
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 7167–7182

August 1–6, 2021. ©2021 Association for Computational Linguistics

7167

Transition-based Bubble Parsing:
Improvements on Coordination Structure Prediction

Tianze Shi
Cornell University

tianze@cs.cornell.edu

Lillian Lee
Cornell University

llee@cs.cornell.edu

Abstract

We propose a transition-based bubble parser
to perform coordination structure identifica-
tion and dependency-based syntactic analysis
simultaneously. Bubble representations were
proposed in the formal linguistics literature
decades ago; they enhance dependency trees
by encoding coordination boundaries and in-
ternal relationships within coordination struc-
tures explicitly. In this paper, we introduce a
transition system and neural models for pars-
ing these bubble-enhanced structures. Ex-
perimental results on the English Penn Tree-
bank and the English GENIA corpus show that
our parsers beat previous state-of-the-art ap-
proaches on the task of coordination structure
prediction, especially for the subset of sen-
tences with complex coordination structures.1

1 Introduction

Coordination structures are prevalent in treebank
data (Ficler and Goldberg, 2016a), especially in
long sentences (Kurohashi and Nagao, 1994), and
they are among the most challenging constructions
for NLP models. Difficulties in correctly identify-
ing coordination structures have consistently con-
tributed to a significant portion of errors in state-
of-the-art parsers (Collins, 2003; Goldberg and El-
hadad, 2010; Ficler and Goldberg, 2017). These
errors can further propagate to downstream NLP
modules and applications, and limit their perfor-
mance and utility. For example, Saha et al. (2017)
report that missing conjuncts account for two-thirds
of the errors in recall made by their open informa-
tion extraction system.

Coordination constructions are particularly chal-
lenging for the widely-adopted dependency-based
paradigm of syntactic analysis, since the asymmet-
ric definition of head-modifier dependency rela-
tions is not directly compatible with the symmetric

1Code at github.com/tzshi/bubble-parser-acl21.

Bubble Tree:

I prefer hot coffee or tea and a bun
conj cc conj

amod conj
cc conjdetnsubj

obj

UD Tree:

I prefer hot coffee or tea and a bun

nsubj
obj

amod
conj

cc

conj
cc

det

Figure 1: Bubble tree and (basic) UD tree for the same
example sentence. (For clarity, we omit punctuation
and single-word bubble boundaries.) Bubbles explic-
itly encode the scope of the shared modifier hot with
respect to the nested coordination, whereas the UD tree
gives both tea and bun identical relationships to hot.

nature of the relations among the participating con-
juncts and coordinators.2 Existing treebanks usu-
ally resort to introducing special relations to rep-
resent coordination structures. But, there remain
theoretical and empirical challenges regarding how
to most effectively encode information like modi-
fier sharing relations while still permitting accurate
statistical syntactic analysis.

In this paper, we explore Kahane’s (1997) alter-
native solution: extend the dependency-tree repre-
sentation by introducing bubble structures to ex-
plicitly encode coordination boundaries. The co-
heads within a bubble enjoy a symmetric relation-
ship, as befits a model of conjunction. Further, bub-
ble trees support representation of nested coordina-
tion, with the scope of shared modifiers identifiable
by the attachment sites of bubble arcs. Figure 1
compares a bubble tree against a Universal Depen-
dencies (UD; Nivre et al., 2016, 2020) tree for the
same sentence.

Yet, despite theses advantages, implementation
2Rambow (2010) comments on other divergences between

syntactic representation and syntactic phenomena.

github.com/tzshi/bubble-parser-acl21

7168

of the formalism was not broadly pursued, for rea-
sons unknown to us. Given its appealing and in-
tuitive treatment of coordination phenomena, we
revisit the bubble tree formalism, introducing and
implementing a transition-based solution for pars-
ing bubble trees. Our transition system, Bubble-
Hybrid, extends the Arc-Hybrid transition system
(Kuhlmann et al., 2011) with three bubble-specific
transitions, each corresponding to opening, expand-
ing, and closing bubbles. We show that our tran-
sition system is both sound and complete with re-
spect to projective bubble trees (defined in § 2.2).

Experiments on the English Penn Treebank
(PTB; Marcus et al., 1993) extended with coordina-
tion annotation (Ficler and Goldberg, 2016a) and
the English GENIA treebank (Kim et al., 2003)
demonstrate the effectiveness of our proposed
transition-based bubble parsing on the task of coor-
dination structure prediction. Our method achieves
state-of-the-art performance on both datasets and
improves accuracy on the subset of sentences ex-
hibiting complex coordination structures.

2 Dependency Trees and Bubble Trees

2.1 Dependency-based Representations for
Coordination Structures

A dependency tree encodes syntactic relations via
directed bilexical dependency edges. These are nat-
ural for representing argument and adjunct modifi-
cation, but Popel et al. (2013) point out that “depen-
dency representation is at a loss when it comes to
representing paratactic linguistic phenomena such
as coordination, whose nature is symmetric (two
or more conjuncts play the same role), as opposed
to the head-modifier asymmetry of dependencies”
(pg. 517).

If one nonetheless persists in using dependency
relations to annotate all syntactic structures, as is
common practice in most dependency treebanks
(Hajič et al., 2001; Nivre et al., 2016, inter alia),
then one must introduce special relations to repre-
sent coordination structures and promote one ele-
ment from each coordinated phrase to become the
“representational head”. One choice is to specify
one of the conjuncts as the “head” (Mel’čuk, 1988,
2003; Järvinen and Tapanainen, 1998; Lombardo
and Lesmo, 1998) (e.g., in Figure 1, the visually
asymmetric “conj” relation between “coffee” and
“tea” is overloaded to admit a symmetric relation-
ship), but it is then non-trivial to distinguish shared
modifiers from private ones (e.g., in the UD tree

at the bottom of Figure 1, it is difficult to tell that
“hot” is private to “coffee” and “tea”, which share it,
but “hot” does not modify “bun”). Another choice
is let one of the coordinators dominate the phrase
(Hajič et al., 2001, 2020), but the coordinator does
not directly capture the syntactic category of the
coordinated phrase. Decisions on which of these
dependency-based fixes is more workable are fur-
ther complicated by the interaction between rep-
resentation styles and their learnability in statisti-
cal parsing (Nilsson et al., 2006; Johansson and
Nugues, 2007; Rehbein et al., 2017).

Enhanced UD A tactic used by many recent re-
leases of UD treebanks is to introduce certain extra
edges and non-lexical nodes (Schuster and Man-
ning, 2016; Nivre et al., 2018; Bouma et al., 2020).
While some of the theoretical issues still persist in
this approach with respect to capturing the sym-
metric nature of relations between conjuncts, this
solution better represents shared modifiers in coor-
dinations, and so is a promising direction. In work
concurrent with our own, Grünewald et al. (2021)
manually correct the coordination structure anno-
tations in an English treebank under the enhanced
UD representation format. We leave it to future
work to explore the feasibility of automatic conver-
sion of coordination structure representations be-
tween enhanced UD trees and bubble trees, which
we discuss next.

2.2 Bubble Trees

An alternative solution to the coordination-in-
dependency-trees dilemma is to permit certain re-
stricted phrase-inspired constructs for such struc-
tures. Indeed, Tesnière’s (1959) seminal work on
dependency grammar does not describe all syntac-
tic relations in terms of dependencies, but rather
reserves a primitive relation for connecting coor-
dinated items. Hudson (1984) further extends this
idea by introducing explicit markings of coordina-
tion boundaries.

In this paper, we revisit bubble trees, a represen-
tational device along the same vein introduced by
Kahane (1997) for syntactic representation. (Ka-
hane credits Gladkij (1968) with a formal study.)
Bubbles are used to denote coordinated phrases;
otherwise, asymmetric dependency relations are
retained. Conjuncts immediately within the bub-
ble may co-head the bubble, and the bubble itself
may establish dependencies with its governor and
modifiers. Figure 1 depicts an example bubble tree.

