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Abstract
Reranking models enable the integration of
rich features to select a better output hypoth-
esis within an n-best list or lattice. These mod-
els have a long history in NLP, and we re-
visit discriminative reranking for modern neu-
ral machine translation models by training a
large transformer architecture. This takes as
input both the source sentence as well as a
list of hypotheses to output a ranked list. The
reranker is trained to predict the observed dis-
tribution of a desired metric, e.g. BLEU, over
the n-best list. Since such a discriminator con-
tains hundreds of millions of parameters, we
improve its generalization using pre-training
and data augmentation techniques. Exper-
iments on four WMT directions show that
our discriminative reranking approach is effec-
tive and complementary to existing generative
reranking approaches, yielding improvements
of up to 4 BLEU over the beam search output.

1 Introduction

Reranking models take a number of different out-
put hypotheses generated by a baseline model and
select one hypothesis based on more powerful fea-
tures. Before the recent re-emergence of neural
networks, these models have been well studied for
several NLP tasks including parsing (Charniak and
Johnson, 2005; Collins and Koo, 2005) and statis-
tical machine translation (Och et al., 2004; Shen
et al., 2004).

Traditional statistical models (SMT) based on
n-gram counts made very strong independence as-
sumptions where features would only capture very
local context information to avoid sparsity and poor
generalization. A large n-best list produced by
these models would then be passed to a discrimi-
natively trained reranker which leverages features
engineered to capture more global context (Och
et al., 2004) yielding significant improvements to
the quality of the translations.

On the other hand, modern neural models
(NMT) make much weaker independence assump-
tions because predictions of standard sequence-
to-sequence models depend on the entire source
sentence as well as the target prefix generated.
However, reranking may still be beneficial for two
reasons: First, NMT systems are subject to expo-
sure bias (Ranzato et al., 2016), i.e., models are
never exposed to their own generations at training
time, while a reranking model has been trained on
model outputs. Second, beam search with auto-
regressive models uses the chain rule to sum indi-
vidual token-level probabilities to obtain a target
sequence probability. However, individual prob-
abilities are based on a limited amount of target
context, while a reranking model can condition on
the entire target context. Indeed, recent genera-
tive reranking approaches applied to NMT, such as
Noisy-Channel Decoding (NCD, Yee et al. 2019)
which leverages a pre-trained language model and a
backward model, show strong improvements over
beam search outputs, as demonstrated in recent
WMT evaluations (Ng et al., 2019).

In this paper, we explore whether training large
transformer models using the reranking objective
can further improve performance. Our model,
dubbed DrNMT, takes as input the entire source
sentence and an n-best list of output hypotheses
to predict a distribution of sentence-level evalua-
tion scores, such as BLEU.1 This setup is similar
to earlier work with SMT, except that the baseline
model is an NMT model and the reranker is a big
transformer architecture as opposed to a log-linear
model on top of discrete or human engineered fea-
tures.

Unfortunately, optimizing for the task of interest
does not always lead to better performance. Overfit-
ting to the training set is a potential concern, as the

1Our approach is general and enables optimizing any user-
specified metric, or combinations thereof.



7251

reranker has hundreds of millions of parameters yet
it receives only one gradient and weight update per
source/target sentence pair as opposed to one per to-
ken as for standard NMT models. In our work, we
mitigate overfitting in two ways. First, we leverage
the success of pre-training by finetuning masked
language models (MLM; Devlin et al. 2019) which
initializes the model with features trained on much
more training data. Second, we augment the origi-
nal dataset with back-translated data (BT; Sennrich
et al. 2016).

Experiments show that DrNMT can match the
performance of a strong NCD baseline and that
their combination leads to further improvements as
measured by BLEU, TER and also human evalua-
tion.

2 Related Work

Our method is inspired by the seminal work of Shen
et al. (2004) and Och et al. (2004) who introduced
and popularized discriminative reranking to SMT.
Besides using a weaker MT system to generate the
n-best list, these works relied on a linear discrimina-
tor trained on human-designed features as opposed
to a transformer taking the raw source sentence and
hypothesis.

Most work using NMT has focused on genera-
tive reranking methods (Liu et al., 2018; Imamura
and Sumita, 2017; Wang et al., 2017), where the
reranker’s parameters are optimized using a crite-
rion which is different from the metric of interest.
For instance, Yu et al. (2017); Yee et al. (2019)
perform noisy-channel decoding where hypothe-
ses are scored by linearly combining the output of
the forward model, a target-side language model
and a backward model which scores the source sen-
tence given the hypothesis. These methods have
shown remarkable improvements over the output
of beam decoding, despite not being trained for the
reranking task (except for the two or three hyper-
parameters of the linear combination of scores
which are tuned on a validation set). Another ap-
proach belonging to this class of methods is the
one proposed by Salazar et al. (2019), which em-
ploys the scores from a masked language model
(MLM). While this method employs a transformer
architecture, it is still not trained for the task of
interest.

To the best of our knowledge, there is only con-
current work by Naskar et al. (2020) which at-
tempts at training discriminatively a reranker for

NMT. They use a pair-wise margin loss on hypothe-
ses sampled from the NMT, while we learn to rank
the full n-best list produced by beam. Their experi-
ments also show that the reranker performs better
when directly conditioned on the source sentence.
However, they do not compare nor combine their
method with NCD like we do. Both their work and
our work are however an extension of Deng et al.
(2020), who proposed to train a discriminator to
improve neural language modeling.

