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Abstract

Linguistic probing of pretrained Transformer-
based language models (LMs) revealed that
they encode a range of syntactic and semantic
properties of a language. However, they are
still prone to fall back on superficial cues and
simple heuristics to solve downstream tasks,
rather than leverage deeper linguistic informa-
tion. In this paper, we target a specific facet
of linguistic knowledge, the interplay between
verb meaning and argument structure. We in-
vestigate whether injecting explicit informa-
tion on verbs’ semantic-syntactic behaviour
improves the performance of pretrained LMs
in event extraction tasks, where accurate verb
processing is paramount. Concretely, we im-
part the verb knowledge from curated lexi-
cal resources into dedicated adapter modules
(verb adapters), allowing it to complement, in
downstream tasks, the language knowledge ob-
tained during LM-pretraining. We first demon-
strate that injecting verb knowledge leads to
performance gains in English event extraction.
We then explore the utility of verb adapters for
event extraction in other languages: we investi-
gate 1) zero-shot language transfer with multi-
lingual Transformers and 2) transfer via (noisy
automatic) translation of English verb-based
lexical knowledge. Our results show that the
benefits of verb knowledge injection indeed ex-
tend to other languages, even when relying on
noisily translated lexical knowledge.

1 Introduction

Large Transformer-based encoders, pretrained with
self-supervised language modeling (LM) objec-
tives, form the backbone of state-of-the-art models
for most NLP tasks (Devlin et al., 2019; Yang et al.,
2019b; Liu et al., 2019). Recent probes showed
that they implicitly extract a non-negligible amount
of linguistic knowledge from text corpora in an
unsupervised fashion (Hewitt and Manning, 2019;
Vulić et al., 2020; Rogers et al., 2020, inter alia).

In downstream tasks, however, they often rely on
spurious correlations and superficial cues (Niven
and Kao, 2019) rather than a deep understanding
of language meaning (Bender and Koller, 2020),
which is detrimental to both generalisation and in-
terpretability (McCoy et al., 2019).

In this work, we focus on a specific facet of lin-
guistic knowledge: reasoning about events.1 Iden-
tifying tokens in the text that mention events and
classifying the temporal and causal relations among
them is crucial to understand the structure of a story
or dialogue (Carlson et al., 2002; Miltsakaki et al.,
2004) and to ground a text in real-world facts.

Verbs (with their arguments) are prominently
used for expressing events (with their participants).
Thus, fine-grained knowledge about verbs, e.g., the
syntactic patterns in which they partake and the
semantic frames, may help pretrained encoders to
achieve a deeper understanding of text and improve
their performance in event-oriented downstream
tasks. There already exist some expert-curated
computational resources that organise verbs into
classes based on their syntactic-semantic properties
(Jackendoff, 1992; Levin, 1993). In particular, here
we consider English VerbNet and FrameNet as rich
sources of verb knowledge.

Expanding a line of research on injecting ex-
ternal linguistic knowledge into pretrained LMs
(Peters et al., 2019; Levine et al., 2020; Lauscher
et al., 2020b), we integrate verb knowledge into the
LMs for the first time. We devise a new method to
distil verb knowledge into dedicated adapter mod-
ules (Pfeiffer et al., 2020b), which reduce the risk
of (catastrophic) forgetting of and allow seamless
modular integration with distributional knowledge.

1For instance, in the sentence “Stately, plump Buck Mulli-
gan came from the stairhead, bearing a bowl of lather (...)”, an
event of COMING occurs in the past, with BUCK MULLIGAN
as a participant, simultaneously to an event of BEARING with
an additional participant, a BOWL.
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We hypothesise that complementing pretrained
LMs with verb knowledge should benefit model
performance in downstream tasks that involve event
extraction and processing. We first put this hypoth-
esis to the test in English monolingual event identi-
fication and classification tasks from the TempEval
(UzZaman et al., 2013) and ACE (Doddington et al.,
2004) datasets. We report modest but consistent
improvements in the former, and significant per-
formance boosts in the latter, thus verifying that
verb knowledge is indeed paramount for a deeper
understanding of events and their structure.

Moreover, expert-curated resources are not avail-
able for most of the languages spoken worldwide.
Therefore, we also investigate the effectiveness of
transferring verb knowledge across languages; in
particular, from English to Spanish, Arabic and
Chinese. The results demonstrate the success of
the transfer techniques, and also shed some light on
an important linguistic question: to what extent can
verb classes (and predicate–argument structures)
be considered cross-lingually universal, rather than
varying across languages (Hartmann et al., 2013)?

Overall, our main contributions consist in 1) mit-
igating the limitations of pretrained encoders re-
garding event understanding by supplying external
verb knowledge; 2) proposing a new method to do
so in a modular way through verb adapters; 3) ex-
ploring techniques to transfer verb knowledge to
resource-poor languages. The performance gains
across four diverse languages and several event
processing tasks and datasets validate that comple-
menting distributional knowledge with curated verb
knowledge is both beneficial and cost-effective.