7169

We now formally define bubble trees and their
projective subset, which will become the focus of
our transition-based parser in §3. The following for-
mal descriptions are adapted from Kahane (1997),
tailored to the presentation of our parser.

Formal Definition Given a dependency-relation
label set L, we define a bubble tree for a length-
n sentence W = w1, . . . , wn to be a quadruple
(V,B, φ,A), where V = {RT, w1, . . . , wn} is the
ground set of nodes (RT is the dummy root), B is
a set of bubbles, the function φ : B 7→ (2V \{∅})
gives the content of each bubble as a non-empty3

subset of V , and A ⊂ B × L×B defines a labeled
directed tree over B. Given labeled directed tree A,
we say α1 → α2 if and only if (α1, l, α2) ∈ A for
some l. We denote the reflexive transitive closure
of relation→ by ∗→.

Bubble tree (V,B, φ,A) is well-formed if and
only if it satisfies the following conditions:4

• No partial overlap: ∀α1, α2 ∈ B, either φ(α1) ∩
φ(α2) = ∅ or φ(α1) ⊆ φ(α2) or φ(α2) ⊆ φ(α1);
• Non-duplication: there exists no non-identical
α1, α2 ∈ B such that φ(α1) = φ(α2);
• Lexical coverage: for any singleton (i.e., one-
element) set s in 2V , ∃α ∈ B such that φ(α) = s;
• Roothood: the root RT appears in exactly one bub-
ble, a singleton that is the root of the tree defined
by A.
• Containment: if ∃α1, α2 ∈ B such that φ(α2) ⊂
φ(α1), then α1

∗→ α2.

Projectivity Our parser focuses on the subclass
of projective well-formed bubble trees. Visually, a
projective bubble tree only contains bubbles cover-
ing a consecutive sequence of words (such that we
can draw boxes around the span of words to repre-
sent them) and can be drawn with all arcs arranged
spatially above the sentence where no two arcs or
bubble boundaries cross each other. The bubble
tree in Figure 1 is projective.

Formally, we define the projection ψ(α) ∈ 2V

of a bubble α ∈ B to be all nodes the bubble and
its subtree cover, that is, v ∈ ψ(α) if and only if
α
∗→ α′ and v ∈ φ(α′) for some α′. Then, we can

define a well-formed bubble tree to be projective if
and only if it additionally satisfies the following:
• Continuous coverage: for any bubble α ∈ B, if
wi, wj ∈ φ(α) and i < k < j, then wk ∈ φ(α);

3Our definition does not allow empty nodes; we leave it to
future work to support them for gapping constructions.

4We do not use β for bubbles because we reserve the β
symbol for our parser’s buffer.

• Continuous projections: for any bubble α ∈ B, if
wi, wj ∈ ψ(α) and i < k < j, then wk ∈ ψ(α);
• Contained projections: for α1, α2 ∈ B, if
α1

∗→ α2, then either ψ(α2) ⊂ φ(α1) or ψ(α2) ∩
φ(α1) = ∅.

3 Our Transition System for Parsing
Bubble Trees

Although, as we have seen, bubble trees have theo-
retical benefits in representing coordination struc-
tures that interface with an overall dependency-
based analysis, there has been a lack of parser im-
plementations capable of handling such representa-
tions. In this section, we fill this gap by introducing
a transition system that can incrementally build pro-
jective bubble trees.

Transition-based approaches are popular in de-
pendency parsing (Nivre, 2008; Kübler et al., 2009).
We propose to extend the Arc-Hybrid transition
system (Kuhlmann et al., 2011) with transitions
specific to bubble structures.5

3.1 Bubble-Hybrid Transition System

A transition system consists of a data structure de-
scribing the intermediate parser states, called con-
figurations; specifications of the initial and termi-
nal configurations; and an inventory of transitions
that advance the parser in configuration space to-
wards reaching a terminal configuration.

Our transition system uses a similar configura-
tion data structure to that of Arc-Hybrid, which
consists of a stack, a buffer, and the partially-
committed syntactic analysis. Initially, the stack
only contains a singleton bubble corresponding to
{RT}, and the buffer contains singleton bubbles,
each representing a token in the sentence. Then,
through taking transitions one at a time, the parser
can incrementally move items from the buffer to
the stack, or reduce items by attaching them to
other bubbles or merging them into larger bubbles.
Eventually, the parser should arrive at a terminal
configuration where the stack contains the single-
ton bubble of {RT} again, but the buffer is empty
as all the tokens are now attached to or contained
in other bubbles that are now descendants of the

5Our strategy can be adapted to other transition systems
as well; we focus on Arc-Hybrid here because of its com-
paratively small inventory of transitions, absence of spurious
ambiguities (there is a one-to-one mapping between a gold tree
and a valid transition sequence), and abundance of existing
implementations (e.g., Kiperwasser and Goldberg, 2016).

7170

Transition From To
(Pre-conditions) Stack σ Buffer β Stack σ′ Buffer β′

SHIFT
(|β| ≥ 1)

. . . b1 b1 . . .

LEFTARClbl
(|σ| ≥ 1; |β| ≥ 1; s1, b1 /∈ O;φ(s1) 6= {RT})

. . . s1 b1 b1 . . .

s1
lbl

RIGHTARClbl
(|σ| ≥ 2; s1, s2 /∈ O)

. . . s2 s1 s2

s1
lbl

. . .

BUBBLEOPENlbl
(|σ| ≥ 2; s1, s2 /∈ O;φ(s2) 6= {RT})

. . . s2 s1 s2 s1
conj lbl

. . .

BUBBLEATTACHlbl
(|σ| ≥ 2; s1 /∈ O; s2 ∈ O)

. . . s2a . . . s1
conj . . .

. s2a . . . s1
conj . . . lbl

. . .

BUBBLECLOSE
(|σ| ≥ 1; s1 ∈ O)

. . . s1a . . .
conj . . .

. s1a
conj . . .

Table 1: Illustration of our Bubble-Hybrid transition system. We give the pre-conditions for each transition and
visualizations of the affected stack and buffer items comparing the configurations before and after taking that
transition. O denotes the set of currently open bubbles and RT is the dummy root symbol.

Stack Buffer

(Initial) RT I prefer hot coffee or tea and a bun
SHIFT
===⇒ RT I prefer hot coffee or tea and a bun
LEFTARCnsubj
=======⇒ RT prefer

I

hot coffee or tea and a bun
nsubj

SHIFT
===⇒ RT prefer hot coffee or tea and a bun
SHIFT
===⇒ RT prefer hot coffee or tea and a bun
SHIFT
===⇒ RT prefer hot coffee or tea and a bun
SHIFT
===⇒ RT prefer hot coffee or tea and a bun

BUBBLEOPENcc========⇒ RT prefer hot coffee or
conj cc

tea and a bun

SHIFT
===⇒ RT prefer hot coffee or tea

conj cc

and a bun

BUBBLEATTACHconj
==========⇒ RT prefer hot coffee or tea

conj cc conj

and a bun
BUBBLECLOSE
========⇒ RT prefer hot and a bun
LEFTARCamod=======⇒ RT prefer

hot

and a bun
amod

SHIFT
===⇒ RT prefer and a bun
SHIFT
===⇒ RT prefer and a bun

BUBBLEOPENcc========⇒ RT prefer and
conj cc

a bun

SHIFT
===⇒ RT prefer and a

conj cc

bun

LEFTARCdet======⇒ RT prefer and
conj cc

bun

a
det

SHIFT
===⇒ RT prefer and bun

conj cc

∅

BUBBLEATTACHconj
==========⇒ RT prefer and bun

conj cc conj

∅
BUBBLECLOSE
========⇒ RT prefer
SHIFT
===⇒ RT prefer ∅
RIGHTARCobj
=======⇒ RT prefer

dobj

∅

RIGHTARCroot=======⇒ RT

prefer
root

∅ (Terminal)

Figure 2: Step-by-step visualization of the stack and buffer during parsing of the example sentence in Figure 1.
For steps following an attachment or BUBBLECLOSE transition, the detailed subtree or internal bubble structure is
omitted for visual clarity. For the same reason, we omit drawing the boundaries around singleton bubbles.

