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Abstract
In real scenarios, a multilingual model trained
to solve NLP tasks on a set of languages can be
required to support new languages over time.
Unfortunately, the straightforward retraining
on a dataset containing annotated examples
for all the languages is both expensive and
time-consuming, especially when the number
of considered languages grows. Moreover, the
original annotated material may no longer be
available due to storage or business constraints.
Re-training only with the new language data
will inevitably result in Catastrophic Forget-
ting of previously acquired knowledge. We
propose a Continual Learning strategy that up-
dates a model to support new languages over
time, while maintaining consistent results on
previously learned languages. We define a
Teacher-Student framework where the existing
model “teaches” to a student model its knowl-
edge about the languages it supports, while the
student is also trained on a new language. We
report an experimental evaluation in several
tasks including Sentence Classification, Rela-
tional Learning and Sequence Labeling.

1 Introduction

In Natural Language Processing (NLP), multilin-
gualism refers to the capability of a single model
to cope with multiple languages. Recently, dif-
ferent Transformer-based architectures have been
extended to operate over multiple languages, as
in Conneau et al. (2020); Conneau and Lample
(2019); Pires et al. (2019). Despite these models
can be applied in the zero-shot setting (Xian et al.,
2019; Artetxe and Schwenk, 2019), in many practi-
cal applications their quality will not be satisfactory.
Instead, fine-tuning over annotated material in each
target language is needed to obtain competitive re-
sults, as the experimental results in Lewis et al.

(2019); Tran and Bisazza (2019) suggest. Having
annotated material for all the languages is not al-
ways possible, especially when the model has to
support an incremental number of new languages
over time. In fact, the original fine-tuning material
may no longer be available for storage, business or
privacy constraints. For example, in a real-world
application, customers may request deletion of their
data, or the service itself may provide specific data
retention policies, or the adopted model may be
provided by a third party that did not release the
training data (Chen and Moschitti, 2019). In these
cases, new language support can be added in a Con-
tinual Learning (CL) setting (Lange et al., 2019),
that is fine-tuning the model only using the anno-
tated material for the new language(s). However,
this approach is vulnerable to the Catastrophic For-
getting (CF) (McCloskey and Cohen, 1989) of pre-
viously learned languages, a well-documented con-
cern discussed in Chen et al. (2018): when a model
is incrementally fine-tuned on new data distribu-
tions, it risks forgetting how to treat instances of
the previously learned ones.

In this paper, we propose a CL strategy for up-
dating a model over an incremental number of lan-
guages, so that at each step the model requires only
annotated examples of the new language(s). Our
goal is to remove the dependency on the original
fine-tuning material and reduce the need for an-
notated data at each training step. We propose a
Teacher-Student framework inspired by the Knowl-
edge Distillation (KD) literature (Hinton et al.,
2015). Although this technique is traditionally used
for the purpose of model compression (Sanh et al.,
2019), recent works in Computer Vision applied
KD to incrementally learn image processing tasks
(Li and Hoiem, 2018). Here, we adopt KD to miti-
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gate CF when incrementally training Transformer-
based architectures (Devlin et al., 2019) for seman-
tic processing tasks. The existing model (here the
teacher) imparts knowledge to a (student) model
about the languages it already supports, while this
is trained on new languages.

We evaluated our approach using multilingual
BERT-based models on three semantic process-
ing tasks, involving Sentence Classification, Para-
phrase Identification and Sequence Tagging. Re-
sults suggest that the model can progressively learn
new languages, while maintaining or even improv-
ing its quality over previously observed ones.

2 Related Work

Continual Learning (CL) (Chen et al., 2018) studies
how to train a machine from a stream of data, which
can evolve over time by changing the input distri-
bution or by incorporating new tasks. CL aims to
gradually extend the knowledge in a model (Lange
et al., 2019), while avoiding Catastrophic Forget-
ting (Goodfellow et al., 2013). Previous work has
mostly focused on Computer Vision (Shmelkov
et al., 2017; Li and Hoiem, 2018; Rannen et al.,
2017) by using Knowledge Distillation (KD) (Hin-
ton et al., 2015) as the base framework.