2 Verb Knowledge for Event Processing

Figure 1 illustrates our framework for injecting
verb knowledge from VerbNet or FrameNet and
leveraging it in downstream event processing tasks.
First, we inject the external verb knowledge, formu-
lated as the so-called lexical constraints (Mrkšić
et al., 2017; Ponti et al., 2019) (in our case – verb
pairs, see §2.1), into a (small) additional set of
adapter parameters (§2.2) (Houlsby et al., 2019).
Second (§2.3), we combine the language knowl-
edge encoded in the original LM parameters and
the verb knowledge from verb adapters for event
processing tasks. To this end, we either a) fine-tune
both sets of parameters (1. pretrained LM; 2. verb
adapters) or b) freeze both sets of parameters and
insert an additional set of task-specific adapter pa-
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Figure 1: Injecting verb knowledge into a pretrained
Transformer-based LM. 1) Dedicated verb adapters
trained to recognise pairs of verbs from the same Verb-
Net (VN) class or FrameNet (FN) frame; 2) Fine-
tuning for an event processing task: a) full fine-tuning
– LM’s original parameters and verb adapters both fine-
tuned for the task; b) task adapter (TA) fine-tuning –
additional task adapter is mounted on top of the verb
adapter and tuned for the task. For simplicity, we show
only a single Transformer layer. Snowflakes denote
frozen parameters in the respective training step.

rameters. In both cases, the task-specific training is
informed both by the general language knowledge
captured in the pretrained LM, and the specialised
verb knowledge, captured in the verb adapters.

2.1 Sources of Verb Lexical Knowledge

Given the inter-connectedness between verbs’
meaning and syntactic behaviour (Levin, 1993;
Kipper Schuler, 2005), we assume that refining
latent representation spaces with verb knowledge
would have a positive effect on event extraction
tasks that strongly revolve around verbs. Lexical
classes, defined in terms of verbs’ shared semantic-
syntactic properties, provide a mapping between
the verbs’ senses and the morpho-syntactic realisa-
tion of their arguments (Jackendoff, 1992; Levin,
1993). The potential of verb classifications lies in
their predictive power: for any given verb, a set of
rich semantic-syntactic properties can be inferred
based on its class membership. In this work, we
explicitly harness this rich linguistic knowledge to
aid pretrained LMs in capturing regularities in the
properties of verbs and their arguments.

We select two major English lexical databases
– VerbNet (Kipper Schuler, 2005) and FrameNet
(Baker et al., 1998) – as sources of verb knowledge
at the semantic-syntactic interface, each represent-
ing a different lexical framework.
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VerbNet (VN) (Kipper Schuler, 2005; Kipper et al.,
2006), the largest available verb-focused lexicon,
organises verbs into classes based on the overlap in
their semantic properties and syntactic behaviour;
it builds on the premise that a verb’s predicate-
argument structure informs its meaning (Levin,
1993). Each entry provides a set of thematic roles
and selectional preferences for the verbs’ argu-
ments; it also lists the syntactic contexts character-
istic for the class members. Its hierarchical classifi-
cation starts from broader classes and spans several
granularity levels where each subclass further re-
fines the semantic-syntactic properties inherited
from its parent class.2 The VN class member-
ship is English-specific, but the underlying verb
class construction principles are thought to apply
cross-lingually (Jackendoff, 1992; Levin, 1993); its
translatability has been indicated in previous work
(Vulić et al., 2017; Majewska et al., 2018). The
current English VN contains 329 main classes.

FrameNet (FN) (Baker et al., 1998) is more se-
mantically oriented than VN. Grounded in the
theory of frame semantics (Fillmore, 1976, 1977,
1982), it organises concepts according to semantic
frames, i.e., schematic representations of situations
and events, which they evoke, each characterised
by a set of typical roles assumed by its participants.
The word senses associated with each frame (FN’s
lexical units) are similar in terms of their semantic
content, as well as their typical argument structures.
Currently, English FN covers 1,224 frames and its
annotations illustrate the typical syntactic realisa-
tions of the frame elements. Frames themselves
are, however, semantically defined: this means that
they may be shared even across languages with
different syntactic properties.3

2.2 Training Verb Adapters

Training Task and Data Generation. In order to
inject external verb knowledge into pretrained LMs,
we devise an intermediary training task: we train

2For example, within a top-level class ‘free-80’, which
includes verbs like liberate, discharge, and exonerate which
participate in a NP V NP PP.THEME frame (e.g., It freed him of
guilt), there exists a subset of verbs participating in a syntactic
frame NP V NP S_ING (‘free-80-1’), within which there
exists an even more constrained subset of verbs appearing with
prepositional phrases headed specifically by the preposition
from (e.g., The scientist purified the water from bacteria).

3For instance, descriptions of transactions will include the
same frame elements Buyer, Seller, Goods, Money in most
languages. Indeed, English FN has inspired similar projects
in other languages: e.g., Spanish (Subirats and Sato, 2004),
Japanese (Ohara, 2012), and Danish (Bick, 2011).

a dedicated VN-/FN-knowledge adapter (hereafter
VN-Adapter and FN-Adapter). We frame the task
as binary word-pair classification: we predict if two
verbs belong to the same VN class or FN frame.
We extract training instances from FN and VN in-
dependently. This allows for a separate analysis of
the impact of verb knowledge from each resource.