7171

{RT} singleton, and we can retrieve a completed
bubble-tree parse.

Table 1 lists the available transitions in our
Bubble-Hybrid system. The SHIFT, LEFTARC, and
RIGHTARC transitions are as in the Arc-Hybrid sys-
tem. We introduce three new transitions to handle
coordination-related bubbles: BUBBLEOPEN puts
the first two items on the stack into an open bubble,
with the first item in the bubble, i.e., previously the
second topmost item on the stack, labeled as the
first conjunct of the resulting bubble; BUBBLEAT-
TACH absorbs the topmost item on the stack into the
open bubble that is at the second topmost position;
and finally, BUBBLECLOSE closes the open bubble
at the top of the stack and moves it to the buffer,
which then allows it to take modifiers from its left
through LEFTARC transitions. Figure 2 visualizes
the stack and buffer throughout the process of pars-
ing the example sentence in Figure 1. In particular,
the last two steps in the left column of Figure 2
show the bubble corresponding to the phrase “cof-
fee or tea” receiving its left modifier “hot” through
a LEFTARC transition after it is put back on the
buffer by a BUBBLECLOSE transition.

Formal Definition Our transition system is a
quadruple (C, T, ci, Cτ), where C is the set of con-
figurations to be defined shortly, T is the set of
transitions with each element being a partial func-
tion t ∈ T : C 7⇀ C, ci maps a sentence to its intial
configuration, and Cτ ⊂ C is a set of terminal con-
figurations. Each configuration c ∈ C is a septuple
(σ, β, V,B, φ,A,O), where V , B, φ, and A define
a partially-recognized bubble tree, σ and β are each
an (ordered) list of items in B, and O ⊂ B is a set
of open bubbles. For a sentence W = w1, . . . , wn,
we let ci(W) = (σ0, β0, V,B0, φ0, {}, {}), where
V = {RT, w1, . . . , wn}, B0 contains n + 1 items,
φ0(B00) = {RT}, φ0(B0i) = {wi} for i from 1 to n,
σ0 = [B00], and β0 = [B01, . . . ,B0n]. We write σ|s1
and b1|β to denote a stack and a buffer with their
topmost items being s1 and b1 and the remainders
being σ and β respectively. We also omit the con-
stant V in describing c when the context is clear.

For the transitions T , we have:
• SHIFT[(σ, b1|β,B, φ,A,O)] =

(σ|b1, β,B, φ,A,O);
• LEFTARClbl[(σ|s1, b1|β,B, φ,A,O)] =
(σ, b1|β,B, φ,A ∪ {(b1, lbl, s1)},O);
• RIGHTARClbl[(σ|s2|s1, β,B, φ,A,O)] =
(σ|s2, β,B, φ,A ∪ {(s2, lbl, s1)},O);
• BUBBLEOPENlbl[(σ|s2|s1, β,B, φ,A,O)] =

(σ|α, β,B ∪ {α}, φ′, A∪ {(α, conj, s2), (α, lbl,
s1)},O ∪ {α}), where α is a new bubble, and
φ′ = φ d {α 7→ ψ(s2) ∪ ψ(s1)} (i.e., φ′ is almost
the same as φ, but with α added to the function’s
domain, mapped by the new function to cover the
projections of both s2 and s1);
• BUBBLEATTACHlbl[(σ|s2|s1, β,B, φ,A,O)] =

(σ|s2, β,B, φ′, A∪{s2, lbl, s1},O), where φ′ =
φ d {s2 7→ φ(s2) ∪ ψ(s1)};
• BUBBLECLOSE[(σ|s1, β,B, φ,A,O)] =

(σ, s1|β,B, φ,A,O\{s1}).

3.2 Soundness and Completeness
In this section, we show that our Bubble-Hybrid
transition system is both sound and complete (de-
fined below) with respect to the subclass of projec-
tive bubble trees.6

Define a valid transition sequence π =
t1, . . . , tm for a given sentenceW to be a sequence
such that for the corresponding sequence of con-
figurations c0, . . . , cm, we have c0 = ci(W), ci =
ti(ci−1), and cm ∈ Cτ , We can then state sound-
ness and completeness properties, and present high-
level proof sketches below, adapted from Nivre’s
(2008) proof frameworks.

Lemma 1. (Soundness) Every valid transition se-
quence π produces a projective bubble tree.
Proof Sketch. We examine the requirements for a
projective bubble tree one by one. The set of edges
satisfies the tree constraints since every bubble ex-
cept for the singleton bubble of RT must have an
in-degree of one to have been reduced from the
stack, and the topological order of reductions im-
plies acyclicness. Lexical coverage is guaranteed
by ci. Roothood is safeguarded by the transition
pre-conditions. Non-duplication is ensured because
newly-created bubbles are strictly larger. All the
other properties can be proved by induction over
the lengths of transition sequence prefixes since
each of our transitions preserves zero partial over-
lap, containment, and projectivity constraints.

Lemma 2. (Completeness) For every projective
bubble tree over any given sentenceW , there exists
a corresponding valid transition sequence π.
Proof Sketch. The proof proceeds by strong in-
duction on sentence length. We omit relation la-
bels without loss of generality. The base case of
|W | = 1 is trivial. For the inductive step, we
enumerate how to decompose the tree’s top-level

6More precisely, our transition system handles the subset
where each non-singleton bubble has ≥ 2 internal children.

7172

structure. (1) When the root has multiple children:
Due to projectivity, each child bubble tree τi covers
a consecutive span of words wxi , . . . , wyi that are
shorter than |W |. Based on the induction hypoth-
esis, there exisits a valid transition sequence πi to
construct the child tree over RT, wxi , . . . , wyi . Here
we let πi to denote the transition sequence exclud-
ing the always-present final RIGHTARC transition
that attaches the subtree to RT; this is for explicit
illustration of what transitions to take once the sub-
trees are constructed. The full tree can be con-
structed by π = π1, RIGHTARC, π2, RIGHTARC,
. . . (expanding each πi sequence into its component
transitions), where we simply attach each subtree
to RT immediately after it is constructed. (2) When
the root has a single child bubble α, we cannot
directly use the induction hypothesis since α cov-
ers the same number of words as W . Thus we
need to further enumerate the top-level structure
of α. (2a) If α has children with their projections
outside of φ(α), then we can find a sequence π0
for constructing the shorter-length bubble α and
placing it on the buffer (this corresponds to an
empty transition sequence if α is a singleton; oth-
erwise, π0 ends with a BUBBLECLOSE transition)
and πis for α’s outside children; say it has l chil-
dren left of its contents. We construct the entire
tree via π = π1,. . . ,πl, π0, LEFTARC, . . . , LEFT-
ARC, SHIFT, πl+1, RIGHTARC, . . . , RIGHTARC,
where we first construct all the left outside chil-
dren and leave them on the stack, next build the
bubble α and use LEFTARC transitions to attach
its left children while it is on the buffer, then shift
α to the stack before finally continuing on build-
ing its right children subtrees, each immediately
followed by a RIGHTARC transition. (2b) If α is a
non-singleton bubble without any outside children,
but each of its inside children can be parsed through
πi based on the inductive hypothesis, then we can
define π = π1,π2, BUBBLEOPEN, π3, BUBBLEAT-
TACH, . . . , BUBBLECLOSE, SHIFT, RIGHTARC,
where we use a BUBBLEOPEN transition once the
first two bubble-internal children are built, each
subsequent child is attached via BUBBLEATTACH

immediately after construction, and the final three
transitions ensure proper closing of the bubble and
its attachment to RT.