There is also a large body of literature on differ-
ent ways to combine SMT and NMT by using one
to rerank the other, since SMT is generally better
at adequacy while NMT is better at fluency. For
instance, Auli and Gao (2014) uses an RNN dis-
criminator to rerank the n-best list produced by a
phrase-based SMT. Instead, Ehara (2017) does the
opposite, using an SMT discriminator to rerank an
n-best list produced by an NMT.

Finally, our work is also related to recent at-
tempts at using adversarial training to improve
MT (Wu et al., 2018; Zhang et al., 2018). Un-
like these approaches our method is much simpler
because we do not update the parameters of the MT
system generating the hypotheses. Moreover, our
discriminator is trained to predict the distribution
of desired metric and it is used at decoding time to
rerank, while GAN-based MT would only retain
the generator.

3 Model

Given a source sentence x, an NMT model gener-
ates a set of hypotheses U(x) = {u1, u2, ..., un}
in the target language. The goal of this work is
to learn a reranker that produces higher scores for
hypotheses of better quality, as defined in terms of
a user-specified metric µ(u, r) such as BLEU (Pap-
ineni et al., 2002a), where quality is measured with
respect to a reference r.

As illustrated in Figure 1, our reranker is a trans-
former architecture which takes as input the con-
catenation of the source sentence x and hypothesis
u ∈ U(x). The architecture includes also position
embeddings and language embeddings, to help the
model represent tokens that are shared between
the two languages (Conneau and Lample, 2019).
The final hidden state corresponding to the start of
sentence token (〈s〉) serves as the joint represen-
tation for (x, u); let us denote this feature vector
as z ∈ Rd. The reranker associates a scalar score
o ∈ R to (x, u) by applying a one hidden layer
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Figure 1: Illustration of DrNMT, a pre-trained transformer architecture which takes as input both the source sen-
tence as well as a hypothesis and outputs a scalar score. DrNMT is trained to output scores which reflect the
distribution of sentence-level scores according to a user-specified metric over an n-best list.

neural network with d tanh hidden units to z, as
default in the design of the “classification head” of
RoBERTa (Liu et al., 2019). The parameters of the
reranker are denoted by θ and include the param-
eters of the transformer, all the embeddings and
also the top projection block mapping the feature
vector to the scalar score. Each hypothesis ui in
the set U(x) is therefore processed independently
and yields a score oi.

4 Training and Inference

We train the reranker discriminatively, hence the
name DrNMT for Discriminative Reranker for
NMT, by minimizing the KL-divergence between
the target distribution and the model output distri-
bution, DKL(pT ||pM ) (Cao et al., 2007). For each
x, the model output distribution is a softmax over
all n hypotheses in the n-best list:

pM (ui|x; θ) =
exp(oi(ui|x; θ))∑n
j=1 exp(oj(uj |x; θ))

, (1)

where we made explicit that the score oj is con-
ditioned on the input x and parameter vector θ.
Notice that we do not enforce any additional fac-
torization. In particular, we do not assume that the
score is computed auto-regressively.

The target distribution is defined as a normalized
distribution of the end metric µ(ui, r) which we
assume to improve as it takes on larger values:

pT (ui) =
exp(µ(ui, r)/T )∑n
j=1 exp(µ(uj , r)/T )

, (2)

where T is the temperature to control the smooth-
ness of the distribution. In practice, we apply a min-
max normalization on µ. We subtract each value
by the minimum in the hypothesis set, and divide

the result by the difference between the maximum
and the minimum value, so that the best hypothesis
scores 1 and the worst 0. This helps the optimiza-
tion as it reduces the variance of the gradients, as
pointed out by Edunov et al. (2018).

The parameters of DrNMT are then learned by
minimizing the KL divergence over the training
dataset. For a given training example, we have:

L(θ) = −
n∑

j=1

pT (uj) log pM (uj |x; θ). (3)

We minimize this loss over the training set by
stochastic gradient descent using standard back-
propagation of the error, since all terms are differ-
entiable. In order to alleviate overfitting, we em-
ploy dropout regularization (Srivastava et al., 2014),
we pre-train the model (Conneau et al., 2019) and
we also perform data augmentation by training on
back-translated data (BT) (Sennrich et al., 2016).
See §5.3 for details.

At test time, generation proceeds by first hav-
ing the NMT generate the n-best list, and then by
applying the reranker to select the best hypothesis.
Since the score of the forward model is also avail-
able, unless otherwise specified we rerank using
a weighted combination of both; this is dubbed as
DrNMT. In the experiments we also report results
by adding all the other scores from NCD, namely
the backward model score and the language model
score. We denote this variant by ”DrNMT + NCD”.
Whenever we combine scores from various models
we tune the additional hyper-parameters control-
ling the weighted combination by random search
on the validation set (Yee et al., 2019).
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5 Experimental Setup

In this section we describe the datasets, baselines
and model details.

