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Abstract

Current event-centric knowledge graphs highly
rely on explicit connectives to mine relations
between events. Unfortunately, due to the spar-
sity of connectives, these methods severely
undermine the coverage of EventKGs. The
lack of high-quality labelled corpora further
exacerbates that problem. In this paper, we
propose a knowledge projection paradigm for
event relation extraction: projecting discourse
knowledge to narratives by exploiting the
commonalities between them. Specifically,
we propose Multi-tier Knowledge Projection
Network (MKPNet), which can leverage multi-
tier discourse knowledge effectively for event
relation extraction.In this way, the labelled
data requirement is significantly reduced, and
implicit event relations can be effectively ex-
tracted. Intrinsic experimental results show that
MKPNet achieves the new state-of-the-art per-
formance, and extrinsic experimental results
verify the value of the extracted event relations.

1 Introduction

Event-centric knowledge graphs (EventKGs)
model the narratives of the world by represent-
ing events and identifying relations between them,
which are critical for machine understanding and
can benefit many downstream tasks, such as ques-
tion answering (Costa et al., 2020), news read-
ing (Vossen, 2018), commonsense knowledge ac-
quisition (Zhang et al., 2020a) and so on.

Recently, semi-automatically constructing Even-
tKGs have gained much attention (Tandon et al.,
2015; Rospocher et al., 2016; Gottschalk and Demi-
dova, 2018; Zhang et al., 2020b). These methods
extract event knowledge from massive raw corpora
with or without little human intervention, which
makes them scalable solutions to build large-scale
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Figure 1: The knowledge projection paradigm for event
relation extraction. The explicit projection directly
projects connectives to event relations, e.g., from “be-
cause” to Reason. The implicit projection leverages the
discourse knowledge to discover implicit event relations
without connectives via MKPNet.

EventKGs. Commonly, each node in EventKGs
represents an event, and each edge represents a pre-
defined relation between an event pair1. Currently,
event relations are majorly extracted based on the
explicit connectives between them. For example,
in Figure 1, a Reason relation is extracted between
E2: “PER orders two hamburgers” and E3: “PER
is so hungry” using the explicit connective “be-
cause” between them.

Unfortunately, the connective-based approaches
face the critical coverage problem due to the spar-
sity of connectives. That is, a large proportion of
event pairs are not connected with explicit con-
nectives, but with underlying event relations. We
denote them as implicit event relations. Further-

1Computational and cognitive studies define nodes as even-
tualities, which include activities, states and events. In this
paper, we simplify the definition of each node to “event” due
to its popularity.
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more, the related events can even not close to each
other in a document. For the example in Figure 1,
the implicit relation Reason between E1: “PER
goes to the restaurant” and E3: “PER is so hun-
gry” can not be extracted due to the absence of
explicit connective as well as the discontinuity be-
tween these two clauses. The common practice in
previous connective-based approaches is to ignore
all these implicit instances (Zhang et al., 2020b).
As a result, the coverage of EventKGs is signifi-
cantly undermined. Besides, because the scale of
the existed event relation corpus (Hong et al., 2016)
is limited, it is also impractical to build effective
event relation classifiers via supervised learning.

In this paper, we propose a new paradigm for
event relation extraction — knowledge projec-
tion. Instead of relying on sparse connectives
or building classifiers starting from scratch, we
project discourse knowledge to event narratives by
exploiting the anthropological linguistic connec-
tions between them. Enlightened by Livholts and
Tamboukou (2015); Altshuler (2016); Reyes and
Wortham (2017), discourses and narratives have
significant associations, and their knowledge are
shared at different levels: 1) token-level knowledge:
discourses and narratives share similar lexical and
syntactic structures, 2) semantic-level knowledge:
the semantics entailed in discourse pairs and event
pairs are analogical, e.g., E3-Reason→E1 and D3-
Cause→D1 in Figure 1., and 3) label-level knowl-
edge: heterogeneous event and discourse relations
have the same coarse categories, e.g., both the event
relation Reason and the discourse relation Cause
are included in the coarse-grained relation Contin-
gency. By exploiting the rich knowledge in manu-
ally labelled discourse corpus and projecting them
into event relation extraction models, the perfor-
mance of event relation extraction can be signifi-
cantly improved, and the data requirement can be
dramatically reduced.