4 Models

Our model architecture largely follows that of
Kiperwasser and Goldberg’s (2016) neural Arc-

Hybrid parser, but we additionally introduce fea-
ture composition for non-singleton bubbles, and a
rescoring module to reduce frequent coordination-
boundary prediction errors. Our model has five
components: feature extraction, bubble-feature
composition, transition scoring, label scoring, and
boundary subtree rescoring.

Feature Extraction We first extract contextual-
ized features for each token using a bidirectional
LSTM (Graves and Schmidhuber, 2005):

[w0,w1, . . . ,wn] = bi-LSTM([RT, w1, . . . , wn]),

where the inputs to the bi-LSTM are concatena-
tions of word embeddings, POS-tag embeddings,
and character-level LSTM embeddings. We also
report experiments replacing the bi-LSTM with
pre-trained BERT features (Devlin et al., 2019).

Bubble-Feature Composition We initialize the
features7 for each singleton bubble Bi in the initial
configuration to be vBi = wi. For a non-singleton
bubble α, we use recursively composed features

vα = g({vα′ |(α, conj, α′) ∈ A}),

where g is a composition function combining fea-
tures from the co-heads (conjuncts) immediately
inside the bubble.8 For our model, for any V ′ =
{vi1 , . . . ,viN }, we set

g(V ′) = tanh(Wg ·mean(V ′)),

where mean() computes element-wise averages
and Wg is a learnable square matrix. We also ex-
periment with a parameter-free version: g = mean.
Neither of the feature functions distinguishes be-
tween open and closed bubbles, so we append
to each v vector an indicator-feature embedding
based on whether the bubble is open, closed, or
singleton.

Transition Scoring Given the current parser con-
figuration c, the model predicts the best unla-
beled transition to take among all valid transitions
valid(c) whose pre-conditions are satisfied. We

7We adopt the convenient abuse of notation of allowing
indexing by arbitrary objects.

8Comparing with the subtree-feature composition func-
tions in dependency parsing that are motivated by asymmetric
headed constructions (Dyer et al., 2015; de Lhoneux et al.,
2019; Basirat and Nivre, 2021), our definition focuses on
composing features from an unordered set of vectors repre-
senting the conjuncts in a bubble. The composition function
is recursively applied when there are nested bubbles.

7173

model the log-linear probability of taking an action
with a multi-layer perceptron (MLP):

P (t|c) ∝ exp(MLPtrans
t ([vs3 ◦vs2 ◦vs1 ◦vb1])),

where ◦ denotes vector concatenation, s1 through
s3 are the first through third topmost items on the
stack, and b1 is the immediately accessible buffer
item. We experiment with varying the number of
stack items to extract features from.

Label Scoring We separate edge-label predic-
tion from (unlabeled) transition prediction, but the
scoring function takes a similar form:

P (l|c, t) ∝ exp(MLPlbl
l ([vh(c,t) ◦ vd(c,t)])),

where (h(c, t), l, d(c, t)) is the edge to be added
into the partial bubble tree in t(c).

Boundary Subtree Rescoring In our prelimi-
nary error analysis, we find that our models tend
to make more mistakes at the boundaries of full
coordination phrases than at the internal conjunct
boundaries, due to incorrect attachments of chil-
dren choosing between the phrasal bubble and the
first/last conjunct. For example, our initial model
predicts “if you owned it and liked it Friday” in-
stead of the annotated “if you owned it and liked it
Friday” (the predicted and gold conjuncts are both
italicized and underlined), incorrectly attaching
“Friday” to “liked”. We attribute this problem to the
greedy nature of our first formulation of the parser,
and propose to mitigate the issue through rescoring.
To rescore boundary attachments of a non-singleton
bubble α, for each of the left dependents d of α and
its first conjunct αf , we (re)-decide the attachment
via

P (α→ d|αf) = logistic(MLPre([vd◦vα◦vαf
])),

and similarly for the last conjunct αl and a potential
right dependent.

Training and Inference Our parser is a locally-
trained greedy parser. In training, we optimize the
model parameters to maximize the log-likelihoods
of predicting the target transitions and labels along
the paths generating the gold bubble trees, and
the log-likelihoods of the correct attachments in
rescoring;9 during inference, the parser greedily
commits to the highest-scoring transition and label
for each of its current parser configurations, and
after reaching a terminal configuration, it rescores
and readjusts all boundary subtree attachments.

9We leave the definition of dynamic oracles (Goldberg and
Nivre, 2013) for bubble tree parsing to future work.

Exact Inner
All NP All NP

FG16 – – 72.70 76.10
TSM17 71.08 75.01 73.74 77.25
TSM19 75.47 77.83 77.74 80.06
Ours 76.48 81.63 78.30 84.03

+BERT 83.74 85.26 84.46 86.22

Table 2: F1 scores on the PTB test set. See Appendix C
for precision, recall and dev set results.

Exact Whole

HSOM09 – 61.5
FG16 – 64.14
TSM17 55.22 66.31
TSM19 61.22 61.31
Ours 67.09 68.23
+BERT 79.18 80.41

Table 3: Recall results on the GENIA dataset (we report
recall instead of F1 scores following prior work). See
Appendix C for detailed results per constituent type.

5 Empirical Results

Task and Evaluation We validate the utility of
our transition-based parser using the task of coor-
dination structure prediction. Given an input sen-
tence, the task is to identify all coordination struc-
tures and the spans for all their conjuncts within
that sentence. We mainly evaluate based on exact
metrics which count a prediction of a coordination
structure as correct if and only if all of its conjunct
spans are correct. To facilitate comparison with
pre-existing systems that do not attempt to identify
all conjunct boundaries, following Teranishi et al.
(2017, 2019), we also consider inner (=only con-
sider the correctness of the two conjuncts adjacent
to the coordinator) and whole (=only consider the
boundary of the whole coordinated phrase) metrics.

Data and Experimental Setup We experiment
with two English datasets, the Penn Treebank (PTB;
Marcus et al., 1993, newswire) with added coor-
dination annotations (Ficler and Goldberg, 2016a)
and the GENIA treebank (Kim et al., 2003, re-
search abstracts). We use the conversion tool dis-
tributed with the Stanford Parser (Schuster and
Manning, 2016) to extract UD trees from the PTB-
style phrase-structure annotations, which we then
merge with coordination annotations to form bub-

7174

Bubble-Hybrid (Ours) Edge-Factored
Prec. Rec. Prec. Rec.

punct 92.56 92.52 92.92 92.85
case 97.46 98.14 97.71 98.26
compound 94.12 95.18 94.24 95.02
det 98.85 99.13 98.70 99.06
nsubj 97.69 97.72 98.01 97.92
nmod 93.04 93.45 93.20 93.62
amod 94.52 93.43 94.61 93.95
.
conj 92.68 93.20 92.52 93.04

UAS 95.81 95.99
LAS 94.46 94.56

Table 4: PTB test-set results, comparing our transition-
based bubble parser and an edge-factored graph-based
parser, both using a BERT-based feature encoder. The
relation labels are ordered by decreasing frequency.
While our transition-based bubble parser slightly under-
performs the graph-based dependency parser generally,
perhaps due to the disadvantage of greedy decoding, it
gives slightly better precision and recall on the “conj”
relation type.

Rescoring + −

Ours (bi-LSTM) 77.10 76.27
• g = mean 75.51 74.16
• {vs2 ,vs1 ,vb1} 76.05 74.87
• {vs1 ,vb1} 76.33 73.85
• {vb1} 50.27 35.14
• +BERT 84.40 83.70

Table 5: Exact F1 scores of different model variations
on the PTB dev set, w/ and w/o the rescoring module.

ble trees. We follow prior work in reporting PTB
results on its standard splits and GENIA results
using 5-fold cross-validation.10 During training
(but not test), we discard all non-projective sen-
tences. See Appendix A for dataset pre-processing
and statistics and Appendix B for implementation
details.