CL in NLP, as opposed to Computer Vision, is
still nascent (Greco et al., 2019; Sun et al., 2020).
This reflects in the small number of proposed meth-
ods to alleviate CF, as discussed in Biesialska et al.
(2020). In this context, some works focus on the
Online Learning aspect of the CL (Filice et al.,
2014). In NLP, KD has been mainly adopted to
compress models (Kim and Rush, 2016; Sanh et al.,
2019), and was only recently applied for CL in
Named Entity Recognition (Monaikul et al., 2021).

In the context of multilingual analysis, most of
the works leverage Domain Adaptation techniques
within Machine Translation (Dong et al., 2015; Fi-
rat et al., 2016; Ha et al., 2016; Johnson et al.,
2017; Tan et al., 2019) in order to apply a machine
translation model to an increasing set of languages.

To the best of our knowledge, this is the first
work adopting CL to mitigate CF when training
Transformer-based models in an incremental num-
ber of languages for semantic processing tasks.

3 CL for Multilingual processing

Multilingual Continual Learning. In the targeted
scenario, we have a multilingual neural model,
namely MLA

, originally pre-trained on a set of

languages LP = {l1, l2, . . .} (such as multilingual
BERT (Pires et al., 2019)) and already fine-tuned
to solve a task T (such as sentence classification)
on a given set of languages LA ⊂ LP . The scope
is to extend such model to solve T on a set of new
languages LB ⊂ LP , with LA ∩ LB = ∅.

In the rest of the discussion, without loss of gen-
erality, we assume that LB = {lnew}, i.e., we sup-
port only one new language at a time. In case
n > 1 new languages need to be added, a se-
quence of n model extensions can be performed.
In our setting, we assume that: (i) a new anno-
tated dataset S{lnew} for task T in language lnew is
available; (ii) the examples used to fine-tuneMLA

are not available anymore; (iii) unlabeled exam-
ples are available in each language from LA. Since
lnew ∈ LP , i.e., the original pre-training stage in-
cluded lnew, the model could already operate in a
zero-shot setting (i.e., without any fine-tuning stage
involving lnew data). However, the performance of
the zero-shot setting is typically non-satisfactory
and a dedicated fine-tuning on lnew is generally
required. A naive CL strategy consists of fine-
tuningMLA

over S{lnew}. However, even though
this schema is supposed to produce an effective
model for lnew instances, it is not guaranteed that
the resulting model would still be competitive on
languages LA, due to CF (Greco et al., 2019; Sun
et al., 2020). An alternative greedy solution con-
sists of adopting self-training as in Rosenberg et al.
(2005):MLA

is used to annotate some unlabeled
examples in languages LA so that the resulting
pseudo-labeled dataset S̃LA

can be used together
with S{lnew} to fine-tune MLA

and mitigate CF.
Unfortunately, this can also reinforce the errors of
MLA

, as discussed in Hinton et al. (2015).

Preventing Catastrophic Forgetting. CF is typ-
ically caused by the model’s weights, which are
pushed towards fitting the data of the latest fine-
tuning stage. If the model is not trained using ex-
amples in languages LA, it risks forgetting how to
treat them. To overcome CF, we propose a method
based on Knowledge Distillation (KD). We define
a Teacher-Student framework whereMLA

acts as
the teacher, while the student is a clone ofMLA

which is fine-tuned using the multi-loss function
LCL = LT + LKD. The term LT is the task-
specific loss, computed on the annotated examples
from S{lnew}. LKD is a distillation loss computed
on ULA

, a set of unlabeled examples written in the
previous languages LA and here processed by the
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teacher model. LT thus pushes the model to learn
how to solve T in the new language lnew. LKD

helps the model maintaining a consistent perfor-
mance on the languages LA, by forcing the student
to mimic the teacher predictions on data resembling
the data distribution observed in LA. In order to de-
fine LKD consistently with Hinton et al. (2015), let
us define di(x) as the output logits of the model’s
last layer when applied to an example x. The logits
are converted into a class-probability distribution
using the temperature-softmax:

yi(x) =
exp(di/T )∑
j exp(dj/T )

where T is a temperature hyper-parameter, which
controls the smoothness of the distribution. LKD

is thus computed as the cross-entropy between the
output probability distributions provided by the
student and teacher, namely ysi and yti , i.e.:

LKD(x) = −
∑
i

yti(x) log y
s
i (x)

Using LKD instead of the self-training procedure
preserves the uncertainty of the teacher’s model and
prevents the student from amplifying the teacher’s
errors, as demonstrated in Hinton et al. (2015).