We generate positive training instances by ex-
tracting all unique verb pairings from the set of
members of each main VN class/FN frame (e.g.,
walk–march), resulting in 181,882 instances cre-
ated from VN and 57,335 from FN. We then gener-
ate k = 3 negative examples per positive example
by combining controlled and random sampling. In
controlled sampling, we follow prior work on se-
mantic specialisation (Wieting et al., 2015; Glavaš
and Vulić, 2018b; Lauscher et al., 2020b). For
each positive example p = (w1, w2) in the training
batch B, we create two negatives p̂1 = (ŵ1, w2)
and p̂2 = (w1, ŵ2); ŵ1 is the verb from batch B
other than w1 that is closest to w2 in terms of their
cosine similarity in an auxiliary static word embed-
ding space Xaux ∈ Rd; conversely, ŵ2 is the verb
from B other than w2 closest to w1. We addition-
ally create one negative instance p̂3 = (ŵ1,ŵ2) by
randomly sampling ŵ1 and ŵ2 from batch B, not
considering w1 and w2. We ensure that the nega-
tives are not present in the global set of all positive
verb pairs.

Similar to Lauscher et al. (2020b), we tokenise
each (positive and negative) training instance into
WordPiece tokens, prepended with sequence start
token [CLS], and with [SEP] tokens in between
the verbs and at the end of the input sequence. We
use the representation of the [CLS] token xCLS ∈
Rh (with h as the hidden state size of the Trans-
former) from the last Transformer layer as the latent
representation of the verb pair, and feed it to a sim-
ple binary classifier:4 ŷ = softmax(xCLSWcl+bcl),
with Wcl ∈ Rh×2 and bcl ∈ R2 as classifier’s
trainable parameters. We train by minimising the
standard cross-entropy loss (LVERB in Figure 1).

Adapter Architecture. Instead of directly fine-
tuning all parameters of the pretrained Transformer,
we opt for storing verb knowledge in a separate set
of adapter parameters, keeping the verb knowledge

4We also experimented with sentence-level tasks: we fed
(a) pairs of sentence examples from VN/FN in a binary clas-
sification setup (e.g., Jackie leads Rose to the store. – Jackie
escorts Rose.); and (b) individual sentences in a multi-class
classification setup (predicting the correct VN class/FN frame).
These variants, however, led to weaker performance.
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separate from the general language knowledge ac-
quired in pretraining. This (1) allows downstream
training to flexibly combine the two sources of
knowledge, and (2) bypasses the issues with catas-
trophic forgetting and interference (Hashimoto
et al., 2017; de Masson d'Autume et al., 2019).

We adopt the standard efficient adapter archi-
tecture of Pfeiffer et al. (2020a,c). In each
Transformer layer l, we insert a single adapter
(Adapterl) after the feed-forward sub-layer. The
adapter itself is a two-layer feed-forward neural
network with a residual connection, consisting of
a down-projection D ∈ Rh×m, a GeLU activa-
tion (Hendrycks and Gimpel, 2016), and an up-
projection U ∈ Rm×h, where h is the hidden
size of the Transformer model and m is the di-
mensionality of the adapter: Adapterl(hl, rl) =
Ul(GeLU(Dl(hl))) + rl; where rl is the resid-
ual connection, output of the Transformer’s feed-
forward layer, and hl is the Transformer hidden
state, output of the subsequent layer normalisation.

2.3 Downstream Fine-Tuning for Event Tasks
The next step is downstream fine-tuning for event
processing tasks. We experiment with (1) token-
level event trigger identification and classification
and (2) span extraction for event triggers and ar-
guments (a sequence labeling task); see §3. For
the former, we mount a classification head – a sim-
ple single-layer feed-forward softmax regression
classifier – on top of the Transformer augmented
with VN-/FN-Adapters. For the latter, we follow
the architecture from prior work (M’hamdi et al.,
2019; Wang et al., 2019) and add a CRF layer (Laf-
ferty et al., 2001) on top of the sequence of Trans-
former’s outputs (for subword tokens).

For all tasks, we propose and evaluate two differ-
ent fine-tuning regimes: (1) full fine-tuning, where
we update both the original Transformer’s parame-
ters and VN-/FN-Adapters (see 2a in Figure 1); and
(2) task-adapter (TA) fine-tuning, where we keep
both Transformer’s original parameters and VN-
/FN-Adapters frozen, while stacking a new train-
able task adapter on top of the VN-/FN-Adapter in
each Transformer layer (see 2b in Figure 1).

2.4 Cross-Lingual Transfer
Creation of curated resources like VN or FN takes
years of expert linguistic labour. Consequently,
such resources do not exist for a vast majority
of languages. Given the inherent cross-lingual
nature of verb classes and semantic frames (see

VerbNet FrameNet

English (EN) 181,882 57,335
Spanish (ES) 96,300 36,623
Chinese (ZH) 60,365 21,815
Arabic (AR) 70,278 24,551

Table 1: Number of positive verb pairs in English, and
in each target language obtained via VTRANS (§2.4).