Baseline Systems We compare our models with
several baseline systems. Hara et al. (2009,
HSOM09) use edit graphs to explicitly align co-
ordinated conjuncts based on the idea that they are
usually similar; Ficler and Goldberg (2016b, FG16)
score candidate coordinations extracted from a
phrase-structure parser by modeling their symme-

10We affirm that, as is best practice, only two test-
set/crossval-suite runs occurred (one with BERT and one with-
out), happening after we fixed everything else; that is, no other
models were tried after seeing the first test-set/cross-validation
results with and without BERT.

Complexity All Simple Complex

TSM17 66.09 72.90 50.37
TSM19 70.90 78.16 54.16
Ours 72.97 79.97 56.82
+BERT 80.07 83.74 71.59

Table 6: Per-sentence exact match on the PTB test set.
Simple includes sentences with only one two-conjunct
coordination, and complex contains the other cases.

try and replaceability properties; Teranishi et al.
(2017, TSM17) directly predict boundaries of co-
ordinated phrases and then split them into con-
juncts;11 Teranishi et al. (2019, TSM19) use sep-
arate neural models to score the inner and outer
boundaries of conjuncts relative to the coordina-
tors, and then use a chart parser to find the globally-
optimal coordination structures.

Main Results Table 2 and Table 3 show the
main evaluation results on the PTB and GENIA
datasets. Our models surpass all prior results on
both datasets. While the BERT improvements may
not seem surprising, we note that Teranishi et al.
(2019) report that their pre-trained language mod-
els — specifically, static ELMo embeddings — fail
to improve their model performance.

General Parsing Results We also evaluate our
models on standard parsing metrics by convert-
ing the predicted bubble trees to UD-style depen-
dency trees. On PTB, our parsers reach unla-
beled and labeled attachment scores (UAS/LAS)
of 95.81/94.46 with BERT and 94.49/92.88 with bi-
LSTM, which are similar to the scores of prior
transition-based parsers equipped with similar fea-
ture extractors (Kiperwasser and Goldberg, 2016;
Mohammadshahi and Henderson, 2020).12 Table 4
compares the general parsing results of our bub-
ble parser and an edge-factored graph-based de-
pendency parser based on Dozat and Manning’s
(2017) parser architecture and the same feature en-
coder as our parser and trained on the same data.
Our bubble parser shows a slight improvement on
identifying the “conj” relations, despite having a
lower overall accuracy due to the greedy nature
of our transition-based decoder. Additionally, our

11We report results for the extended model of TSM17 as
described by Teranishi et al. (2019).

12Results are not strictly comparable with previous PTB
evaluations that mostly focus on non-UD dependency conver-
sions. Table 4 makes a self-contained comparison using the
same UD-based and coordination-merged data conversions.

7175

bubble parser simultaneously predicts the bound-
aries of each coordinated phrase and conjuct, while
a typical dependency parser cannot produce such
structures.

Model Analysis Table 5 shows results of our
models with alternative bubble-feature composition
functions and varying feature-set sizes. We find
that the parameterized form of composition func-
tion g performs better, and the F1 scores mostly
degrade as we use fewer features from the stack. In-
terestingly, the importance of our rescoring module
becomes more prominent when we use fewer fea-
tures. Our results resonate with Shi et al.’s (2017)
findings on Arc-Hybrid that we need at least one
stack item but not necessarily two. Table 6 shows
that our model performs better than previous meth-
ods on complex sentences with multiple coordi-
nation structures and/or more than two conjuncts,
especially when we use BERT as feature extractor.

6 Related Work

Coordination Structure Prediction Very early
work with heuristic, non-learning-based ap-
proaches (Agarwal and Boggess, 1992; Kurohashi
and Nagao, 1994) typically report difficulties in
distinguishing shared modifiers from private ones,
although such heuristics have been recently incor-
porated in unsupervised work (Sawada et al., 2020).
Generally, researchers have focused on symmetry
principles, seeking to align conjuncts (Kurohashi
and Nagao, 1994; Shimbo and Hara, 2007; Hara
et al., 2009; Hanamoto et al., 2012), since coordi-
nated conjuncts tend to be semantically and syn-
tactically similar (Hogan, 2007), as attested to by
psycholinguistic evidence of structural parallelism
(Frazier et al., 1984, 2000; Dubey et al., 2005).
Ficler and Goldberg (2016a) and Teranishi et al.
(2017) additionally leverage the linguistic principle
of replaceability — one can typically replace a co-
ordinated phrase with one of its conjuncts without
the sentence becoming incoherent; this idea has
resulted in improved open information extraction
(Saha and Mausam, 2018). Using these principles
may further improve our parser.

Coordination in Constituency Grammar
While our paper mainly focuses on enhancing
dependency-based syntactic analysis with coordi-
nation structures, coordination is a well-studied
topic in constituency-based syntax (Zhang, 2009),
including proposals and treatments under lexical

functional grammar (Kaplan and Maxwell III,
1988), tree-adjoining grammar (Sarkar and Joshi,
1996; Han and Sarkar, 2017), and combinatory
categorial grammar (Steedman, 1996, 2000).

Tesnière Dependency Structure Sangati and
Mazza (2009) propose a representation that is faith-
ful to Tesnière’s (1959) original framework. Simi-
lar to bubble trees, their structures include special
attention to coordination structures respecting con-
junct symmetry, but they also include constructs
to handle other syntactic notions currently beyond
our parser’s scope.13 Such representations have
been used for re-ranking (Sangati, 2010), but not
for (direct) parsing. Perhaps our work can inspire
a future Tesnière Dependency Structure parser.

Non-constituent Coordination Seemingly in-
complete (non-constituent) conjuncts are particu-
larly challenging (Milward, 1994), and our bubble
parser currently has no special mechanism for them.
Dependency-based analyses have adapted by ex-
tending to a graph structure (Gerdes and Kahane,
2015) or explicitly representing elided elements
(Schuster et al., 2017). It may be straightforward
to integrate the latter into our parser, à la Kahane’s
(1997) proposal of phonologically-empty bubbles.

7 Conclusion

We revisit Kahane’s (1997) bubble tree representa-
tions for explicitly encoding coordination bound-
aries as a viable alternative to existing mechanisms
in dependency-based analysis of coordination struc-
tures. We introduce a transition system that is both
sound and complete with respect to the subclass
of projective bubble trees. Empirically, our bub-
ble parsers achieve state-of-the-art results on the
task of coordination structure prediction on two
English datasets. Future work may extend the re-
search scope to other languages, graph-based, and
non-projective parsing methods.

Acknowledgements We thank the anonymous
reviewers for their constructive comments, Yue
Guo for discussion, and Hiroki Teranishi for help
with experiment setup. This work was supported
in part by a Bloomberg Data Science Ph.D. Fellow-
ship to Tianze Shi and a gift from Bloomberg to
Lillian Lee.

13For example, differentiating content and function words
which has recently been explored by Basirat and Nivre (2021).

7176

References

Rajeev Agarwal and Lois Boggess. 1992. A simple
but useful approach to conjunct identification. In
Proceedings of the 30th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 15–21,
Newark, Delaware, USA. Association for Computa-
tional Linguistics.

Ali Basirat and Joakim Nivre. 2021. Syntactic nuclei in
dependency parsing – A multilingual exploration. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1376–1387, Online.
Association for Computational Linguistics.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 shared task on
parsing into enhanced Universal Dependencies. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 151–161, Online. Association for Com-
putational Linguistics.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29(4):589–637.

Miryam de Lhoneux, Miguel Ballesteros, and Joakim
Nivre. 2019. Recursive subtree composition in
LSTM-based dependency parsing. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1566–1576, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, USA. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the 5th International Confer-
ence on Learning Representations, Toulon, France.
OpenReview.net.

Amit Dubey, Patrick Sturt, and Frank Keller. 2005. Par-
allelism in coordination as an instance of syntactic
priming: Evidence from corpus-based modeling. In
Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in
Natural Language Processing, pages 827–834, Van-
couver, British Columbia, Canada. Association for
Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China. Associa-
tion for Computational Linguistics.