4 Experimental Evaluation

This section presents the results of the proposed
CL strategy over three semantic processing tasks,
involving text classification and sequence tagging.
In particular, we report the Mean Absolute Error
(MAE) over the Multilingual Amazon Review Cor-
pus (MARC) (Keung et al., 2020), i.e., a 5 category
Sentiment Analysis task in 6 languages. We report
the Accuracy over a sentence-pair classification
task, i.e., Paraphrase Identification on the PAWS-X
dataset (Yang et al., 2019) in 6 languages1. Finally,
we report the F1 for the Named Entity Recogni-
tion (NER) in 4 languages by merging the CoNLL
2002 (Tjong Kim Sang, 2002) and 2003 (Tjong
Kim Sang and De Meulder, 2003) datasets. Addi-
tional details about the datasets are in Appendix.
Experimental Setup. We foresee a setting where
a BERT-based model is incrementally trained using
annotated datasets in multiple languages. At each
step, the model is fine-tuned using a dataset in
one specific language, while the annotated material
used up to that point is discarded.

1PAWS-X contains 7 languages. We were not able to
reproduce the results of Yang et al. (2019) for the Korean
language. Thus, we removed this language in our evaluation.

We reasonably assume that a set of unlabeled
data is available for the languages already ob-
served. In order to simulate this scenario, we de-
signed a data splitting procedure such that each
annotated example is observed only in one step.
Let us assume we observe languages in the order
l1 →, . . . ,→ ln. For each language li, its training
set D{li} is divided into n− i+ 1 equal slices, i.e.,

(D(i)
{li}, . . . , D

(n−i+1)
{li} ). Depending on the learning

strategy, each slice will be either annotated (indi-
cated with a S symbol) or not annotated (indicated
with a U symbol). At the last step, we will have
observed all the data, either annotated or not.
Learning Strategies. We compare four CL strate-
gies. We denote with CL-Baseline the strategy
where at step k the modelMk is obtained by up-
datingMk−1 by using only the Sk = S

(1)
{lk} anno-

tated dataset, only with the task loss LT . The sec-
ond strategy is denoted with Self-Training:
at step k, Mk−1 is used to annotate the dataset

S̃k =
k−1⋃
j=1
{U (k−j+1)
{lj} }. Mk is then fine-tuned by

using Sk = S
(1)
{lk} ∪ S̃k with the task loss LT .

We denote with CL-KD the strategy we propose,
where at step k, Mk−1 is used as the teacher in
our proposed KD schema2. Mk−1 is used to de-
rive the target output distribution of the dataset

Uk =
k−1⋃
j=1
{U (k−j+1)
{lj} }. Mk is then trained by

adopting Sk = S
(1)
{lk} with the task loss LT and

Uk with the loss LKD. We compared with a fur-
ther competitive method, namely Elastic Weight
Consolidation, here denoted with EWC (Kirkpatrick
et al., 2017). This popular CL procedure applies a
regularization technique that penalizes large vari-
ations on those model’s weights that are the most
important for the tasks learned so far.

As a sort of upper-bound, we report the results
by adopting a non-Continual Learning strategy,
i.e., Multi-Last, where the model is trained
from scratch using an annotated dataset in all lan-
guages we want to support at step k. More formally,

at step k the data is Sk =
k⋃

j=1
{S(k−j+1)
{lj} }, i.e., the

annotated data is about k times larger than the one
used in the CL settings.

2We also investigated an approach inspired by Gururangan
et al. (2020): we augmented CL-KD with Masked Language
Modeling and Next Sentence Prediction objectives to continue
the pre-training. Preliminary experiments provided negligible
improvements, not reported here due to lack of space.
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Figure 1: Average performance measures for the MARC, PAWS-X and CoNLL for the languages not yet used in
training. At each step k, we report the average score for the languages that will be observed in steps (k+1, . . . , n).
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Figure 2: Average performance measures for the MARC, PAWS-X and CoNLL. At each step k, we report the
average score with respect to the languages observed in steps (1, . . . , k).
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Figure 3: Average performance measures on MARC, PAWS-X and CoNLL for the language observed at step k.
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Figure 4: Average performance measures for the MARC, PAWS-X and CoNLL for the languages observed in the
past steps. At each step k, we report the average score with respect to the languages observed in steps (1, . . . , k−1).
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Model Training. We used the bert-base-
multilingual-cased model in the Huggingface
Transformers package (Wolf et al., 2019). We
trained the models for 10 epochs with Early Stop-
ping (patience= 3) and batch size 32. After initial
experiments, we set the temperature T to 1. We re-
peated our experiments for 6/6/24 sequences of lan-
guage permutations for MARC/PAWS-X/CoNLL,
and we report the average performances.