5.1 Datasets

We experiment on four language pairs: German-
English (De-En), English-German (En-De),
English-Tamil (En-Ta) and Russian-English
(Ru-En). For training on De-En and En-De, we use
NewsCommentary from WMT’19 (Barrault et al.,
2019) and NewsCrawl2018 for the parallel dataset
and target side monolingual data, respectively.
We validate on newstest2014 and newstest2015,
and test on newstest2016, 2017, 2018 and 2019.
For En-Ta, we use all bitext and monolingual
data shared by the WMT’20 news translation
task for training, and the officially released
development and test sets for validation and testing
purposes. For Ru-En, we use all the parallel
data from WMT’19 (Barrault et al., 2019) and
NewsCrawl2018 as the monolingual dataset for
training, validate on newstest2015 and 2016, and
test on newstest 2017, 2018 and 2019.

We follow the steps in Ng et al. (2019) for
data preprocessing, including sentence deduplica-
tion, language identification filtering on all bitext
and monolingual data (Joulin et al., 2017) and in-
domain filtering (Moore and Lewis, 2010) on Tamil
CommonCrawl data. Table 1 shows the resulting
size of each dataset. For the base NMT models,
we learn 30K byte-pair encoding (BPE) units for
De-En and En-De, 20K BPE units for En-Ta and
24K BPE units for Ru-En separately, using the
sentencepiece toolkit (Kudo and Richardson,
2018). All systems are evaluated using SACRE-
BLEU (Post, 2018).

5.2 Baselines

We use the Transformer (Vaswani et al., 2017) ar-
chitecture and train MT models using bitext data
only. These are the models that generate the n-best
list, and which serve also as a lower bound for the
performance of DrNMT. BT data is generated from
beam decoding with beam size equal to 5. Since the
bitext data of En-Ta originates from seven different
sources, we prepend dataset tags to each source
sentence to indicate the origin (Kobus et al., 2017).
We do not prepend any tags on the validation and
test sets when decoding, as this choice worked best
during cross-validation. In general and for each
language pair, we tune the model architecture and

De-En En-De En-Ta Ru-En
bitext
training 326K 326K 621K 28.9M
validation 5.2K 5.2K 2K 5.8K
test 11K 11K 1K 8K
monolingual 17M 37M 27M 17M

Table 1: Number of sentences in each dataset used in
the experiments after pre-processing.

all hyper-parameters on the validation set.
In addition to beam decoding, we consider two

reranking baselines. First, we consider the method
recently introduced by Salazar et al. (2019). In
its simplest formulation, this takes a pre-trained
masked language model (MLM) on the target side,
and iteratively masks one word of the hypothesis at
the time and aggregates the corresponding scores
to yield a score for the whole hypothesis. Then,
this score is combined with the score of the forward
model to rerank the n-best list; this is dubbed as “fw
+ MLM”. We also have a version of MLM which
is tuned on our target side monolingual dataset; we
dub this “fw + MLM-ft”.

Finally, we consider reranking using noisy chan-
nel decoding (NCD; Yee et al. 2019). NCD reranks
by taking a weighted combination of three scores:
the forward model score, the score of a target-side
language model (LM), and the score of a backward
model. A length penalty is then applied on the com-
bined score. The weights and the length penalty are
tuned on the validation set via random search. All
LMs are transformers with 16 blocks, 16 attention
heads and embedding size 1024. They are trained
on the target side monolingual data only.

5.3 Setting Up DrNMT

We use XLM-RBase
2 (Conneau et al., 2019), a

transformer-based multilingual MLM trained on
more than 2.5T of of filtered CommonCrawl data
in 100 languages, including En, De, Ta and Ru, as
the pre-trained model for DrNMT. The same model
is also used in the MLM baseline described in §5.2.
The XLM-RBase model consists of 12 transformer
blocks, 12 attention heads, embedding size 768
(270M params) and has a vocabulary size of 250K
BPE units. As each training sample of XLM-R
only contained one single language, we further en-
hance the model with two language embeddings,

2https://github.com/pytorch/fairseq/
tree/master/examples/xlmr

https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://github.com/pytorch/fairseq/tree/master/examples/xlmr


7254

De-En En-De En-Ta Ru-En
BLEU valid test valid test valid test valid test
beam (fw) 24.7 27.7 23.1 26.6 8.8 6.0 33.5 34.3
+ MLM (Salazar et al., 2019) 25.7 28.7 23.5 27.1 8.8 5.8 33.8 34.8
+ MLM-ft (Salazar et al., 2019) 25.8 28.8 23.7 27.5 8.8 5.8 33.9 35.0
+ LM 26.3 29.2 24.3 28.5 9.4 6.2 34.6 35.8
NCD (Yee et al., 2019) 27.2 30.9 24.8 29.1 9.7 6.3 35.3 36.8
DrNMT 27.6 31.5 24.7 29.0 9.7 6.4 35.3 37.1
+ NCD 27.9 31.8 25.1 29.7 10.0 6.5 35.7 37.3
oracle BLEU 33.3 37.4 31.4 35.9 13.6 9.5 45.3 47.0

Table 2: Validation and test BLEU with beam size 50. Results for De-En and En-De are averaged from new-
stest2014 and 2015 for validation and newstest2016, 2017, 2018 and 2019 for test. The results for Ru-En are
averaged from newstest2015 and 2016 for validation and newstest2017, 2018 and 2019 for test.

initialized from random, to indicate the source and
target languages for the reranker.

