-
ring in the dataset – “name”, “place of birth”,

“place of death” and “country”. We will re-
fer to these slots as “extraction slot types”.
The questions for these extractor slot types
are “What is the name of the person in the
description?”, “What is the place of birth of
the person in the description?”, “What is the
place of death of the person in the descrip-
tion?” and “Which country does the person in
the description belong to?” respectively. All
extraction slot types are not present in every
table of the dataset (example, “place of death”
is not present for a living sportsperson). Fol-
lowing SQUAD-like (Rajpurkar et al., 2018)
formalisation, for each slot-type we train a
BERT-based (Devlin et al., 2019) model to
get the answer from the description given the
question. We calculate overlap score of pre-
dicted answer with the correct answer (slot
value from table). The final reconstruction
score is the arithmetic mean of answer over-
lap scores corresponding to the extractor slot
types present in the table.

• Perplexity: This is the negative perplexity of
the description. We further normalize it by
using

Perplexity− Perplexitylow
Perplexityhigh − Perplexitylow

(9)

where Perplexityhigh and Perplexitylow are
the maximum and minimum perplexity of ex-
pert texts and texts generated by pretrained
MLE model respectively.

A.4 Learning Multiplier for BLEU
Let us assume that after the ith iteration of IRL,
we have the multiplier value as mi. Let b be the
average BLEU score obtained by the model. For
(i + 1)th iteration we update the multiplier value
as

mi+1 =
mi + b

2
(10)

In case the change in weight is less than 0.00001,
we instead increase multiplier value by 0.1. The
maximum of multiplier value is 1. We start with
initial multiplier value (m0) as 1.

A.5 Training details
Model parameters We follow the same training
scheme and model parameters from Wang et al.
(2018). Our model roughly has around 7.8M pa-
rameters. We perform MLE for 20 epochs. For
RL finetuning we perform 100 epochs. For the IRL
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TYPE SIZE REC. PREC. # SENT./TAB. # SLOTS/SENT. # SLOTS/TAB. # W/SENT. # W/TAB.
Train 3700 1.0 0.82 4.61 1.86 8.58 14.85 68.52
Val 461 1.0 0.82 4.67 1.86 8.70 15.10 70.54
Test 462 1.0 0.82 4.60 1.86 8.57 14.54 66.87
Total 4623 1.0 0.82 4.62 1.86 8.59 14.85 68.56

Table 3: Dataset statistics

Slot Type Row Slot Value

Name ID 1 William Duval 
(ice hockey)

Country of 
citizenship

2 Canada

Date of birth 3 August 3, 1877

Date of death 4 June 7, 1905

Sport 5 Ice hockey

Position played on 
team / Specialty

6 Defenceman

Place of birth 7 Ottawa

Reference:
William Duval (ice hockey) ( August 3 1877 – June 7 1905 ) was a
Canadian professional Ice hockey Defenceman who played for the
Ottawa Hockey Club and the Pittsburgh Victorias in the late 1890s
and early 1900s . born in Ottawa Canada Duval played
intermediate hockey for the Ottawa Aberdeens and Ottawa
Atlantic Railway teams before joining the Ottawa Hockey Club in
the 1899 – 1900 season . he played two further seasons for
Ottawa and was named captain prior to the 1902 season . duval
died due to alcoholism on June 7 1905 . duval had previously
worked for the Canada Atlantic Railway in Ottawa .

IRL All:
William Duval (ice hockey) ( August 3 1877 - June 7 1905 ) was a 
Canada professional Ice hockey Defenceman who played eleven 
seasons in the National Hockey League of six . he was born in 
Ottawa Ontario Canada .

Figure 2: Example of generated description using IRL (All) model

CATEGORY # SAMPLES

Academia 2152
Art 4736
Politics 2974
Sports 17434
Law 586
Military 4170
Unknown 14096

All 46148

Table 4: Data statistics for categories

model, we perform two weight updates followed by
five RL epochs and this is repeated 20 times. For
training we use Adam optimizer (Kingma and Ba,
2014). We choose the hyperparameters and best
epoch for each model by obtaining results on the
validation set using beam search with beam size of
3.

Hyper-parameter tuning We adapt the model
and optimizer hyper-parameters from Wang et al.
(2018). For choosing the weights for cross-entropy
loss and policy gradient loss we tried combinations
in the set 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
keeping sum of weights as 1. For IRL reward com-
ponent weight updates we sample 500 descriptions
from ground-truth and from the descriptions gen-
erated from the policy. We chose the size as 500
based on validation set performance. Based on the

performance on the validation set we chose 0.9
as policy gradient loss weight and 0.1 for cross-
entropy loss. This also helps to bring both the loss
terms in same scale.

Software and hardware specifications All the
models are coded using Pytorch 1.4.03 (Paszke
et al., 2019) and related libraries like numpy
(Oliphant, 2006), scipy (Virtanen et al., 2020) etc.
We run all experiments on GeForce RTX 2080 GPU
of size 12 GB. The system has 256 GB RAM and
40 CPU cores.

Time for training and inference It takes around
16 seconds for one epoch of MLE training while it
takes close to 150 seconds for an epoch when using
RL fine-tuning with all the reward components.
The reward component weight approximation stage
of IRL is very fast and takes less than a second
generally.

A.6 Validation set results

Table 5 shows the results on validation set for the
models in Table 1 of main paper.

A.7 Qualitative example

Table 2 shows an example of the output generated
by the IRL (All) model along with the reference

3https://pytorch.org/

https://pytorch.org/
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MODEL B R F1 REC. PPL

MLE 23.64 41.17 30.03 0.83 -74.75

RL with
B 26.61 42.12 32.61 0.86 -39.89
Rec., B 26.88 42.05 32.79 0.87 -34.06
Rec., B, PPL 27.10 41.72 32.86 0.88 -43.47
All 26.87 41.87 32.73 0.88 -39.14

IRL with
Rec., B 26.85 41.79 32.69 0.87 -37.40
Rec., B, PPL 27.09 42.10 32.97 0.88 -40.13
All 27.23 41.70 32.94 0.88 -39.87

IRL (using multipliers) with
Rec., B 27.02 42.00 32.88 0.86 -34.83
Rec., B, PPL 27.02 41.67 32.78 0.89 -40.87

Table 5: Performance on the validation set for various
models measured using BLEU (B), ROUGE(R), F1,
Recall(Rec.) and Perplexity(PPL)

description.