Experimental Results and Discussion. We first
run zero-shot experiments by fine-tuning a model
on a subset of languages and testing it on the un-
observed ones (see Figure 1). By comparing the
results with the ones in Figure 2, we can observe a
large gap between the results achieved on the lan-
guages still to be observed vs. the training ones.
For instance, at step 1 the average gap is more
than 30 MAE on MARC, about 0.8% Accuracy
on PAWS-X and about 22 F1 on CoNLL. This
confirms the need to fine-tune the model on each
language of interest.

Figures 2a, 2b and 2c show the results on MARC,
PAWS-X and CoNLL, respectively. At each step,
we report the average measure computed over all
the observed languages, averaged over all the per-
mutations. Given that we are solving the same
task in multiple languages, regardless the adopted
strategy, the performance can improve at each
step due to a cross-lingual transfer learning ef-
fect. This beneficial impact is contrasted by the
CF, which is also supposed to increase at each step.
In our experiments, the effect of transfer learning
is generally stronger, with the only exception of
CL-Baseline in CoNLL, where CF seems to
dominate (the F1 drops from 74.29 at step 1 to
72.67 at step 4). In MARC and PAWS-X, this is al-
leviated: we argue that CoNLL is more challenging,
as it is a word-level tagging on a smaller dataset.

The approach we propose, i.e., CL-KD, is able
to constantly outperform its corresponding baseline
CL-Baseline. The adoption of knowledge from
the previously encountered languages is crucial in
mitigating the CF phenomenon. For example, in
MARC the MAE in the CL-KD setting is reduced
from 60.62 in the first step to 53.85 in the last
step. The same applies for PAWS-X where accu-
racy jumps from 74.57 to 87.73 and for CoNLL
with F1 from 74.29 to 79.80. The performances
of CL-KD are similar to the Multi-Last even if
this clearly has an advantage, using a larger dataset
consisting of examples written in all languages.

Figure 3 reports the average performance on the
language observed during the last step only, while
Figure 4 shows results on the previously acquired
languages. Notice that CL-KD achieves compa-
rable results between the previously acquired lan-
guages and the last learned one. Conversely, the
other CL models perform significantly lower.

Notice that the CL-KD model achieves bet-
ter results than Self-Training, especially for
MARC and CoNLL. This means that classifying
the examples with the previous model amplifies
the errors of that model. In PAWS-X, the improve-
ments achieved by CL-KD are less evident: we
argue this is due to the nature of the dataset, where
the training set in each language is derived via auto-
matic machine translation. In any case, CL-KD is
still performing better than Self-Training and
CL-Baseline: despite automatic translation can
be a viable solution, its performances will likely be
sub-optimal. Notice that EWC is considered one of
the most effective approaches for CL, but interest-
ingly in our setting its results are not satisfactory.
We investigated if the order of the languages pro-
vides significant differences. We did not notice
major variations, also when the involved languages
are very different3.

Finally, we trained a full-multilingual model
with all the data for all the languages. The CL-KD
performances are not far from this model, as the
difference is only 4.47, 1.56 and 2.44 for MARC,
PAWS-X and CoNLL, respectively.

5 Conclusions

This paper investigated a Continual Learning strat-
egy, based on Knowledge Distillation, for training
Transformer architectures in an incremental num-
ber of languages. We demonstrated that with our
approach the model maintains its robustness in pro-
cessing already acquired languages without having
access to annotated data for them, while learning
new languages. Future work will apply our method-
ology to other NLP tasks, such as QA.
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A Appendix

A.1 Datasets
Sentence Classification. We used the Multilingual Amazon Reviews Corpus (MARC) (Keung et al.,
2020), i.e., a Sentiment Analysis dataset. MARC is a large-scale collection of Amazon reviews in
6 languages (English, German, Spanish, French, Japanese and Chinese). The dataset is made of
200, 000/5, 000/5, 000 reviews for each language, respectively for train, validation and test. We refer to
the fine-grained classification (the target category is on 1-5 scale) by using the body of the review.