Jessica Ficler and Yoav Goldberg. 2016a. Coordina-
tion annotation extension in the Penn tree bank. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 834–842, Berlin, Germany. As-
sociation for Computational Linguistics.

Jessica Ficler and Yoav Goldberg. 2016b. A neural net-
work for coordination boundary prediction. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 23–32,
Austin, Texas, USA. Association for Computational
Linguistics.

Jessica Ficler and Yoav Goldberg. 2017. Improving
a strong neural parser with conjunction-specific fea-
tures. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
343–348, Valencia, Spain. Association for Computa-
tional Linguistics.

Lyn Frazier, Alan Munn, and Charles Clifton. 2000.
Processing coordinate structures. Journal of Psy-
cholinguistic Research, 29(4):343–370.

Lyn Frazier, Lori Taft, Tom Roeper, Charles Clifton,
and Kate Ehrlich. 1984. Parallel structure: A source
of facilitation in sentence comprehension. Memory
& Cognition, 12(5):421–430.

Kim Gerdes and Sylvain Kahane. 2015. Non-
constituent coordination and other coordinative con-
structions as dependency graphs. In Proceedings of
the Third International Conference on Dependency
Linguistics (Depling 2015), pages 101–110, Upp-
sala, Sweden. Uppsala University.

Aleksej V. Gladkij. 1968. "On describing the syntac-
tic structure of a sentence" (in Russian with English
summary). Computational Linguistics, 7:21–44.

Yoav Goldberg and Michael Elhadad. 2010. Inspect-
ing the structural biases of dependency parsing al-
gorithms. In Proceedings of the Fourteenth Confer-
ence on Computational Natural Language Learning,
pages 234–242, Uppsala, Sweden. Association for
Computational Linguistics.

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
Transactions of the Association for Computational
Linguistics, 1:403–414.

https://doi.org/10.3115/981967.981970
https://doi.org/10.3115/981967.981970
https://www.aclweb.org/anthology/2021.eacl-main.117
https://www.aclweb.org/anthology/2021.eacl-main.117
https://www.aclweb.org/anthology/2020.iwpt-1.16
https://www.aclweb.org/anthology/2020.iwpt-1.16
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://www.aclweb.org/anthology/H05-1104
https://www.aclweb.org/anthology/H05-1104
https://www.aclweb.org/anthology/H05-1104
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.18653/v1/P16-1079
https://doi.org/10.18653/v1/P16-1079
https://doi.org/10.18653/v1/D16-1003
https://doi.org/10.18653/v1/D16-1003
https://www.aclweb.org/anthology/E17-2055
https://www.aclweb.org/anthology/E17-2055
https://www.aclweb.org/anthology/E17-2055
https://doi.org/10.1023/A:1005156427600
https://doi.org/10.3758/BF03198303
https://doi.org/10.3758/BF03198303
https://www.aclweb.org/anthology/W15-2113
https://www.aclweb.org/anthology/W15-2113
https://www.aclweb.org/anthology/W15-2113
https://www.aclweb.org/anthology/W10-2927
https://www.aclweb.org/anthology/W10-2927
https://www.aclweb.org/anthology/W10-2927
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237

7177

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5):602–610.

Stefan Grünewald, Prisca Piccirilli, and Annemarie
Friedrich. 2021. Coordinate constructions in En-
glish enhanced Universal Dependencies: Analysis
and computational modeling. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 795–809, Online. Association for Com-
putational Linguistics.

Jan Hajič, Eduard Bejček, Jaroslava Hlavacova, Marie
Mikulová, Milan Straka, Jan Štěpánek, and Barbora
Štěpánková. 2020. Prague dependency treebank -
consolidated 1.0. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5208–5218, Marseille, France. European Language
Resources Association.

Jan Hajič, Barbora Vidová Hladká, Jarmila Panevová,
Eva Hajičová, Petr Sgall, and Petr Pajas. 2001.
Prague dependency treebank 1.0 (LDC2001T10).

Chung-hye Han and Anoop Sarkar. 2017. Coordina-
tion in TAG without the Conjoin Operation. In
Proceedings of the 13th International Workshop on
Tree Adjoining Grammars and Related Formalisms,
pages 43–52, Umeå, Sweden. Association for Com-
putational Linguistics.

Atsushi Hanamoto, Takuya Matsuzaki, and Jun’ichi
Tsujii. 2012. Coordination structure analysis using
dual decomposition. In Proceedings of the 13th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 430–438, Avi-
gnon, France. Association for Computational Lin-
guistics.

Kazuo Hara, Masashi Shimbo, Hideharu Okuma, and
Yuji Matsumoto. 2009. Coordinate structure analy-
sis with global structural constraints and alignment-
based local features. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 967–
975, Suntec, Singapore. Association for Computa-
tional Linguistics.

Deirdre Hogan. 2007. Coordinate noun phrase disam-
biguation in a generative parsing model. In Proceed-
ings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 680–687, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Richard A. Hudson. 1984. Word Grammar. Blackwell,
Oxford.

Timo Järvinen and Pasi Tapanainen. 1998. Towards an
implementable dependency grammar. In Process-
ing of Dependency-Based Grammars, pages 1–10,
Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for En-
glish. In Proceedings of the 16th Nordic Conference
of Computational Linguistics (NODALIDA 2007),
pages 105–112, Tartu, Estonia. University of Tartu,
Estonia.

Sylvain Kahane. 1997. Bubble trees and syntactic rep-
resentations. In Proceedings of the 5th Meeting
of Mathematics of Language, pages 70–76, Saar-
brücken, Germany.

Ronald M. Kaplan and John T. Maxwell III. 1988.
Constituent coordination in lexical-functional gram-
mar. In Proceedings of International Conference
on Computational Linguistics, pages 303–305, Bu-
dapest, Hungary.

Jin Dong Kim, Tomoko Ohta, Yuka Tateisi, and
Jun’ichi Tsujii. 2003. GENIA corpus—a semanti-
cally annotated corpus for bio-textmining. Bioinfor-
matics, 19(suppl_1):i180–i182.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 673–682, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Sadao Kurohashi and Makoto Nagao. 1994. A syn-
tactic analysis method of long Japanese sentences
based on the detection of conjunctive structures.
Computational Linguistics, 20(4):507–534.

Vincenzo Lombardo and Leonardo Lesmo. 1998. Unit
coordination and gapping in dependency theory. In
Processing of Dependency-Based Grammars, pages
11–20, Montreal, Quebec, Canada. Association for
Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University Press of New York, Al-
bany.

Igor Mel’čuk. 2003. Levels of dependency in linguis-
tic description: Concepts and problems. In Vilmos
Ágel, Ludwig M. Eichinger, Hans Werner Eroms,

https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://www.aclweb.org/anthology/2021.eacl-main.67
https://www.aclweb.org/anthology/2021.eacl-main.67
https://www.aclweb.org/anthology/2021.eacl-main.67
https://www.aclweb.org/anthology/2020.lrec-1.641
https://www.aclweb.org/anthology/2020.lrec-1.641
https://catalog.ldc.upenn.edu/LDC2001T10
https://www.aclweb.org/anthology/W17-6205
https://www.aclweb.org/anthology/W17-6205
https://www.aclweb.org/anthology/E12-1044
https://www.aclweb.org/anthology/E12-1044
https://www.aclweb.org/anthology/P09-1109
https://www.aclweb.org/anthology/P09-1109
https://www.aclweb.org/anthology/P09-1109
https://www.aclweb.org/anthology/P07-1086
https://www.aclweb.org/anthology/P07-1086
https://www.aclweb.org/anthology/W98-0501
https://www.aclweb.org/anthology/W98-0501
https://www.aclweb.org/anthology/W07-2416
https://www.aclweb.org/anthology/W07-2416
https://www.aclweb.org/anthology/W07-2416
https://www.aclweb.org/anthology/C88-1061
https://www.aclweb.org/anthology/C88-1061
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/J94-4001
https://www.aclweb.org/anthology/J94-4001
https://www.aclweb.org/anthology/J94-4001
https://www.aclweb.org/anthology/W98-0502
https://www.aclweb.org/anthology/W98-0502
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004

7178

Peter Hellwig, Hans Jürgen Heringer, and Henning
Lobin, editors, Dependency and Valency: An Inter-
national Handbook of Contemporary Research, vol-
ume 1, pages 188–229. Walter de Gruyter, Berlin.