Specifically, we design Multi-tier Knowledge
Projection Network (MKPNet), which can lever-
age multi-tier discourse knowledge effectively for
event relation extraction. MKPNet introduces three
kinds of adaptors to project knowledge from dis-
courses into narratives: (a) token adaptor for token-
level knowledge projection; (b) semantic adaptor
for semantic-level knowledge projection; (c) coarse
category adaptor for label-level knowledge projec-
tion. By sharing the parameters of these three adap-
tors, the commonalities between discourses and

narratives at various levels can be effectively ex-
plored. Therefore, we can obtain more general
token representations, more accurate semantic rep-
resentations, and more credible coarse category
representations to better predict event relations.

We conduct intrinsic experiments on
ASER (Zhang et al., 2020b), one of the rep-
resentative EventKGs, and extrinsic experiments
on Winograd Scheme Challenge (WSC) (Levesque
et al., 2012), one of the representative natural
language understanding benchmarks. Intrinsic ex-
perimental results show that the proposed MKPNet
significantly outperforms the state-of-the-art (SoA)
baselines, and extrinsic experimental results verify
the value of the extracted event relations2.

The main contributions of this paper are:

• We propose a new knowledge projection
paradigm, which can effectively leverage the
commonalities between discourses and narra-
tives for event relation extraction.

• We design MKPNet, which can effectively
leverage multi-tier discourse knowledge for
event relation extraction via token adaptor, se-
mantic adaptor and coarse category adaptor.

• Our method achieves the new SotAevent rela-
tion extraction performance, and an enriched
EventKG is released by extracting both ex-
plicit and implicit event relations. We believe
it can benefit many downstream NLP tasks.

2 Background

Event Relation Extraction (ERE). Given an ex-
isting EventKG G = {E ,R}, where nodes E are
events and edges R are their relations. Y ex ∈ R
are explicit event relations extracted by connective-
based methods, and Y im /∈ R are implicit event
relations without connectives. Commonly, im-
plicit event relation extraction (IERE) takes two
events E1 = {e11, ..., e1|E1|}, E

2 = {e21, ..., e2|E2|},
E1, E2 ∈ E as inputs, then uses a neural network
to classify their underlying relation.

Discourse Relation Recognition (DRR). DRR
aims to recognize the relation of two discourse ar-
guments. Discourse relations can be explicit or
implicit, where explicit relations are revealed by

2Our source codes with corresponding experimen-
tal datasets and the enhanced EventKG are openly
available at https://github.com/TangJiaLong/
Knowledge-Projection-for-ERE.

https://github.com/TangJiaLong/Knowledge-Projection-for-ERE
https://github.com/TangJiaLong/Knowledge-Projection-for-ERE
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Figure 2: An overview of MKPNet, which projects discourse knowledge for event relation extraction: (a) token
adaptor for token-level knowledge projection, (b) semantic adaptor for semantic-level knowledge projection, and (c)
coarse category adaptor for label-level knowledge projection.

connectives, while implicit relations lack these sur-
face cues. To resolve the implicit discourse rela-
tion recognition (IDRR) task, researchers construct
high-quality labelled datasets (Prasad et al., 2008)
and design elaborate models (Zhang et al., 2016b;
Bai and Zhao, 2018; Kishimoto et al., 2020).

Associations between Discourse and Narra-
tive. Recent NLP studies have proved that dis-
course and narratives closely interact with each
other, and leveraging discourse knowledge benefits
narrative analysis significantly, such as subevents
detection (Aldawsari and Finlayson, 2019) and
main event relevant identification (Choubey et al.,
2020). Motivated by the above observation, this
paper leverages the knowledge of discourse by
a knowledge projection paradigm. Blessed with
the associations at token-, semantic- and coarse
category-levels, the discourse corpora and knowl-
edge can be effectively exploited for event relation
extraction.