Sentence-Pairs Classification. We adopted the PAWS-X dataset (Yang et al., 2019) for the Paraphrase
Identification task. The dataset is composed of about 24, 000 human translated evaluation pairs and about
296, 000 machine translated training pairs over 7 languages: English, Spanish, French, German, Japanese,
Chinese, Korean. We actually didn’t used the Korean languages, as in preliminary experiment we were
not able to reproduce the results of the (Yang et al., 2019) paper. We suspect a problem in the encoding
affected our results in this language with the bert multilingual model.

Sequence Tagging. We reported experiments on Named Entity Recognition (NER) using the CoNLL
2002 (Tjong Kim Sang, 2002) and CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) datasets.
We merged the two datasets as in Rahimi et al. (2019) to obtain a single dataset over 4 languages, i.e.,
English, Spanish, German and Dutch. The dataset contains 51, 821/11, 344/13, 556 annotated sentences,
respectively for train, validation and test. Each sentence has been annotated with respect to the following
entities: Person, Location, Organization and Miscellaneous.

A.2 Additional Results
In this section we report more details on the results of the experiments already discussed in Section 4.

A.2.1 Results on Observed Languages
Tables 1, 2 and 3 complement the results already shown in Figure 2 and summarizes the average
performance on the languages observed till each step for MARC, PAWS-X and ConNLL respectively.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 60.62 60.62 60.62 60.62 60.62
2 57.77 60.53 62.98 59.55 58.71
3 56.63 60.59 62.56 60.03 57.39
4 53.68 58.69 59.83 59.11 55.19
5 53.70 58.47 59.11 58.33 55.02
6 51.85 57.30 58.04 57.22 53.85

Table 1: MARC performances for the observed languages (as in Figure 2a), i.e., at each step we report the average
of the measure for the languages observed including the last step (step ≤ k). The reported measure is the Mean
Absolute Error (lower is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.57 74.57 74.57 74.57 74.57
2 81.78 79.47 78.39 79.62 79.90
3 84.89 82.34 82.61 82.46 83.42
4 85.87 84.52 84.24 84.44 85.33
5 86.81 86.09 85.71 85.98 86.75
6 87.89 87.17 86.97 87.41 87.73

Table 2: PAWS-X performances for the observed languages (as in Figure 2b), i.e., at each step we report the
average of the measure for the languages observed including the last step (step ≤ k). The reported measure is the
Accuracy (higher is better).

A.2.2 Results on New Language Only
The following results show how an already fine-tuned model learn to manage a new language. While results
in Figure 2 are averaged across all languages (observed up to the k-th step) the following evaluations focus
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Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.29 74.29 74.29 74.29 74.29
2 76.41 73.51 74.66 72.65 76.67
3 78.08 72.46 76.94 72.94 78.32
4 79.09 72.67 78.59 72.15 79.80

Table 3: CoNLL 2002/2003 performances for the observed languages (as in Figure 2c), i.e., at each step we report
the average of the measure for the languages observed including the last step (step ≤ k). The reported measure is
the F1 (higher is better).

only on the last observed language. Figure 3 and Tables 4, 5 and 6 report the average performance on the
last learned language. The average performance tends to improve at each step thanks to the cross-lingual
transfer learning effect. All the models perform similarly, exception for the Self-Training model
that exhibits generally lower results. This is probably due to the error amplification issue that somehow
degrades the cross-lingual transfer.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 60.62 60.62 60.62 60.62 60.62
2 55.28 55.62 65.53 54.88 57.22
3 55.44 55.37 61.72 54.80 54.60
4 49.17 49.45 53.05 49.45 49.04
5 52.65 52.47 57.39 52.49 52.85
6 47.58 47.49 52.67 47.65 47.85

Table 4: MARC performances for the Current Language (as in Figure 3a). At each step we report the measure for
the language observed in that step (step = k). The reported measure is the Mean Absolute Error (lower is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.57 74.57 74.57 74.57 74.57
2 82.81 80.60 80.33 80.81 81.93
3 87.72 86.17 86.40 85.66 86.91
4 85.88 85.14 85.37 85.30 86.13
5 88.32 88.20 88.11 87.93 89.03
6 89.29 89.13 89.12 89.37 89.40

Table 5: PAWS-X performances for the Current Language (as in Figure 3b). At each step we report the measure
for the language observed in that step (step = k). The reported measure is the Accuracy (higher is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.29 74.29 74.29 74.29 74.29
2 77.24 77.18 74.09 76.42 77.91
3 79.19 78.90 78.16 78.60 79.91
4 81.51 81.77 80.41 80.93 82.38

Table 6: CoNLL 2002/2003 performances for the Current Language (as in Figure 3c). At each step we report the
measure for the language observed in that step (step = k). The reported measure is the F1 (higher is better).