We perform beam decoding on both bitext and
BT data using the baseline MT models to generate
n-best lists with 50 hypotheses. We combine n-best
lists from both bitext and BT as training data for
the rerankers for De-En, En-De and En-Ta, and use
only BT data for Ru-En. We train DrNMT with
batch size 512, use Adam (Kingma and Ba, 2015)
and early-stop when the validation performance
does not improve after 12K parameter updates. All
hyper-parameters, including learning rate, number
of warmup steps, dropout rate, etc., are tuned on
the validation set. All models are implemented and
trained using fairseq (Ott et al., 2019)3.

6 Results

In this section we report the main findings of our
work. When optimizing for BLEU as metric, the
performance of DrNMT and baselines for De-En,
En-De, En-Ta and Ru-En is summarized in Table 2.
The findings are similar across the four language
directions. We therefore focus the discussion on
the De-En test set results.

First, we notice that all methods improve over
the beam search output with gains ranging from
1.0 to 4.1 BLEU. However, there may be still room
for improvement as the oracle performance sug-
gests. The oracle is computed by selecting the best
hypotheses based on BLEU with respect to the hu-
man reference. Of course, the oracle may be not
achievable because of uncertainty in the translation
task.

3Code for reproducing the results can be found
at: https://github.com/pytorch/fairseq/
tree/master/examples/discriminative_
reranking_nmt

Second, Salazar et al. (2019)’s method, particu-
larly the version fine-tuned on the in-domain train-
ing dataset, improves upon beam by 1.1 BLEU
points. However, the improvement over beam is
not as large as with NCD, which improves upon
beam by 3.2 BLEU points, suggesting that among
the non-discriminative reranking methods NCD
performs the best.

Third, DrNMT performs on par (En-Ta, En-De
and Ru-En) or better (De-En) than NCD, showing
that discriminative reranking can be very competi-
tive. Note, that the reranker requires only one ad-
ditional forward pass through the hypotheses gen-
erated by beam, while NCD requires two forward
passes (one for the LM and one for the backward
MT model). Therefore, our reranker works at least
as well as NCD while requiring roughly half of the
compute.

Fourth, the discriminative reranker and NCD are
complementary to each other, since combining both
achieves the best performance overall across the
three language directions, with gains between 0.9
BLEU (De-En) and 0.2 (En-Ta) compared to NCD,
and an overall gain between 4.1 BLEU (De-En)
and 0.5 (En-Ta) compared to the beam baseline.

Fifth, the gain brought by discriminative rerank-
ing can be better appreciated by comparing ”fw +
LM” and DrNMT, as the major difference between
the two approaches is the objective function used
for training them (generative language modeling
instead of prediction of the distribution of BLEU
scores). We can see that in all cases, discriminative
reranking yields better translations, with gains be-
tween 0.2 and 2.3 BLEU points depending on the
language direction.

Finally, we notice that En-Ta is a difficult lan-

https://github.com/pytorch/fairseq/tree/master/examples/discriminative_reranking_nmt
https://github.com/pytorch/fairseq/tree/master/examples/discriminative_reranking_nmt
https://github.com/pytorch/fairseq/tree/master/examples/discriminative_reranking_nmt
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valid test
BLEU TER BLEU TER

beam 24.7 60.9 27.7 58.0
DrNMT (B) 27.6 57.7 31.5 54.1
+ NCD 27.9 57.9 31.8 54.2
DrNMT (T) 27.0 57.3 30.7 53.5
+ NCD 27.3 57.0 31.1 53.4

Table 3: Average validation and test BLEU and TER
on WMT‘19 De-En with beam size 50 from rerankers
trained with different metrics (B: BLEU, T: TER).

guage pair, in which the baseline NMT is weak and
none of the reranking approaches work nearly as
well as in the other language directions. The dif-
ference between validation and test BLEU scores
suggests also a certain degree of overfitting to
the validation set. Despite this, our reranker still
yields the largest improvement over beam. Ap-
pendix B shows similar trends when test perfor-
mance is measured in terms of translation error rate
(TER) (Snover et al., 2006), showing that DrNMT
is not particularly overfitting to the training metric.

Human evaluation: We randomly sample 750
sentences from the De-En test sets and collect hu-
man ratings. We perform A/B testing, where a rater
can see the source sentence together with trans-
lated sentences from two systems. We conduct two
rounds of human evaluation by comparing the pro-
posed ”DrNMT + NCD” vs. ”beam”, and ”DrNMT
+ NCD” vs. ”NCD”. For each sentence, we collect
three ratings (between 0 to 100) and average the
scores, treating sentences with a score difference
less than 5 as equally good. Out of the 750 sen-
tences, our proposed method generates better trans-
lation than beam on 149 sentences and is worse on
82 sentences, and it performs better than NCD on
123 sentences and worse on 108 sentences, corrob-
orating the gains observed when measuring with
BLEU.

Next we show that DrNMTworks with other user-
specified metrics, study how performance varies
with the number of hypotheses and perform sev-
eral ablation studies to better understand its critical
components.

6.1 Optimizing for a Different Metric

In order to validate the generality of DrNMT, we
consider as metric µ the opposite of TER, so that
larger values indicate better translation quality.

Table 3 shows validation and test performance

in terms of both BLEU and TER when optimizing
for either one of the two metrics. While the two
metrics are correlated, the best results are achieved
when optimizing for the metric used at test time.