3 Multi-tier Knowledge Projection
Network for Event Relation Extraction

In this section, we describe how to learn an effec-
tive event relation extractor by projecting resource-
rich discourse knowledge to the resource-poor nar-
rative task. Specifically, we propose Multi-tier
Knowledge Projection Network (MKPNet) which
can effectively leverage multi-tier discourse knowl-
edge for implicit event relation extraction. Figure 2
shows an overview of MKPNet, which uses to-
ken adaptor, semantic adaptor and coarse category
adaptor to fully exploit discourse knowledge at dif-
ferent levels. In the following, we first describe the
neural architecture of MKPNet and then describe
the details of three adaptors.

3.1 Neural Architecture of MKPNet

For knowledge projection, we model both event
relation extraction (ERE) and discourse relation
recognition (DRR) as an instance-pair classification
task (Devlin et al., 2019; Kishimoto et al., 2020).
For ERE, the input is an event pair such as <E1:

“PER goes to the restaurant”, E3: “PER is so hun-
gry”> and the output is an event relation such as
Reason. For DRR, the input is a clause pair such
as <D1: “Tom goes to the restaurant”, D3:“he is
so hungry”> and the output is a discourse relation
such as Cause.

Specifically, MKPNet extends the SotADRR
model — BERT-CLS (Kishimoto et al., 2020) by
the VAE-based semantic encoder and the coarse cat-
egory encoder to model knowledge tier-by-tier (Pan
et al., 2016; Guo et al., 2019; Kang et al., 2020; Li
et al., 2020b). It 1) first utilizes the BERT-based to-
ken encoder to encodes an instance pair as a token
representation h[CLS]; 2) then obtains the seman-
tic representation hz via a VAE-based semantic
encoder; 3) predicts the coarse-grained label and
embeddings it as the coarse category representation
hY c ; 4) finally classifies its relation with the guid-
ance of the aggregate instance-pair representation:

Y = ClassifierFine([h[CLS] ⊕ hz ⊕ hY c ]) (1)

where ⊕ means the concatenation operation. In
this way, the parameters of MKPNet can be
grouped by {θBERT , θSemantic, θCoarse, θFine},
where θBERT for BERT-based token encoder,
θSemantic for VAE-based semantic encoder,
θCoarse for coarse category encoder and θFine for
the final relation classifier layer respectively.
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3.2 Token Adaptor

Recent studies have shown that similar tasks usu-
ally share similar lexical and syntactic structures
and therefore lead to similar token representa-
tions (Pennington et al., 2014; Peters et al., 2018).
The token adaptor tries to improve the token encod-
ing for ERE by sharing the parameters θBERT of
the BERT-based encoders with DRR. In this way,
the encoder is more effective due to the more su-
pervision signals and is more general due to the
multi-task settings.

Specifically, given an event pair <E1, E2>, we
represent it as a sequence:

[CLS], e11, ..., e
1
|E1|, [SEP ], e

2
1, ..., e

2
|E2|, [SEP ]

where[CLS] and [SEP] are special tokens. For each
token in the input, its representation is constructed
by concatenating the corresponding token, segment
and position embeddings. Then, the event pair
representation will be inputted into BERT archi-
tecture (Devlin et al., 2019) and updated by multi-
layer Transformer blocks (Vaswani et al., 2017).
Finally, we obtain the hidden state corresponding
to the special [CLS] token in the last layer as the
token-level event pair representation:

he[CLS] = BERT (E1, E2) (2)

The token-level discourse pair representation
hd[CLS] can be obtained in the same way for DRR.

To project the token-level knowledge, we use
the same BERT for event pair and discourse pair
encoding. During the optimization process, it is
fine-tuned using the supervision signals from both
ERE and DRR.

3.3 Semantic Adaptor

Because narrative and discourse analyses need to
accurately represent the deeper semantic of the in-
stance pairs, the shallow token-level knowledge
captured by the BERT-based token encoder is not
enough. However, BERT always induces a non-
smooth anisotropic semantic space which is ad-
verse for semantic modelling of large-grained lin-
guistic units (Li et al., 2020a).