§2.1), we investigate the potential for verb knowl-
edge transfer from English to target languages,
without any manual target-language adjustments.
Massively multilingual LMs, such as multilingual
BERT (mBERT) (Devlin et al., 2019) or XLM-
R (Conneau et al., 2020) have become the de
facto standard mechanisms for zero-shot (ZS) cross-
lingual transfer. In our first transfer approach: we
fine-tune mBERT first on the English verb knowl-
edge, then on English task data, and then simply
make task predictions for the target language input.

The second approach, dubbed VTRANS, is in-
spired by the work on cross-lingual transfer of se-
mantic specialisation for static word embeddings
(Glavaś et al., 2019; Ponti et al., 2019; Wang et al.,
2020b). In brief (with full details in Appendix
C), starting from a set of positive pairs from En-
glish VN/FN, VTRANS involves three steps: (1)
automatic translation of verbs in each pair into
the target language, (2) filtering of the noisy target
language pairs by means of a transferred relation
prediction model trained on the English examples,
and (3) training the verb adapters injected into
the pretrained model, now with the translated and
filtered target-language verb pairs. For the mono-
lingual target-language FN-/VN-Adapter training,
we follow the protocol used for English, see §2.2.

3 Experimental Setup

Event Processing Tasks and Data. In event pro-
cessing tasks, systems are tasked with detecting
that something happened, identifying what type of
occurrence took place, as well as what entities were
involved. Verbs typically act as the organisational
core of each such event schema, carrying a lot of se-
mantic and structural weight. Therefore, a model’s
grasp of verbs’ properties should have a bearing
on final task performance. Based on this assump-
tion, we select event extraction and classification
as suitable tasks to profile the methods from §2.

These tasks and the corresponding data are based
on the two prominent frameworks for annotating
event expressions: TimeML (Pustejovsky et al.,
2003, 2005) and the Automatic Content Extraction
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(ACE) (Doddington et al., 2004). First, we rely
on the TimeML-annotated corpus from TempEval
tasks (Verhagen et al., 2010; UzZaman et al., 2013),
which targets automatic identification of temporal
expressions and relations, and events. Second, we
use the ACE dataset: it provides annotations for
entities, the relations between them, and for events
in which they participate in newswire text.5

Task 1: Trigger Identification and Classifica-
tion (TempEval). We frame the first event pro-
cessing task as a token-level classification problem,
predicting whether a token triggers an event and
assigning it to one of the following event types: OC-
CURRENCE (e.g., died, attacks), STATE (e.g., share,
assigned), REPORTING (e.g., announced, said), I-
ACTION (e.g., agreed, trying), I-STATE (e.g., under-
stands, wants, consider), ASPECTUAL (e.g., ending,
began), and PERCEPTION (e.g., watched, spotted).6

We use the TempEval-3 data for English and Span-
ish (UzZaman et al., 2013), and the TempEval-2
data for Chinese (Verhagen et al., 2010) (see Table
6 in the appendix for exact dataset sizes).

Task 2: Trigger and Argument Identification
and Classification (ACE). In this sequence la-
beling task, we detect and label event triggers and
their arguments, with four individually scored sub-
tasks: (i) trigger identification, where we identify
the key word conveying the nature of the event,
and (ii) trigger classification, where we classify
the trigger word into one of the predefined cate-
gories; (iii) argument identification, where we pre-
dict whether an entity mention is an argument of
the event identified in (i), and (iv) argument classifi-
cation, where the correct role needs to be assigned
to the identified event arguments. We use the ACE
data available for English, Chinese, and Arabic.7

Event extraction as specified in these two frame-
works is a challenging, highly context-sensitive
problem, where different words (most often verbs)
may trigger the same type of event, and con-
versely, the same word (verb) can evoke differ-

5We provide more details about the frameworks and their
corresponding annotation schemes in Appendix A.

6E.g., in the sentence: “The rules can also affect small
businesses, which sometimes pay premiums tied to employees’
health status and claims history.”, affect and pay are event
triggers of type STATE and OCCURRENCE, respectively.

7The ACE annotations distinguish 34 trigger types (e.g.,
Business:Merge-Org, Justice:Trial-Hearing, Conflict:Attack)
and 35 argument roles. Following previous work (Hsi et al.,
2016), we conflate eight time-related argument roles - e.g.,
‘Time-At-End’, ‘Time-Before’, ‘Time-At-Beginning’ - into a
single ‘Time’ role in order to alleviate training data sparsity.

ent types of event schemata depending on the con-
text. Adopting these tasks for evaluation thus tests
whether leveraging fine-grained curated knowledge
of verbs’ semantic-syntactic behaviour can improve
pretrained LMs’ reasoning about event-triggering
predicates and their arguments.

Model Configurations. For each task, we com-
pare the performance of the underlying “vanilla”
BERT-based model (see §2.3) against its variant
with an added VN-Adapter or FN-Adapter8 (see
§2.2) in two regimes: (a) full fine-tuning, and (b)
task adapter (TA) fine-tuning (see Figure 1). To
ensure that any performance gains are not merely
due to increased parameter capacity offered by the
adapters, we also evaluate a variant where we re-
place the verb adapter with a randomly initialised
adapter of the same size (+Random). Additionally,
we examine the impact of increasing the capacity
of the trainable task adapter by replacing it with a

‘Double Task Adapter’ (2TA), i.e., a task adapter
with double the number of trainable parameters
compared to the base architecture from §2.2. Fi-
nally, we compare the VN/FN-Adapter approach
with a computationally more expensive alternative
method of injecting external verb knowledge, se-
quential fine-tuning, where the full BERT is first
fine-tuned on the FN/VN data (as in 2.2) and then
on the task (see Appendix D for details).