David Milward. 1994. Non-constituent coordination:
Theory and practice. In Proceedings of the 15th In-
ternational Conference on Computational Linguis-
tics, volume 2, pages 935–941, Kyoto, Japan.

Alireza Mohammadshahi and James Henderson. 2020.
Graph-to-graph Transformer for transition-based de-
pendency parsing. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3278–3289, Online. Association for Computational
Linguistics.

Jens Nilsson, Joakim Nivre, and Johan Hall. 2006.
Graph transformations in data-driven dependency
parsing. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 257–264, Sydney, Aus-
tralia. Association for Computational Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing Universal
Dependency treebanks: A case study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102–107, Brussels, Bel-
gium. Association for Computational Linguistics.

Martin Popel, David Mareček, Jan Štěpánek, Daniel
Zeman, and Zděněk Žabokrtský. 2013. Coordina-
tion structures in dependency treebanks. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 517–527, Sofia, Bulgaria. Association
for Computational Linguistics.

Owen Rambow. 2010. The simple truth about de-
pendency and phrase structure representations: An
opinion piece. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 337–340, Los Angeles, California,
USA. Association for Computational Linguistics.

Ines Rehbein, Julius Steen, Bich-Ngoc Do, and Anette
Frank. 2017. Universal Dependencies are hard to
parse — or are they? In Proceedings of the Fourth
International Conference on Dependency Linguis-
tics (Depling 2017), pages 218–228, Pisa, Italy.
Linköping University Electronic Press.

Swarnadeep Saha and Mausam. 2018. Open informa-
tion extraction from conjunctive sentences. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 2288–2299, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Swarnadeep Saha, Harinder Pal, and Mausam. 2017.
Bootstrapping for numerical Open IE. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 317–323, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Federico Sangati. 2010. A probabilistic generative
model for an intermediate constituency-dependency
representation. In Proceedings of the ACL 2010
Student Research Workshop, pages 19–24, Uppsala,
Sweden. Association for Computational Linguistics.

Federico Sangati and Chiara Mazza. 2009. An English
dependency treebank à la Tesnière. In Proceedings
of the 8th International Workshop on Treebanks and
Linguistic Theories, pages 173–184, Milan, Italy.

Anoop Sarkar and Aravind Joshi. 1996. Coordina-
tion in tree adjoining grammars: Formalization and
implementation. In Proceedings of the 16th Inter-
national Conference on Computational Linguistics,
pages 610–615, Copenhagen, Denmark.

Yuya Sawada, Takashi Wada, Takayoshi Shibahara,
Hiroki Teranishi, Shuhei Kondo, Hiroyuki Shindo,
Taro Watanabe, and Yuji Matsumoto. 2020. Coordi-
nation boundary identification without labeled data
for compound terms disambiguation. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 3043–3049, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Sebastian Schuster, Matthew Lamm, and Christo-
pher D. Manning. 2017. Gapping constructions in
Universal Dependencies v2. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 123–132, Gothenburg, Swe-
den. Association for Computational Linguistics.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-

https://www.aclweb.org/anthology/C94-2151
https://www.aclweb.org/anthology/C94-2151
https://doi.org/10.18653/v1/2020.findings-emnlp.294
https://doi.org/10.18653/v1/2020.findings-emnlp.294
https://doi.org/10.3115/1220175.1220208
https://doi.org/10.3115/1220175.1220208
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
https://doi.org/10.18653/v1/W18-6012
https://doi.org/10.18653/v1/W18-6012
https://www.aclweb.org/anthology/P13-1051
https://www.aclweb.org/anthology/P13-1051
https://www.aclweb.org/anthology/N10-1049
https://www.aclweb.org/anthology/N10-1049
https://www.aclweb.org/anthology/N10-1049
https://www.aclweb.org/anthology/W17-6525
https://www.aclweb.org/anthology/W17-6525
https://www.aclweb.org/anthology/C18-1194
https://www.aclweb.org/anthology/C18-1194
https://doi.org/10.18653/v1/P17-2050
https://www.aclweb.org/anthology/P10-3004
https://www.aclweb.org/anthology/P10-3004
https://www.aclweb.org/anthology/P10-3004
https://unora.unior.it/retrieve/handle/11574/191031/66348/Sangati_2009_An%20English.pdf
https://unora.unior.it/retrieve/handle/11574/191031/66348/Sangati_2009_An%20English.pdf
https://www.aclweb.org/anthology/C96-2103
https://www.aclweb.org/anthology/C96-2103
https://www.aclweb.org/anthology/C96-2103
https://doi.org/10.18653/v1/2020.coling-main.271
https://doi.org/10.18653/v1/2020.coling-main.271
https://doi.org/10.18653/v1/2020.coling-main.271
https://www.aclweb.org/anthology/W17-0416
https://www.aclweb.org/anthology/W17-0416
https://www.aclweb.org/anthology/L16-1376/

7179

proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), pages 2371–2378, Portorož,
Slovenia. European Language Resources Associa-
tion.

Tianze Shi, Liang Huang, and Lillian Lee. 2017.
Fast(er) exact decoding and global training for
transition-based dependency parsing via a minimal
feature set. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12–23, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Masashi Shimbo and Kazuo Hara. 2007. A discrim-
inative learning model for coordinate conjunctions.
In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 610–619, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Mark Steedman. 1996. Surface Structure and Interpre-
tation. Number 30 in Linguistic Inquiry Monograph.
The MIT Press, Cambridge, Massachusetts.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Hiroki Teranishi, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2017. Coordination boundary identification
with similarity and replaceability. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 264–272, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Hiroki Teranishi, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2019. Decomposed local models for coor-
dinate structure parsing. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3394–3403, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Lucien Tesnière. 1959. Eléments de Syntaxe Struc-
turale. Librairie C. Klincksieck, Paris.

Niina Ning Zhang. 2009. Coordination in Syntax.
Cambridge Studies in Linguistics. Cambridge Uni-
versity Press, New York.

https://www.aclweb.org/anthology/L16-1376/
https://www.aclweb.org/anthology/L16-1376/
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://www.aclweb.org/anthology/D07-1064
https://www.aclweb.org/anthology/D07-1064
https://www.aclweb.org/anthology/I17-1027
https://www.aclweb.org/anthology/I17-1027
https://doi.org/10.18653/v1/N19-1343
https://doi.org/10.18653/v1/N19-1343

7180

Appendix A Dataset Processing and
Statistics

We follow Teranishi et al. (2019) and use the same
dataset splits and pre-processing steps. For the
Penn Treebank (PTB; Marcus et al., 1993) data
with added coordination annotations (Ficler and
Goldberg, 2016a), we use WSJ sections 02-21
for training, section 22 for development, and sec-
tion 23 for test sets respectively. We also use
Teranishi et al.’s (2019) pre-processing steps in
stripping quotation marks surrounding PTB coor-
dinated phrases to normalize irregular coordina-
tions. This results in 39,832/1,700/2,416 sentences
and 19,890/848/1,099 coordination structures in
train/dev/test splits respectively. For the GENIA
treebank (Kim et al., 2003), we use the beta ver-
sion of the corpus and follow the same 5-fold cross-
validation splits as Teranishi et al. (2019). In total,
GENIA contains 2,508 sentences and 3,598 coor-
dination structures.