To address this issue, we introduce an varia-
tional autoencoder-based (VAE-based) semantic
encoder to represent the semantics of both events
and clauses by transforming the anisotropic seman-
tic distribution to a smooth and isotropic Gaussian
distribution (Kingma and Welling, 2014; Rezende

ℎ௭

ℎℎ[ௌ]

PQ

Figure 3: The illustration of the semantic encoder as a
directed graph. We use solid lines to denote the gener-
ative model P = p(hY |h[CLS], hz)p(hz|h[CLS]), and
dashed lines to denote the variational approximation
Q = q(hz|h[CLS], hY ). Both variational parameters
and generative parameters are learned jointly.

et al., 2014; Sohn et al., 2015). To better learn the
semantic encoder, the semantic adaptor shares the
parameters θSemantic of it between ERE and DRR
and train it using both classification supervision
signals and KL divergence.

Specifically, VAE is a directed graphical model
with the generative model P and the variational
model Q, which learns the semantic representa-
tion hz of the input by an autoencoder frame-
work. Figure 3 illustrates the graphic represen-
tation of the semantic encoder. Specifically, we
assume that there exists a continuous latent vari-
able hz ∼ N (µ, diag(σ2)), where µ and σ2 are
mean and variance of the Gaussian distribution re-
spectively. With this assumption, the original con-
ditional probability of the event/discourse relations
can be expressed by the following formula:

p(hY |h[CLS]) =
∫
hz

p(hY |h[CLS], hz)

p(hz|h[CLS])dhz
(3)

The posterior approximation is
q(hz|h[CLS], hY ), where h[CLS] can be he[CLS]
or hd[CLS] and hY can be heY or hdY according to
the different tasks. We 1) first obtain the input-
and output-side representations via the shared
BERT-based token encoder and the individual
relation embedding networks, i.e., h[CLS] and hY ;
2) then perform a non-linear transformation that
project them onto the semantic space:

h′z = tanh(Wz[h[CLS];hY ] + bz) (4)

3) obtain the above-mentioned Gaussian parame-
ters µ and logσ2 through linear regression:

µ =Wµh
′
z + bµ, logσ2 =Wσh

′
z + bσ (5)

where W and b are the parameter matrix and
bias term respectively; 4) use a reparameteriza-
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tion trick (Kingma and Welling, 2014; Sohn et al.,
2015) to get the final semantic representation:

hz = µ+ σ � ε (6)

where ε ∼ N (0, I) and hz can be hez or hdz .
The neural model for the prior p(hz|h[CLS]) is

the same as that for the posterior q(hz|h[CLS], hY ),
except for the absence of hY . Besides, those two
models have parameters independent of each other.

During testing, due to the absence of the output-
side representation hY , we set hz to be the mean of
p(hz|h[CLS]) (Zhang et al., 2016a), i.e., µ. During
training, we minimize the Kullback-Leibler diver-
gence KL(P ||Q) between the generation model P
and the inference model Q. Intuitively, KL diver-
gence connects these two models:

KL(q(hz|h[CLS], hY )||p(hz|h[CLS])) (7)

To project the semantic-level knowledge, we use
the same VAE for both event pair and discourse
pair. Therefore, the commonalities of event seman-
tics and discourse semantics can be captured more
accurately.

3.4 Coarse Category Adaptor
The token adaptor and the semantic adaptor com-
mendably cover the knowledge entailed on the
input-side. In addition, we found that ERE and
DRR share the same coarse-grained categories:
Temporal, Contingency, Comparison and Expan-
sion (Prasad et al., 2008; Zhang et al., 2020b), al-
though they have different fine-grained categories.

To this end, we design the coarse category adap-
tor in a coarse-to-fine framework (Petrov, 2009)
to bridge the gap between the heterogeneous fine-
grained targets. Specifically, we share the param-
eters θCoarse of the coarse-grained classifier and
the coarse label embedding network to obtain more
credible coarse category representations.

Specifically, we first use the token representa-
tion h[CLS] and the semantic representation hz to
predict the coarse-grained labels:

Y c = ClassifierCoarse(h[CLS], hz) (8)

where Y c ∈ {Temporal, Contingency, Compari-
son, Expansion}. After that, we use the coarse
label embedding network to obtain the correspond-
ing coarse-grained label embedding hY c , which is
referred as the coarse category representation.