6.2 Varying the Number of Hypotheses

We examine the effect of training the reranker
with different sizes of the n-best list, U(x). Even
though we fix the n-best list size at training time,
we can apply the reranker on n-best lists of differ-
ent sizes at test time. Figure 2 shows the perfor-
mance of DrNMT on De-En validation sets from
four rerankers trained with 5, 10, 20 and 50 hy-
potheses, respectively.

As the size of the n-best list during test time in-
creases, the performance of all rerankers and NCD
improve. On the other hand, the performance of
beam decoding starts to saturate early at beam size
10. A reranker trained with 50 hypotheses gives a
1.4 BLEU improvement over beam decoding when
beam size is only 5 at test time, and the improve-
ment increases to 3.4 BLEU as we increase the
beam size to 200 at test time. DrNMT consistently
perform better than or equally well as NCD in all
training and testing scenarios.

Interestingly, a reranker trained with more hy-
potheses performs better than one trained with
fewer hypotheses, regardless of the beam size used
at test time. For instance, when the beam size is
20 at test time, the reranker trained with beam 50
improves over beam by 2.3 BLEU points, while
the one which was trained with 20 like at test time,
improves by 2.2 BLEU points.

To our surprise, a reranker trained with only 5
hypotheses can still yield a 3.2 BLEU gain com-
pared with beam decoding when used to rerank
200 hypotheses during test time, indicating that the
reranker suffers little from the mismatch between
training and testing conditions. As a result, depend-
ing on available compute resources, one can decide
to set the number of hypotheses to the largest value
possible to get better test time performance with
larger n-best lists, while being robust to the partic-
ular choice used at training time.

6.3 Ablation Study

We report an ablation study by probing all major
design choices made. We train DrNMT by optimiz-
ing BLEU and evaluate it on the validation set of
the De-En task using 50 hypotheses both at training
and test time. Table 4 summarizes all the results.
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Figure 2: BLEU on the validation set of De-En of
rerankers trained with n equal to 5, 10, 20 or 50 hy-
potheses (denoted by “DrNMT (n)”) and NCD when
reranking using different numbers of hypotheses at test
time (x-axis).

valid
proposed 27.6
- pre-training 26.8
- source sentence 27.4
- normalization 27.2
- BT data 25.6
6 layers 27.1
3 layers 26.7

Table 4: Ablation study on the various design choices
of the proposed approach. All results are evaluated on
the De-En validation set.

Pre-training: We investigate the importance of
pre-training by comparing with a reranker of the
same size initialized with random weights. Ta-
ble 4 shows that a randomly initialized reranker
performs significantly less well, with a decrease of
0.8 BLEU. In addition to lower performance, a ran-
domly initialized reranker also trains more slowly,
by requiring 1.6× more weight updates compared
to the pre-trained reranker to converge. This cor-
roborates our choice to pre-train, as the reranking
task is fairly related to the pre-training task and
we lack sufficient labeled data to train such a large
model from scratch. Notice that our pre-trained
reranker trains for at most two passes over the data
before starting to overfit to its training set.

Source sentence: When comparing “fw + LM”
against DrNMT to assess the impact of training
discriminatively, we did not take into account a
confounding factor which is the fact that the LM

does not attend over the source sentence. Indeed,
Salazar et al. (2019) score hypotheses without tak-
ing into account the source sentence. What is the
gain brought by considering also the source sen-
tence? To answer this question we compare our
reranker with a reranker that takes as input only
the hypotheses. As shown in Table 4, including
the source sentences achieves a small gain of 0.2
BLEU.

Normalization: We apply minmax normaliza-
tion and set T = 0.5 when computing the target
distribution in the training objective, so that for ev-
ery source sentence, the range of the BLEU scores
of its hypotheses is between 0 and 2. This choice
yields a 0.4 BLEU improvement compared to a
reranker trained with the raw BLEU scores.

Training data: So far we’ve been training the
reranker with both bitext and BT data. In Table 4,
we see that training the reranker with only bitext
data deteriorates the model’s performance by 2
BLEU points. The model starts overfitting after
15 passes over the small bitext (around 9,000 pa-
rameter updates). Incorporating the BT data helps
alleviate this issue. The model achieves the best
validation performance after 1.9 passes over the
combination of bitext and BT data (around 63,000
parameter updates).

Model size: We explore building the reranker
using only the first few layers of the XLM-RBase
model. Since beam hypotheses often differ only lo-
cally on isolated phrases, one may wonder whether
more local features, as those produced by a shal-
lower reranker may work better. Moreover, re-
ducing the model capacity may help preventing
overfitting. Compared with either only three or
six transformer blocks, Table 4 shows that deeper
and bigger models work better, despite being more
prone to overfitting and despite capturing more
global information about their input.

6.4 Other Training and Model Variations
We conclude our empirical evaluation by investigat-
ing how reranking works on top of baseline NMT
models trained with back-translation, and by re-
porting two variations of model architectures. As
before, we report results on the validation set of the
De-En task with n-best list of size 50, using BLEU
as metric.