Training Details: Verb Adapters. We experi-
mented with k ∈ {2, 3, 4} negative examples and
the following combinations of controlled (c) and
randomly (r) sampled negatives (see §2.2): k = 2
[cc], k = 3 [ccr], k = 4 [ccrr]. In our preliminary
experiments we found k = 3 [ccr] to yield best-
performing adapters. The evaluation and analysis
presented in §4 are thus based on this setup. Our
VN- and FN-Adapters are injected into the BERT
Base cased model: the details on adapter training
and hyperparameter search are in Appendix B.

Downstream Task Fine-Tuning. In downstream
fine-tuning on TempEval, we train for 10 epochs in
batches of size 32, with a learning rate 1e− 4 and
maximum input sequence length of T = 128 Word-
Piece tokens. For ACE, in light of a greater data
sparsity,9 we search for optimal hyperparameters

8We also experimented with inserting both verb adapters
simultaneously; however, this resulted in weaker downstream
performance than adding each separately, a likely product of
the partly redundant, partly conflicting information encoded
in these adapters (see §2.1 for comparison of VN and FN).

9Most event types (≈ 70%) have fewer than 100 labeled
instances, and three have fewer than 10 (Liu et al., 2018).
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for each language and evaluation setup from the
following grid: learning rate l ∈ {1e− 5, 1e− 6},
epochs n ∈ {3, 5, 10, 25, 50}, batch b ∈ {8, 16}
(maximum input sequence length T = 128).

Transfer Experiments in zero-shot (ZS) setups are
based on mBERT, to which we add the VN- or FN-
Adapter trained on the English VN/FN data. We
train the model on English training data available
for each task, and evaluate it on the target-language
test set. For the VTRANS approach (§2.4), we
use language-specific BERT models available for
our target languages, and leverage target-language
adapters trained on translated and automatically
refined verb pairs. The model, with or without the
target-language VN-/FN-Adapter, is trained and
evaluated on the training and test data available in
the language. We carry out the procedure for three
target languages (see Table 1). We use the same
negative sampling parameter configuration proven
strongest in our English experiments (k = 3 [ccr]).

4 Results and Discussion

English Event Processing. Table 2 shows the per-
formance on English Task 1 (TempEval) and Task
2 (ACE). First, we note that the computationally
more efficient setup with a dedicated task adapter
(TA) yields higher absolute scores compared to
full fine-tuning (FFT) on TempEval. When the
underlying BERT is frozen along with the added
FN-/VN-Adapter, the TA is enforced to encode
additional task-specific knowledge into its parame-
ters, beyond what is provided in the verb adapter.
This yields two strongest results overall from the
+FN/VN setups. On ACE, the primacy of TA-based
training is overturned in favour of FFT. Encourag-
ingly, boosts provided by verb adapters are visible
regardless of the chosen task fine-tuning regime.

We notice consistent statistically significant10

improvements in the +VN setup, although the per-
formance of the TA-based setups clearly suffers in
argument (ARG) tasks due to decreased trainable
parameter capacity. Lack of visible improvements
from the Random Adapter supports the interpre-
tation that performance gains indeed stem from
the added useful ‘non-random’ signal in the verb
adapters. In addition, we verify how our principal
setup with added adapter modules compares to an
alternative established approach, sequential fine-
tuning (+FN/VNseq). In TempEval, we note that

10We test significance with the Student’s t-test with a sig-
nificance value set at α = 0.05 for sets of model F1 scores.

fine-tuning all model parameters on VN/FN data
allows retrieving more additional verb knowledge
beneficial for task performance than adding smaller
pre-trained adapters on top of the underlying model.
However, FN/VNseq scores are still inferior to the
results achieved in the TA-based +FN/VN setup.
In ACE, the FN/VNseq results in trigger tasks are
weaker than those achieved through the addition of
self-contained knowledge adapters, however, they
offer additional boosts in argument tasks.

Multilingual Event Processing. Table 3 com-
pares the performance of zero-shot (ZS) transfer
and monolingual target training (via VTRANS) on
TempEval in Spanish and Chinese. For both, the
addition of the FN-Adapter in the TA-based setup
boosts ZS transfer. The benefits extend to the FFT
setup in Chinese, achieving the top score overall.