To project that label-level knowledge, we use the
same coarse-grained classifier and the same coarse

label embedding network. During the optimiza-
tion process, both event instances and discourse
instances can be used to train this coarse category
encoder. The more supervision signals make it
more effective.

3.5 Full Model Training

In this paper, we utilize multi-task learning (Caru-
ana, 1997) to implement the knowledge projection
from discourse to narrative. It expects correlative
tasks (ERE and DRR) can help each other to learn
better by sharing the parameters of three adaptors.
Given ERE and DRR training datasets, an alternate
optimization approach (Dong et al., 2015) is used
to optimizate MKPNet:

L(θ) =α(L(θ;Y ) + λKL(P ||Q))

+ (1− α)L(θ;Y c)
(9)

where Y can be Y im or Y d according to the
different tasks, λ, α are two hyperparameters,
KL(P ||Q)) is the KL divergence in the seman-
tic encoder, L(θ;Y ) and L(θ;Y c) are fine-grained
and coarse-grained objectives respectively:

L(θ;Y ) = log p(Y |h[CLS], hz, hY c) (10)

L(θ;Y c) = log p(Y c|h[CLS], hz) (11)

It should be noticed that in MKPNet,
{θBERT , θSemantic, θCoarse} are the shared
parameters of the BERT-based token encoder,
the VAE-based semantic encoder and the coarse
category encoder between ERE and DRR.
And {θFine} are separated parameters of the
fine-grained ERE and DRR classifiers.

4 Experiments

We conduct intrinsic experiments on ASER (Zhang
et al., 2020b) to assess the effectiveness of the
proposed MKPNet, and extrinsic experiments on
WSC (Levesque et al., 2012) to verify the value of
the extracted event relations.

4.1 Intrinsic Experiments

Datasets. For discourse relation recognition
(DRR), we use PDTB 2.0 (Prasad et al., 2008) with
the same splits of Ji and Eisenstein (2015): sections
2-20/0-1/21-22 respectively for train/dev/test. For
event relation extraction (ERE), because there is no
labelled training corpus, we construct a new dataset
by removing the connectives of the explicit event
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relation instances in ASER core version3 and re-
taining at most 2200 instances with the highest con-
fidence scores for each category4. In this way, we
obtain 23,181/1400/1400 train/dev/test instances –
we denoted it as implicit event relation extraction
(IERE) dataset.

Implementation. We implement our model
based on pytorch-transformers (Wolf et al., 2020).
We use BERT-base and set all hyper-parameters
using the default settings of the SotADRR
model (Kishimoto et al., 2020).

Baselines. For ERE, we compare the proposed
MKPNet with the following baselines:

• Baselines w/o Discourse Knowledge are only
trained on IERE training set. We choose the
BERT-CLS as the representative of them due
to its SotAperformance.

• Baselines with Discourse Knowledge improve
the learning of ERE via transfer learning (Pan
and Yang, 2009; Pan et al., 2010) from dis-
course models, i.e., first pre-train a parameter
prior on PDTB 2.0 and then fine-tune it on
IERE –– we denote it as BERT-Transfer.

For DRR, we compare the proposed MKPNet
with the following baselines:

• Bai and Zhao (2018) is a deep neural network
model augmented by variable grained text rep-
resentations like character, sentence and sen-
tence pair levels.

• Kishimoto et al. (2020) is the SotADRR
model, BERT-CLS, which incorporating
BERT with one additional output layer.

4.1.1 Overall Results
Table 1-3 show the overall ERE/DRR results of
baselines and MKPNet. For our approach, we
use the full MKPNet and its four ablated settings:
MKPNet w/o SA, MKPNet w/o CA, MKPNet w/o
SA & CA and MKPNet w/o KP, where SA, CA
and KP denote semantic adaptor, coarse category
adaptor and knowledge projection correspondingly.
We can see that:

1. Based on MKPNet, we enrich the original
ASER by abundant implicit event relations. Con-
sidering the computational complexity, we classify
the event pairs co-occurrence in the same document

3https://hkust-knowcomp.github.io/ASER
4Higher confidence score means more credible instance.