MT trained with bitext+BT: Would the gains
brought by the reranker carry over when this is ap-
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valid
beam (fw) 31.6
+ MLM (Salazar et al., 2019) 32.6
+ MLM-ft (Salazar et al., 2019) 32.6
+ LM 33.1
NCD (Yee et al., 2019) 33.3
DrNMT 33.1
+ NCD 33.6

Table 5: Reranking the output of a baseline trained
with back-translation.

plied on the n-best list produced by a baseline NMT
model trained with back-translation? As shown in
Table 2 the beam baseline on validation was at 24.7
BLEU, while if we train the NMT by adding back-
translated data, BLEU increases to 31.6 (Table 5).
In this case, we train the reranker using hypothe-
ses generated by the more powerful NMT model
trained with back-translated data. From Table 5,
we can see that DrNMT gives 1.5 BLEU improve-
ment over the beam decoding baseline, and com-
bining NCD and reranker gives an additional gain
of 0.5 BLEU, which is less than what we reported
in Table 2 but still confirming the overall finding of
discriminative reranker and NCD performing simi-
larly while being complementary to each other.

Causal vs. bidirectional: As the complete hy-
pothesis is available during reranking, the architec-
ture of our reranker is bidirectional as it conditions
on the whole sentence. This contrasts with how
the baseline NMT model generates hypotheses and
how it scores them with beam which leverages an
auto-regressive decomposition. Here we explore
the importance of joint modeling and consider an
alternative reranker which consists of an encoder
and a causal decoder, and which is therefore ini-
tialized from the base NMT generating the n-best
list. Given a source sentence and a hypothesis as
input, the output of the decoder is a T × d matrix
(notice that hidden states are causal), where T is
the number of tokens of the hypothesis, and d is the
hidden dimension. We average the output across
position to obtain a d-dimensional representation
and apply the same one-hidden layer neural net-
work to obtain a reranking score. Table 6 shows
that our bidirectional architecture outperforms the
causal architecture by 0.8 BLEU.

Set reranker: While our training objective con-
siders the full set of hypotheses of each source

valid
encoder + causal decoder 26.8
bi-directional (proposed) 27.6

Table 6: Effect of a causal vs. non-causal reranker.

valid
set-level 27.6
hypothesis-level (proposed) 27.6

Table 7: Reranking with features computed over the
entire n-best list (set-level reranking) vs. features from
just the current hypothesis.

sentence, the reranker scores each pair of (x, ui) in
isolation; it never compares hypotheses directly.
We therefore explore an architecture that com-
putes cross-hypothesis features. In the original
reranker architecture, the model produces a d-
dimensional representation for each (x, ui). We
add another transformer block that computes self-
attention across the set of n representations for
{(x, u)|u ∈ U(x)}. We then apply the one hidden
layer projection block to map each d dimensional
vector to a single score as before, yielding n scores
for reranking. This design enables the model to
have set-level information during reranking, and
thus the scoring has to be performed on the full
set at once. Table 7 shows that these two model
variants perform the same, suggesting that set level
representations may need to be captured at a lower
layer of the transformer. We leave this avenue of
exploration for future work.

7 Conclusions

Reranking is effective for both SMT and NMT. In-
spired by work done almost two decades ago (Shen
et al., 2004; Och, 2003), we studied discriminative
reranking for NMT and found that it performs at
least as well as the strongest generative reranking
method we are aware of, namely noisy channel de-
coding (NCD) (Yee et al., 2019) - as long as care
is taken to alleviate overfitting.

There is a subtle trade-off between improve-
ments stemming from optimizing the end metric
and addressing exposure bias on the one hand, and
poor generalization and sample inefficiency of dis-
criminative training on the other hand. In this study
we regularize the reranker by using dropout, by
pre-training on large corpora and by performing
data augmentation.

Empirically, we found that NCD and our discrim-
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inative reranker are complementary to each other,
yielding sizeable improvements over each other
and the beam baseline. Our reranker is computa-
tionally less demanding than NCD, since it consists
of a single model while NCD requires scoring us-
ing two additional models. Our reranker is also
robust to the choice of the size of the n-best list and
other hyper-parameters settings.

In the future we plan to investigate better ways
to alleviate sample inefficiency, as well as to design
more effective architectures to score at the set level.
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Loı̈c Barrault, Ondřej Bojar, Marta R Costa-Jussà,
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A Training details

A.1 MT model
We build the baseline MT models in Table 2 fol-
lowing the Transformer big architecture (Vaswani
et al., 2017) with 6 layers, embedding size 1024 and
16 attention heads. Table 8 shows the additional
hyper-parameters that we tune on the validation set
for the best performing models of each language
direction. We use Adam with β1 = 0.9, β2 =
0.98, ε = 0.00000001, and apply an inverse square
root learning rate schedule with 4000 warmup steps.
We train for 200 epochs for De-En, En-De and En-
Ta, and 100K updates for Ru-En, and select the
best checkpoint based on validation loss.

A.2 LM
For all LMs, we use 16 transformer layers, embed-
ding size 1024, feed-forward network embedding
size 4096 and 16 attention heads. We optimize
with NAG with learning rate 0.0001 and a cosine
learning rate schedule with 16K warmup steps. All
models are trained on 32 GPUs for a maximum
of 984K steps, and the best checkpoint is selected
based on validation loss.

A.3 DrNMT

We train DrNMT using Adam with β1 = 0.9, β2 =
0.98, ε = 0.000001, and apply a polynomial learn-
ing rate decay schedule with 8000 warmup steps
for De-En, En-Ta, and Ru-En, and 16K warmup
steps for En-De. We use a learning rate of 0.00005
and dropout 0.2 for De-En, En-Ta, and Ru-En, and
a learning rate of 0.00001 and dropout 0.1 for En-
De.