In monolingual evaluation, we observe consis-
tent gains from the added transferred knowledge
via VTRANS in Spanish. In Chinese performance
boosts come from the transferred VN-style class
membership information (+VN). This suggests that
even the noisily translated verb pairs carry enough
useful signal through to the target language. To
tease apart the contribution of the language-specific
encoders and transferred verb knowledge, we carry
out an additional monolingual evaluation substi-
tuting the target-language BERT with mBERT,
trained on (noisy) target language verb signal (ES-
MBERT/ZH-MBERT). Although mBERT scores
are lower than monolingual BERTs in absolute
terms, the use of the transferred verb knowledge
helps reduce the gap between the models, with
gains achieved over the baselines in Spanish.11

In ACE, the top scores are achieved in the mono-
lingual FFT setting; as with English, keeping the
full capacity of BERT parameters unfrozen notice-
ably helps performance.12 In Arabic, FN knowl-
edge provides performance boosts across the four
tasks and with both the zero-shot (ZS) and mono-
lingual (VTRANS) transfer approaches, whereas the
addition of the VN adapter boosts scores in ARG

tasks. The usefulness of FN knowledge extends
to zero-shot transfer in Chinese, and both adapters
benefit the ARG tasks in the monolingual (VTRANS)

11Due to analogous patterns in relative scores of mBERT
and monolingual BERTs in monolingual ACE evaluation, we
show the VTRANS mBERT results in ACE in Appendix E.

12This is especially the case in ARG tasks, where the TA-
based setup fails to achieve meaningful improvements over
zero, even with extended training up to 100 epochs. Due to
the computational burden of such long training, the results in
this setup are limited to trigger tasks (after 50 epochs).
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FFT +Rand +FN +VN +FNseq +VNseq TA +Rand +FN +VN

TempEval T-IDENT&CLASS 73.6 73.5 73.6 73.6 74.2 73.9 74.5 74.4 75.0 75.2
ACE T-IDENT 69.3 69.6 70.8 70.3 70.0 69.8 65.1 65.0 65.7 66.4

T-CLASS 65.3 65.5 66.7 66.2 65.4 65.4 58.0 58.5 59.5 60.2
ARG-IDENT 33.8 33.5 34.2 34.6 36.3 36.2 2.1 1.9 2.3 2.5
ARG-CLASS 31.6 31.6 32.2 32.8 34.3 33.9 0.6 0.6 0.8 0.8

Table 2: Results on English TempEval and ACE test sets for full fine-tuning (FFT) and the task adapter (TA) setup.
Provided are average F1 scores over 10 runs. Statistically significant (paired t-test; p < 0.05) improvements over
both baselines marked in bold; the same labeling is also used in all subsequent tables.

FFT +Random +FN +VN TA +Random +FN +VN

Spanish MBERT-ZS 37.2 37.2 37.0 36.6 38.0 38.0 38.6 36.5
ES-BERT 77.7 77.1 77.6 77.4 70.0 70.0 70.7 70.6
ES-MBERT 73.5 73.6 74.4 74.1 65.3 65.4 65.8 66.2

Chinese MBERT-ZS 49.9 49.9 50.5 47.9 49.2 49.5 50.1 48.2
ZH-BERT 82.0 81.6 81.8 81.8 76.2 76.3 75.9 76.9
ZH-MBERT 80.2 80.1 79.9 80.0 71.8 71.8 72.1 71.9

Table 3: Results on Spanish and Chinese TempEval test sets for full fine-tuning (FFT) and the task adapter (TA) set-
up, for zero-shot (ZS) transfer with mBERT and monolingual target language evaluation with language-specific
BERT (ES-BERT / ZH-BERT) or mBERT (ES-MBERT / ZH-MBERT), with FN/VN adapters trained on
VTRANS-translated verb pairs (see §2.4). F1 scores are averaged over 10 runs.

FFT +Random +FN +VN TA +Random +FN +VN

Arabic MBERT-ZS T-IDENT 15.8 13.5 17.2 16.3 29.4 30.3 32.9 32.4
T-CLASS 14.2 12.2 16.1 15.6 25.6 26.3 27.8 28.4
ARG-IDENT 1.2 0.6 2.1 2.7 2.0 3.3 3.3 3.6
ARG-CLASS 0.9 0.4 1.5 1.9 1.2 1.6 1.6 1.3

AR-BERT T-IDENT 68.8 68.9 70.2 68.6 24.0 21.3 24.6 23.5
T-CLASS 63.6 62.8 64.4 62.8 22.0 19.5 23.1 22.3
ARG-IDENT 31.7 29.3 34.0 33.4 – – – –
ARG-CLASS 28.4 26.7 30.3 29.7 – – – –

Chinese MBERT-ZS T-IDENT 36.9 36.7 42.1 36.8 47.8 49.4 55.0 55.4
T-CLASS 27.9 25.2 30.9 29.8 38.6 40.1 43.5 44.9
ARG-IDENT 4.3 3.1 5.5 6.1 5.1 6.0 7.6 8.4
ARG-CLASS 3.9 2.7 4.9 5.2 3.5 4.7 5.7 7.1

ZH-BERT T-IDENT 75.5 74.9 74.5 74.9 69.8 69.3 70.0 70.2
T-CLASS 67.9 68.2 68.0 68.6 58.4 57.5 59.9 60.0
ARG-IDENT 27.3 26.1 29.8 28.8 – – – –
ARG-CLASS 25.8 25.2 28.2 27.2 – – – –

Table 4: Results on Arabic and Chinese ACE test sets for full fine-tuning (FFT) and the task adapter (TA) setup,
for zero-shot (ZS) transfer with mBERT and VTRANS transfer approach with language-specific BERT (AR-BERT
/ ZH-BERT) and FN/VN adapters trained on noisily translated verb pairs (§2.4). F1 scores averaged over 5 runs.

transfer setup. Notably, in zero-shot transfer, we
observe that the highest scores are achieved in the
task adapter (TA) fine-tuning, where the inclusion
of the verb adapters offers additional gains. Overall,
however, the argument tasks elude the restricted ca-
pacity of the TA-based setup, with very low scores.