Number of Relations
FrameNet (Baker et al., 1998) 1,709
ConceptNet (Speer et al., 2017) 116,097
Event2Mind (Smith et al., 2018) 57,097
ATOMIC (Sap et al., 2019) 877,108
Knowlywood (Tandon et al., 2015) 2,644,415
ASER (Zhang et al., 2020b) 1,287,059
ASER++ (core) 2,034,963
ASER++ (high) 3,530,771
ASER++ (full) 8,766,098

Table 1: Number comparison of event relations in
ASER++ and existing event-related resources.

Acc F1
Baselines w/o Discourse Knowledge

BERT-CLS 53.00 52.24
MKPNet w/o KP 53.94 53.52

Baselines with Discourse Knowledge
BERT-Transfer 54.29 53.44

Multi-tier Knowledge Projection
MKPNet w/o SA & CA 54.7940.85 53.9040.38

MKPNet w/o CA 55.1441.20 54.4240.90

MKPNet w/o SA 55.2941.35 54.9241.40

MKPNet 55.8641.92 55.3641.84

Table 2: Experimental results on IERE test set, where 4
means the improvements when compared with MKPNet
w/o KP. All improvements of MKPNet are statistical
significance at p<0.01 over the baseline MKPNet w/o
KP.

Model Acc
Bai and Zhao (2018) 48.22
BERT-CLS (Kishimoto et al., 2020) 51.40
BERT-CLS (Ours) 50.91
MKPNet w/o KP 52.86
MKPNet 54.09

Table 3: Experimental results on PDTB 2.0 test set. For
a fair comparison, the results of baselines are adapted
from their original papers.

and filter them by confidence scores. Specifically,
we compute the confidence score by multiplying
the classification probability and the frequency of
the event pair. Integrating with the original ex-
plicit event relations, we can obtain the enriched
EventKGs ASER++ (core/high/full) with the dif-
ferent threshold confidences (3/2/1). Table 1 shows
that when compared with existing event-related re-
sources, ASER++ has an overwhelming advantage
in the number of event relations.

2. The proposed MKPNet achieves SotAper-
formance for ERE. MKPNet can significantly out-
perform the BERT-Transfer and achieves 55.86 ac-
curacy and 55.36 F1. MKPNet w/o KP obtains con-
siderable performance improvements when com-

https://hkust-knowcomp.github.io/ASER
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pared with BERT-CLS. We believe this is because
MKPNet fully explores the knowledge on differ-
ent tiers, and modelling knowledge tier-by-tier is
effective.

3. By projecting knowledge at token-level, se-
mantic level and label level, all three adaptors
are useful and are complementary with each
other. When compared with the full model MKP-
Net, its four variants show declined performance in
different degrees. MKPNet outperforms MKPNet
w/o CA 0.72 accuracy and 0.94 F1, which indi-
cates that our coarse category adaptor successfully
bridges the gap of heterogeneous fine-grained tar-
gets. MKPNet outperforms MKPNet w/o SA 0.57
accuracy and 0.44 F1, and therefore we believe that
our latent semantic adaptor is helpful for capture
the semantic-level commonalities. Finally, there
is a significant decline between MKPNet w/o KP
and MKPNet w/o SA & CA, which means that to-
ken adaptor is indispensable. The insight in those
observations is that the commonalities between dis-
courses and narratives under the hierarchical struc-
ture, thus projecting them at different levels is ef-
fective, and three adaptors can be complementary
with each other.

4. The commonalities between discourses and
narratives are beneficial for both ERE and DRR.
Compared with the baselines w/o discourse knowl-
edge — BERT-CLS and MKPNet w/o KP, both the
naive transfer method — BERT-Transfer and our
MKPNet achieve significant performance improve-
ments: BERT-Transfer gains 1.29 accuracy and
1.20 F1 when compared to BERT-CLS, and MKP-
Net gains 1.92 accuracy and 1.84 F1 when com-
pared to MKPNet w/o KP. Besides, for DRR, our
method MKPNet also substantially outperforms
the other baselines and its variant MKPNet w/o KP.
These results verified the commonalities between
discourse knowledge and narrative knowledge.