To derive bubble tree representations, we first
convert the PTB-style phrase-structure trees in both
treebanks with the conversion tool (Schuster and
Manning, 2016) provided by the Stanford CoreNLP
toolkit version 4.2.0 into Universal Dependencies
(UD; Nivre et al., 2016) style. We then merge
the UD trees with the bubbles formed by the co-
ordination boundaries. We define the boundaries
to be from the beginning of the first conjunct to
the end of the last conjunct for each coordinated
phrase. We attach all conjuncts to their corre-
sponding bubbles with a “conj” label, and map any
“conj”-labeled dependencies outside an annotated
coordination to “dep”. We resolve modifier scope
ambiguities according to conjunct annotations: if
the modifier is within the span of a conjunct, then
it is a private modifier; otherwise, it is a shared
modifier to the entire coordinated phrase and we
attach it to the phrasal bubble. Since our transition
system targets projective bubble trees, we filter out
any non-projective trees during training (but still
evaluate on them during testing). We retain 39,678
sentences, or 99.6% of the PTB training set, and
2,429 sentences, or 96.9% of the GENIA dataset.

Appendix B Implementation Details

Our implementation (https://www.github.com/
tzshi/bubble-parser-acl21) is based on PyTorch.

We train our models by using the Adam opti-
mizer (Kingma and Ba, 2015). After a fixed num-
ber of optimization steps (3,200 steps for PTB and

Adam Optimizer:
Initial learning rate for bi-LSTM 10−3

Initial learning rate for BERT 10−5

β1 0.9
β2 0.999
ε 10−8

Minibatch size 8
Linear warmup steps 800
Gradient clipping L2 norm 5.0

Inputs to bi-LSTM:
Word-embedding dimensionality 100
POS tag-embedding dimensionality 32
Character bi-LSTM layers 1
Character bi-LSTM dimensionality 128

Bi-LSTM:
Number of layers 3
Dimensionality 800
Dropout 0.3

MLPs (same for all MLPs):
Number of hidden layers 1
Hidden layer dimensionality 400
Activation function ReLU
Dropout 0.3

Table A1: Hyperparameters of our models.

800 steps for GENIA, based on their training set
sizes), we perform an evaluation on the dev set.
If the dev set performance fails to improve within
5 consecutive evaluation rounds, we multiply the
learning rate by 0.1. We terminate model training
when the learning rate has dropped three times,
and select the best model checkpoint based on dev
set F1 scores according to the “exact” metrics.14

For the BERT feature extractor, we finetune the
pretrained case-sensitive BERTbase model through
the transformers package.15 For the non-BERT
model, we use pre-trained GloVe embeddings (Pen-
nington et al., 2014).

Following prior practice, we embed gold POS
tags as input features when using bi-LSTM for the
models trained on the GENIA dataset, but we omit
the POS tag embeddings for the PTB dataset.

The training process for each model takes
roughly 10 hours using an RTX 2080 Ti GPU;
model inference speed is 41.9 sentences per sec-
ond.16

We select our hyperparameters by hand. Due
to computational constraints, our hand-tuning has
been limited to setting the dropout rates, and from
the candidates set of {0.0, 0.1, 0.3, 0.5} we chose

14Even though we report recall on GENIA, model selection
is still performed using F1.

15github.com/huggingface/transformers
16We have not yet done extensive optimization regarding

GPU batching for greedy transition-based parsers.

https://www.github.com/tzshi/bubble-parser-acl21
https://www.github.com/tzshi/bubble-parser-acl21
github.com/huggingface/transformers

7181

0.3 based on dev-set performance. Our hyperpa-
rameters are listed in Table A1.

Appendix C Extended Results

Table A2 and Table A3 include detailed evaluation
results on the PTB and GENIA datasets.

References
Jessica Ficler and Yoav Goldberg. 2016a. Coordina-

tion annotation extension in the Penn tree bank. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 834–842, Berlin, Germany. As-
sociation for Computational Linguistics.

Jessica Ficler and Yoav Goldberg. 2016b. A neural net-
work for coordination boundary prediction. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 23–32,
Austin, Texas, USA. Association for Computational
Linguistics.

Kazuo Hara, Masashi Shimbo, Hideharu Okuma, and
Yuji Matsumoto. 2009. Coordinate structure analy-
sis with global structural constraints and alignment-
based local features. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 967–
975, Suntec, Singapore. Association for Computa-
tional Linguistics.

Jin Dong Kim, Tomoko Ohta, Yuka Tateisi, and
Jun’ichi Tsujii. 2003. GENIA corpus—a semanti-
cally annotated corpus for bio-textmining. Bioinfor-
matics, 19(suppl_1):i180–i182.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations, San Diego, California, USA.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), pages 2371–2378, Portorož,
Slovenia. European Language Resources Associa-
tion.

Hiroki Teranishi, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2017. Coordination boundary identification
with similarity and replaceability. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 264–272, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Hiroki Teranishi, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2019. Decomposed local models for coor-
dinate structure parsing. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3394–3403, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1079
https://doi.org/10.18653/v1/P16-1079
https://doi.org/10.18653/v1/D16-1003
https://doi.org/10.18653/v1/D16-1003
https://www.aclweb.org/anthology/P09-1109
https://www.aclweb.org/anthology/P09-1109
https://www.aclweb.org/anthology/P09-1109
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/L16-1376/
https://www.aclweb.org/anthology/L16-1376/
https://www.aclweb.org/anthology/L16-1376/
https://www.aclweb.org/anthology/I17-1027
https://www.aclweb.org/anthology/I17-1027
https://doi.org/10.18653/v1/N19-1343
https://doi.org/10.18653/v1/N19-1343

7182

Dev Test
All NP All NP

P R F P R F P R F P R F

Exact

TSM17 74.13 73.34 73.74 76.21 75.51 75.86 71.48 70.70 71.08 75.20 74.84 75.01
TSM19 76.95 76.76 76.85 78.11 77.57 77.84 75.33 75.61 75.47 77.95 77.70 77.83
Ours 77.19 77.00 77.10 80.00 79.63 79.82 76.62 76.34 76.48 81.89 81.37 81.63

+BERT 84.25 84.55 84.40 88.53 88.33 88.43 83.85 83.62 83.74 85.33 85.19 85.26

Inner

FG16 72.34 72.25 72.29 75.17 74.82 74.99 72.81 72.61 72.70 76.91 75.31 76.10
TSM17 76.04 75.23 75.63 77.82 77.11 77.47 74.14 73.33 73.74 77.44 77.07 77.25
TSM19 79.19 79.00 79.10 80.64 80.09 80.36 77.60 77.88 77.74 80.19 79.93 80.06
Ours 78.61 78.42 78.51 82.07 81.69 81.88 78.45 78.16 78.30 84.29 83.76 84.03

+BERT 85.19 85.50 85.34 89.45 89.24 89.35 84.58 84.35 84.46 86.28 86.15 86.22

Table A2: Precision, recall, and F1 scores on the PTB dev and test sets.

NP VP ADJP S PP UCP SBAR ADVP Others All
Count 2,317 465 321 188 167 60 56 21 3 3,598

Exact

TSM17 57.14 54.83 72.27 8.51 55.68 28.33 57.14 85.71 0.00 55.22
TSM19 59.21 64.94 78.19 53.19 55.68 48.33 66.07 90.47 0.00 61.22
Ours 68.28 58.71 86.29 56.38 55.09 51.67 58.93 95.24 0.00 67.09

+BERT 79.41 76.34 88.79 77.13 73.05 61.67 76.79 100.0 33.33 79.18

Whole

HSOM09 64.2 54.2 80.4 22.9 59.9 36.7 51.8 85.7 66.7 61.5
FG16 65.08 71.82 74.76 17.02 56.28 51.67 91.07 80.95 33.33 64.14
TSM17 67.19 63.65 76.63 53.19 61.67 35.00 78.57 85.71 33.33 66.31
TSM19 59.30 65.16 78.19 53.19 55.68 48.33 66.07 90.47 0.00 61.31
Ours 69.40 59.35 87.85 57.45 56.89 51.67 62.50 95.24 0.00 68.23

+BERT 80.58 76.77 90.03 78.19 76.65 61.67 82.14 100.0 33.33 80.41

Table A3: Recall on the GENIA dataset.