Additionally, in Appendix E we show the results
with sequential fine-tuning. Similarly to our EN re-
sults (Table 2), we observe advantages of using the
full capacity of BERT parameters to encode verb
knowledge in most setups in TempEval, while the
comparison to the adapter-based approach is less
clear-cut on ACE. In sum, sequential fine-tuning
is a strong verb knowledge injection variant; how-
ever, it is computationally more expensive and less

portable. The modular and efficient adapter-based
approach therefore presents an attractive alterna-
tive, while offering competitive task performance.
Crucially, the strong results from the sequential
setup further corroborate our core finding that ex-
ternal lexical verb information is indeed beneficial
for event processing tasks across the board.

Zero-shot Transfer vs Monolingual Training.
The results reveal a considerable gap between the
performance of ZS transfer versus monolingual fine-
tuning. The event extraction tasks pose a signif-
icant challenge to zero-shot transfer via mBERT;
however, mBERT exhibits much more robust per-
formance in the monolingual setup, with available
target-language training data for event tasks. In
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the latter, mBERT trails language-specific BERTs
by less than 5 points (Table 3). This is encourag-
ing, given that monolingual pretrained LMs cur-
rently exist only for a small set of high-resource
languages. For all other languages – should there
be language-specific event task data – one can lever-
age mBERT. Moreover, mBERT’s performance is
further improved by the inclusion of transferred
verb knowledge via VTRANS: in Spanish, where
its typological closeness to English renders di-
rect transfer of semantic-syntactic information vi-
able, the addition of VTRANS-based verb adapters
yields significant gains both in the FFT and the TA
setup.13 These results confirm the effectiveness of
lexical knowledge transfer suggested previously in
the work on semantic specialisation of static word
vectors (Ponti et al., 2019; Wang et al., 2020b).

Double Task Adapter. Promisingly, we see in
Table 5 that the relative performance gains from
FN/VN adapters are preserved regardless of the
added trainable task adapter capacity. As expected,
the increased task adapter size helps argument tasks
in ACE, where verb adapters produce additional
gains. Overall, this suggests that verb adapters
indeed encode additional, non-redundant informa-
tion beyond what is offered by the pretrained model
alone, and boost the dedicated task adapter.

Cleanliness of Verb Knowledge. Despite the
promising results with the VTRANS approach, there
are still fundamental limitations: (1) noisy trans-
lation based on cross-lingual semantic similarity
may already break the VerbNet class membership
alignment; and (2) the language-specificity of verb
classes due to which they cannot be directly ported
to another language without adjustments.14

The fine-grained class divisions and exact class
membership in VN may be too English-specific to
allow direct automatic translation. On the contrary,
semantically-driven FrameNet lends itself better
to cross-lingual transfer: we report higher average
gains in cross-lingual setups with the FN-Adapter.

To quickly verify if the noisy direct transfer
curbs the usefulness of injected knowledge, we
evaluate the injection of clean verb knowledge
from a small lexical resource available in Spanish:
we train an ES FN-Adapter on top of ES-BERT on

13We noted analogous positive effects on performance of
the more powerful XLM-R Large model (Appendix E).

14This is in contrast to the proven cross-lingual portability
of synonymy and antonymy relations shown in previous work
on semantic specialisation transfer (Mrkšić et al., 2017; Ponti
et al., 2019), which rely on semantics alone.

(a) TempEval 2TA +FN +VN

English EN-BERT 74.5 74.8 74.8

Spanish MBERT-ZS 37.7 38.3 37.1
ES-BERT 73.1 73.6 73.6

Chinese MBERT-ZS 49.1 50.1 48.8
ZH-BERT 78.1 78.1 78.6

(b) ACE 2TA +FN +VN

EN EN-BERT T-ID 67.5 68.1 68.9
T-CL 61.6 62.6 62.7
ARG-ID 6.2 8.9 7.1
ARG-CL 3.9 6.7 5.0

AR MBERT-ZS T-ID 31.2 32.6 31.7
T-CL 26.3 27.1 29.3
ARG-ID 5.9 6.0 6.9
ARG-CL 3.9 4.1 4.3

AR-BERT T-ID 40.6 42.3 43.0
T-CL 36.9 38.1 39.5
ARG-ID – – –
ARG-CL – – –

ZH MBERT-ZS T-ID 54.6 56.3 58.1
T-CL 45.6 46.2 46.9
ARG-ID 9.2 10.8 11.3
ARG-CL 8.0 8.5 9.9

ZH-BERT T-ID 72.3 73.1 72.0
T-CL 59.6 63.0 61.3
ARG-ID 2.6 2.8 3.3
ARG-CL 2.3 2.6 2.9

Table 5: Results on (a) TempEval and (b) ACE for the
Double Task Adapter-based approaches (2TA).