4.1.2 Detailed Analysis
Effects of Semantic-level Knowledge and Label-
level Knowledge. In these experiments, we com-
pare the performance of our models, MKPNet,
MKPNet w/o CA and MKPNet w/o SA with or
without knowledge projection to find out the ef-
fects of semantic-level knowledge and label-level
knowledge. From Table 4, we can see that: (1)
Compared with their counterparts, MKPNet, MKP-
Net w/o CA and MKPNet w/o SA with knowledge
projection lead to significant improvements. Thus,
it is convincing that the performance improvements

KP Fine-grained Coarse-grained
Acc F1 Acc F1

BERT-CLS 53.00 52.24 — —

MKPNet
53.94 53.52 — —

X 55.86 55.36 — —

MKPNet w/o CA
53.79 53.39 — —

X 55.14 54.42 — —

MKPNet w/o SA
53.21 52.48 66.57 63.04

X 55.29 54.92 67.93 64.76
MKPNet w/o SA* 70.50 70.32 100.0 100.0

Table 4: Effect of semantic-level knowledge and label-
level knowledge on IERE test set, where KP stands for
knowledge projection and * stands for golden coarse-
grained categories.

51

53

55

57

59

5k 10k 15k 20k 25k … 50k … ALL
Scales of IERE Corpora

F1

Figure 4: Experimental results of using different sizes
of IERE training corpora.

mainly come from the discourse knowledge rather
than the neural architecture; (2) Current knowledge
projection can be further improved by exploiting
more accurate discourse knowledge: MKPNet w/o
SA*, which uses golden coarse categories, achieves
striking performance (Acc 70.50; F1 70.32).

Tradeoff between Dataset Quality and Size.
As described above, the IERE training dataset is
constructed using the most confident instances in
ASER core version. We can construct a larger
but lower quality dataset by incorporating more in-
stances with lower confidence, i.e., the quality-size
tradeoff problem. To analyze the tradeoff between
the quality and size, we construct a set of datasets
with different sizes/qualities, and Figure 4 shows
the corresponding results of MKPNet on the devel-
opment set. We can see that the size is the main
factors for performance improvements at the begin-
ning: every 5,000 additional instances can result in
a significant improvement (about 2 to 3 F1 gain).
When the size is large (more than 20,000 instances
in our experiments), more instances will not result
in performance improvements, and the low-quality
instances will hurt the performance.
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97. The fish
98. the worm

PER eats 
hamburger 

PER is hungry

Hamburger is tasty

Event-Centric Knowledge Graph

Reason

Reason

…

WSC Questions Predictions

97. The fish ate the worm.   It was hungry.
98. The fish ate the worm.   It was tasty.

WSC-schema Style Training Data

PER eats hamburger.   PER is hungry.
PER drinks coffee.        PER is sleepy. 
PER eats hamburger.   Hamburger is tasty.
PER drinks coffee.       Coffee is delicious. 

Figure 5: An overview of WSC implementation. The
blue color means the correct reference while the red
color means the wrong one.

4.2 Extrinsic Experiments

The above intrinsic experiments verified the effec-
tiveness of the proposed MKPNet for ERE. In this
section, we use the core version of our enriched
EventKGs — ASER++, and then conduct extrin-
sic experiments on Winograd Schema Challenge
(WSC) (Levesque et al., 2012) to verify the effect
of ASET++.

WSC Implementation. WSC is challenging
since its schema is a pair of sentences that differ
only in one or two words and that contain a referen-
tial ambiguity that is resolved in opposite directions
in the two sentences. According to Certu et al.
(2019), fine-tuning pre-trained language models on
WSC-schema style training sets is a robust method
to tackle WSC. Therefore, as Figure 5 shows, we
transform ASER++ to WSC-schema style training
data in the same way as Zhang et al. (2020b) and
fine-tune BERT on it, which we refer to as BERT
(ASER++). We compare BERT (ASER++) with
these baselines:

• Pure Knowledge-based Methods are heuris-
tical rule-based methods, such as Knowledge
Hunting (Emami et al., 2018) and String
Match (Zhang et al., 2020b).