B TER results

Table 9 summarizes the average validation and test
TER (Snover et al., 2006) of DrNMT trained with
BLEU (Papineni et al., 2002b) scores. Table 10, Ta-
ble 11, and Table 12 show TER of each validation
and test set for De-En, En-De and Ru-En, respec-
tively. Note that for En-Ta we only have one vali-
dation and one test set.

C BLEU results

Table 13, Table 14, and Table 15 show the perfor-
mance of DrNMT, trained and evaluated on BLEU,
on each validation and test set for De-En, En-De
and Ru-En, respectively. The average validation
and test BLEU scores of each language pair are
reported in the main paper in Table 2.

D Examples

Table 16 and Table 17 show examples of translation
from NCD and DrNMT + NCD.
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# params
ffn embed learning

dropout
label max tokens

# GPUs
size rate smoothing per GPU

De-En 207M 4096 0.0007 0.3 0.2 4000 4
En-De 207M 4096 0.0003 0.4 0.3 4000 4
En-Ta 197M 4096 0.0007 0.3 0.3 4000 4
Ru-En 276M 8192 0.0007 0.2 0.1 3584 128

Table 8: Baseline MT model hyper-parameters

De-En En-De En-Ta Ru-En
TER valid test valid test valid test valid test
beam (fw) 60.9 58.0 67.1 63.2 85.1 88.2 52.7 52.3
+ MLM (Salazar et al., 2019) 60.9 58.2 66.4 62.6 85.7 88.8 52.5 52.2
+ MLM-ft (Salazar et al., 2019) 60.8 58.2 66.5 62.6 85.7 89.1 52.4 52.0
+ LM 59.7 57.1 65.8 61.6 84.8 88.6 51.9 51.3
NCD (Yee et al., 2019) 58.4 54.9 65.2 60.9 84.1 87.8 51.2 50.2
DrNMT 57.7 54.1 65.2 60.6 83.9 87.5 50.5 49.3
+ NCD 57.9 54.2 64.9 60.1 83.5 87.4 50.6 49.6

Table 9: Validation and test TER with beam size 50. The results for De-En and En-De are averaged from new-
stest2014 and 2015 for validation and newstest2016, 2017, 2018 and 2019 for test. The results for Ru-En are
averaged from newstest2015 and 2016 for validation and newstest2017, 2018 and 2019 for test. DrNMT was
trained using BLEU.

valid test
TER 2014 2015 avg 2016 2017 2018 2019 avg
beam (fw) 61.8 59.9 60.9 56.1 60.0 53.4 62.4 58.0
+ MLM (Salazar et al., 2019) 61.7 60.0 60.9 56.1 60.1 53.5 63.2 58.2
+ MLM-ft (Salazar et al., 2019) 61.6 60.0 60.8 56.1 60.1 53.4 63.1 58.2
+ LM 60.7 58.7 59.7 54.9 59.0 52.4 61.9 57.1
NCD (Yee et al., 2019) 59.1 57.6 58.4 52.7 57.3 50.2 59.5 54.9
DrNMT 58.6 56.7 57.7 52.2 56.4 49.2 58.4 54.1
+ NCD 58.8 56.9 57.9 52.2 56.5 49.4 58.7 54.2

Table 10: Validation and test TER on WMT’19 De-En with beam size 50. DrNMT was trained using BLEU.

valid test
TER 2014 2015 avg 2016 2017 2018 2019 avg
beam (fw) 68.5 65.7 67.1 61.8 67.7 56.0 67.3 63.2
+ MLM (Salazar et al., 2019) 67.7 65.0 66.4 61.0 66.9 55.4 67.1 62.6
+ MLM-ft (Salazar et al., 2019) 67.8 65.1 66.5 61.3 67.1 55.4 66.6 62.6
+ LM 67.0 64.6 65.8 60.5 66.2 54.6 65.1 61.6
NCD (Yee et al., 2019) 66.5 63.9 65.2 60 65.8 53.6 64.3 60.9
DrNMT 66.4 63.9 65.2 59.3 65.9 53.3 63.9 60.6
+ NCD 66.2 63.5 64.9 58.9 65.1 52.7 63.5 60.1

Table 11: Validation and test TER on WMT’19 En-De with beam size 50. DrNMT was trained using BLEU.
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valid test
TER 2015 2016 avg 2017 2018 2019 avg
beam (fw) 51.8 53.6 52.7 48.9 54.4 53.5 52.3
+ MLM (Salazar et al., 2019) 51.6 53.4 52.5 48.6 54.4 53.5 52.2
+ MLM-ft (Salazar et al., 2019) 51.5 53.3 52.4 48.4 54.4 53.2 52.0
+ LM 50.9 52.8 51.9 48.0 53.5 52.5 51.3
NCD (Yee et al., 2019) 50.3 52.1 51.2 47.1 52.5 51.1 50.2
DrNMT 49.6 51.3 50.5 46.2 52.1 49.7 49.3
+ NCD 49.7 51.5 50.6 46.4 52.1 50.4 49.6

Table 12: Validation and test TER on WMT’19 Ru-En with beam size 50. DrNMT was trained using BLEU.