A.2.3 Results on Previously Learned Languages

Figure 4 and Tables 7, 8 and 9 report the average performance for each step on the previously acquired
languages. This allows us to better assess the impact of Catastrophic Forgetting. In particular, if we
compare these results with the ones reported in Section A.2.2, it is possible to appreciate that model
CL-KD achieves comparable results between the previously acquired languages and the last learned one.
Conversely, the other CL models, and in particular CL-Baseline, provide significantly lower results
on the previously acquired languages w.r.t. to the language learned during the last training step. This is
clearly demonstrating the impact of the Catastrophic Forgetting effect.
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Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 - - - - -
2 60.27 65.44 60.43 64.22 60.19
3 57.23 63.20 62.98 62.64 58.79
4 55.19 61.76 62.09 62.33 57.24
5 53.96 59.97 59.54 59.78 55.56
6 52.71 59.27 59.11 59.14 55.05

Table 7: MARC performances for the Past Languages (as in Figure 4a), i.e., at each step we report the average
measure for the languages observed till that step (step < k). The reported measure is the Mean Absolute Error
(lower is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 - - - - -
2 80.74 78.33 76.44 78.44 77.87
3 83.48 80.43 80.71 80.87 81.68
4 85.86 84.31 83.86 84.15 85.07
5 86.43 85.57 85.11 85.50 86.18
6 87.61 86.77 86.54 87.02 87.40

Table 8: PAWS-X performances for the Past Languages (as in Figure 4b), i.e., at each step we report the average
measure for the languages observed till that step (step < k). The reported measure is the Accuracy (higher is
better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 - - - - -
2 75.59 69.84 75.23 68.88 75.43
3 77.52 69.23 76.33 70.11 77.52
4 78.28 69.64 77.99 69.22 78.95

Table 9: CoNLL 2002/2003 performances for the Past Languages (as in Figure 4c), i.e., at each step we report the
average measure for the languages observed till that step (step < k). The reported measure is the F1 (higher is
better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 91.99 91.99 91.99 91.99 91.99
2 80.93 80.24 87.83 80.48 82.02
3 74.12 74.44 79.88 74.18 74.52
4 72.41 73.94 78.59 74.24 72.50
5 66.69 70.43 73.32 70.12 68.55
6 - - - - -

Table 10: MARC performances for the Future Languages (zero-shot setting, as in Figure 1a). At each step we
report the average of the measure for the languages still not observed (step > k). The reported measure is the
Mean Absolute Error (lower is better).

A.2.4 Results on Untrained Languages
Figure 1 and Tables 10, 11 and 12 report the average performance for each step on the languages that the
model did not train on so far.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 73.75 73.75 73.75 73.75 73.75
2 81.46 79.75 78.84 79.71 79.86
3 84.79 83.04 82.94 82.21 84.07
4 86.81 85.59 85.19 85.32 86.23
5 87.68 86.49 86.47 86.37 87.35
6 - - - - -

Table 11: PAWS-X performances for the Future Languages (zero-shot setting, as in Figure 1b). At each step we
report the average of the measure for the languages still not observed (step > k). The reported measure is the
Accuracy (higher is better).

This allows us to evaluate the performance of the zero-shot setting. As expected, results are pretty poor,
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and the gap between the results on training languages and the zero-shot languages is very large: the gap
is more than 30 MAE on MARC, about 8% Accuracy on PAWS-X and about 22 F1 on CoNLL. This
confirms the need to fine-tune the model on each language of interest.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 51.87 51.87 51.87 51.87 51.87
2 57.88 56.99 57.70 57.15 57.95
3 61.99 58.57 61.09 59.27 61.86
4 - - - - -

Table 12: CoNLL 2002/2003 performances for the Future Languages (zero-shot setting, as in Figure 1c). At each
step we report the average of the measure for the languages still not observed (step > k). The reported measure is
the F1 (higher is better).