• Language Model-based Methods use lan-
guage model trained on large-scale corpus and
tuned specifically for the WSC task, such as
LM (Trinh and Le, 2018).

• External Knowledge Enhanced Methods
are models based on BERT and trained with
the different external knowledge resource,
e.g., WscR (Ng, 2012; Certu et al., 2019)

We implement our model based on pytorch-
transformers (Wolf et al., 2020). BERT-large is
used. All hyper-parameters are default settings
as Certu et al. (2019).

Model WSC
Pure Knowledge-based Methods

Knowledge Hunting (Emami et al., 2018) 57.3
String Match (Zhang et al., 2020b) 56.6

Language Model-based Methods
LM (Single) (Trinh and Le, 2018) 54.5
LM (Ensemble) (Trinh and Le, 2018) 61.5
BERT (w/o finetuning) (Devlin et al., 2019) 61.9

External Knowledge Enhanced Methods
BERT (WscR) Certu et al. (2019) 71.4
BERT (ASER) Zhang et al. (2020b) 64.5
BERT (ASER & WscR) Zhang et al. (2020b) 72.5
BERT (ASER++) 66.2
BERT (ASER++ & WscR) 74.1

Table 5: The overall results of extrinsic experiments.
The evaluation metric is accuracy.

Extrinsic Results. Table 5 shows the overall
results of extrinsic experiments. We can see that:
By fine-tuning BERT on our enriched EventKG
— ASER++, the WSC performance can be signif-
icantly improved. BERT (ASER++) and BERT
(ASER++ & WscR) outperform BERT (ASER)
and BERT (ASER & WscR) respectively, which
verified the effectiveness of ASER++ and implicit
event relations are beneficial for downstream NLU
tasks.

5 Related Work

Event-centric Knowledge Graphs. Knowledge
graphs have come from entity-centric ones (Banko
et al., 2007; Suchanek et al., 2007; Bollacker et al.,
2008; Wu et al., 2012) to event-centric ones. How-
ever, the construction of traditional KGs takes do-
main experts much effort and time, which are often
with limited size and cannot effectively resolve real-
world applications, e.g., FrameNet (Baker et al.,
1998). Recently, many modern and large-scale
KGs have been built semi-automatically, which fo-
cus on events (Tandon et al., 2015; Rospocher et al.,
2016; Gottschalk and Demidova, 2018; Zhang
et al., 2020b) and commonsense (Speer et al., 2017;
Smith et al., 2018; Huang et al., 2018; Sap et al.,
2019). Specifically, Yu et al. (2020) proposes an
approach to extract entailment relations between
eventualities, e.g., “I eat an apple” entails “I eat
fruit”, and release an event entailment graph (EEG).
Different from EEG, this paper focuses on implicit
event relations which are not extracted due to the
absences of the connectives and discontinuity.

Knowledge Transfer. Due to the data scarcity
problem, many knowledge transfer studies have
been proposed, including multi-task learning (Caru-
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ana, 1997), transfer learning (Pan and Yang, 2009;
Pan et al., 2010), and knowledge distillation (Hin-
ton et al., 2014). Recently, researchers are in-
terested in training/sharing/transferring/distilling
models layer by layer to fully excavate the knowl-
edge (Pan et al., 2016; Guo et al., 2019; Kang et al.,
2020; Li et al., 2020b). In this paper, we propose
a knowledge projection method which can project
discourse knowledge to narraties on different tiers.

6 Conclusions

In this paper, we propose a knowledge projection
paradigm for event relation extraction and Multi-
tier Knowledge Projection Network (MKPNet) is
designed to leverage multi-tier discourse knowl-
edge. By effectively projecting knowledge from
discourses to narratives, MKPNet achieves the
new state-of-the-art event relation extraction per-
formance, and extrinsic experimental results verify
the value of the extracted event relations. For future
work, we want to design new data-efficient algo-
rithms to learn effective models using low-quality
and heterogeneous knowledge.
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