valid test
BLEU 2014 2015 avg 2016 2017 2018 2019 avg
beam (fw) 23.3 26.0 24.7 29.2 26.1 31.6 24.0 27.7
+ MLM (Salazar et al., 2019) 24.4 27.0 25.7 30.2 27.2 32.5 24.7 28.7
+ MLM-ft (Salazar et al., 2019) 24.4 27.1 25.8 30.3 27.3 32.7 24.9 28.8
+ LM 24.9 27.7 26.3 31.0 27.7 33.1 25.1 29.2
NCD (Yee et al., 2019) 26.0 28.4 27.2 32.8 29.0 34.9 26.7 30.9
DrNMT 26.2 28.9 27.6 33.2 29.6 35.6 27.5 31.5
+ NCD 26.6 29.1 27.9 33.5 29.9 35.9 27.8 31.8
oracle BLEU 31.8 34.7 33.3 39.2 35.2 41.6 33.7 37.4

Table 13: Validation and test BLEU on WMT’19 De-En with beam size 50.

valid test
BLEU 2014 2015 avg 2016 2017 2018 2019 avg
beam (fw) 21.6 24.5 23.1 27.6 22.8 32.9 23.1 26.6
+ MLM (Salazar et al., 2019) 22.0 25.0 23.5 27.9 23.4 33.5 23.5 27.1
+ MLM-ft (Salazar et al., 2019) 22.3 25.1 23.7 28.4 23.4 34.0 24.3 27.5
+ LM 22.9 25.7 24.3 29.0 24.3 34.9 25.6 28.5
NCD (Yee et al., 2019) 23.3 26.3 24.8 29.7 24.6 35.7 26.4 29.1
DrNMT 23.2 26.2 24.7 29.9 24.3 35.4 26.3 29.0
+ NCD 23.6 26.6 25.1 30.4 25.1 36.3 27.0 29.7
oracle BLEU 29.6 33.1 31.4 37.1 31.2 43.6 31.6 35.9

Table 14: Validation and test BLEU on WMT’19 En-De with beam size 50.

valid test
BLEU 2015 2016 avg 2017 2018 2019 avg
beam (fw) 33.3 33.6 33.5 36.8 32.3 33.9 34.3
+ MLM (Salazar et al., 2019) 33.8 33.8 33.8 37.2 32.7 34.5 34.8
+ MLM-ft (Salazar et al., 2019) 33.8 33.9 33.9 37.5 32.7 34.8 35.0
+ LM 34.5 34.6 34.6 38.1 33.7 35.6 35.8
NCD (Yee et al., 2019) 35.1 35.4 35.3 39.0 34.6 36.9 36.8
DrNMT 35.3 35.3 35.3 39.1 34.2 37.9 37.1
+ NCD 35.7 35.7 35.7 39.6 34.8 37.6 37.3
oracle BLEU 45.1 45.4 45.3 49.5 43.9 47.6 47.0

Table 15: Validation and test BLEU on WMT’19 Ru-En with beam size 50.
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src: Zusammen waren wir ein unschlagbares Team.
ref: Together, we were an unbeatable team.
NCD: Together we were an impossible team.
DrNMT + NCD: Together we were an unbeatable team.
src: Keine neuen Flüchtlinge, das würde die Lage entspannen.
ref: The situation would ease a bit if they did not receive any new refugees.
NCD: No new refugees would ease the situation.
DrNMT + NCD: No new refugees, that would ease the situation.
src: Je mehr ich es ansehe, desto verwirrender wird es.
ref: The more I look at it, the more mind-boggling it becomes.
NCD: The more I say it, the more confusing it becomes.
DrNMT + NCD: The more I look at it, the more confusing it becomes.
src: Auf den Radarschirmen war die Form eines Dreamliners zu sein.
ref: The shape of a Dreamliner could be seen on radar screens.
NCD: The radar screens were the shape of a Dreamliner.
DrNMT + NCD: It was the shape of a Dreamliner on the radar screens.

Table 16: Examples where DrNMT + NCD is rated higher than NCD in human evaluation.

src: Nein, die ausgehandelten Software-Updates sind freiwillig.
ref: No, the brokered software updates are voluntary.
NCD: No, the negotiated software extension is voluntary.
DrNMT + NCD: No, the software process that is negotiated is voluntary.
src: Viele der attraktiveren (Hand-Desinfektionsmittel) sind diejenigen, die parfümiert sind.
ref: A lot of the more attractive (hand sanitizers) are the ones that are scented.
NCD: Many of the more attractive (hand disinfectant) tools are those that are coded.
DrNMT + NCD: Many of the more attractive (hand infections) are those that are coded.
src: Herr Schmidt, Wie kann sich der Verbraucher vor vergifteten Eiern schützen?
ref: Mr Schmidt, how can consumers protect themselves against poisoned eggs?
NCD: Mr Schmidt, how can consumers protect themselves from poisoned eggs?
DrNMT + NCD: Mr Schmidt, how can the consumer protect itself from poisoned eggs?
src: Sie benutzt sogar nur selten einen Topf.
ref: She rarely even uses a pot.
NCD: In fact, she rarely uses a pot.
DrNMT + NCD: It even rarely uses a pot.

Table 17: Examples where NCD is rated higher than DrNMT + NCD in human evaluation.