2,866 verb pairs derived from its FrameNet (Subi-
rats and Sato, 2004). The results (Appendix E)
reveal that, despite having 12 times fewer positive
examples for training the verb adapter compared to
VTRANS, the ‘native’ ES FN-Adapter offers gains
between +0.2 and +0.4 points over VTRANS, com-
pensating the limited coverage with gold standard
accuracy. This suggests that work on optimising
and accelerating resource creation merits future
research efforts on a par with modeling work.

5 Related Work

Event Extraction. The cost and complexity of
event annotation requires robust transfer solutions
capable of making fine-grained predictions in the
face of data scarcity. Traditional event extraction
methods relied on hand-crafted, language-specific
features (Ahn, 2006; Gupta and Ji, 2009; Llorens
et al., 2010; Hong et al., 2011; Li et al., 2013;
Glavaš and Šnajder, 2015) (e.g., POS tags, entity
knowledge), which limited their generalisation abil-
ity and effectively prevented language transfer.

More recent approaches commonly resorted to
word embedding input and neural text encoders
such as recurrent nets (Nguyen et al., 2016; Duan
et al., 2017; Sha et al., 2018) and convolutional nets
(Chen et al., 2015; Nguyen and Grishman, 2015),
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as well as graph neural networks (Nguyen and Gr-
ishman, 2018; Yan et al., 2019) and adversarial net-
works (Hong et al., 2018; Zhang et al., 2019). Most
recent empirical advancements in event trigger and
argument extraction tasks stem from fine-tuning of
LM-pretrained Transformer networks (Yang et al.,
2019a; Wang et al., 2019; M’hamdi et al., 2019;
Wadden et al., 2019; Liu et al., 2020).

Limited training data nonetheless remains an ob-
stacle, especially when facing previously unseen
event types. The alleviation of such data scarcity is-
sues was attempted through data augmentation – au-
tomatic data annotation (Chen et al., 2017; Zheng,
2018; Araki and Mitamura, 2018) and bootstrap-
ping for training data generation (Ferguson et al.,
2018; Wang et al., 2019). The recent release of
the large English event detection dataset MAVEN
(Wang et al., 2020c), with annotations of event
triggers only, partially remedies for English data
scarcity. MAVEN also demonstrates that even the
state-of-the-art Transformer models fail to yield
satisfying event detection performance in the gen-
eral domain. The fact that it is unlikely to expect
datasets of similar size for other event extraction
tasks and especially for other languages only em-
phasises the need for external event-related knowl-
edge and transfer learning approaches, such as the
ones introduced in this work.

Semantic Specialisation. Representation spaces
induced through self-supervised objectives from
large corpora, be it the word embedding spaces
(Mikolov et al., 2013; Bojanowski et al., 2017)
or those spanned by LM-pretrained Transform-
ers (Devlin et al., 2019; Liu et al., 2019), encode
only distributional knowledge. A large body of
work focused on semantic specialisation of such
distributional spaces by injecting lexico-semantic
knowledge from external resources (e.g., WordNet
(Fellbaum, 1998), BabelNet (Navigli and Ponzetto,
2010) or ConceptNet (Liu and Singh, 2004)) in the
form of lexical constraints (Faruqui et al., 2015;
Mrkšić et al., 2017; Glavaš and Vulić, 2018b; Ka-
math et al., 2019; Vulić et al., 2021).

Joint specialisation models (Yu and Dredze,
2014; Lauscher et al., 2020b; Levine et al., 2020,
inter alia) train the representation space from
scratch on the large corpus, but augment the self-
supervised training objective with an additional
objective based on external lexical constraints.
Lauscher et al. (2020b) add to the Masked LM
(MLM) and next sentence prediction (NSP) pre-

training objectives of BERT (Devlin et al., 2019)
an objective that predicts pairs of (near-)synonyms,
aiming to improve word-level semantic similarity
in BERT’s representation space. In a similar vein,
Levine et al. (2020) add the objective that predicts
WordNet supersenses. While joint specialisation
models allow the external knowledge to shape the
representation space from the very beginning of
the distributional training, this also means that any
change in lexical constraints implies a new, compu-
tationally expensive pretraining from scratch.

Retrofitting and post-specialisation methods
(Faruqui et al., 2015; Mrkšić et al., 2017; Vulić
et al., 2018; Ponti et al., 2018; Glavaš and Vulić,
2019; Lauscher et al., 2020a; Wang et al., 2020a),
in contrast, start from a pretrained representa-
tion space (word embedding space or a pretrained
encoder) and fine-tune it using external lexico-
semantic knowledge. Wang et al. (2020a) fine-tune
the pre-trained RoBERTa (Liu et al., 2019) with
lexical constraints obtained automatically via de-
pendency parsing, whereas Lauscher et al. (2020a)
use lexical constraints derived from ConceptNet to
inject knowledge into BERT: both adopt adapter-
based fine-tuning, storing the external knowledge
in a separate set of parameters. Our work adopts a
similar adapter-based specialisation approach, how-
ever, focusing on event-oriented downstream tasks,
and knowledge from VerbNet and FrameNet.

6 Conclusion

We investigated the potential of leveraging knowl-
edge about semantic-syntactic behaviour of verbs
to improve the capacity of large pretrained mod-
els to reason about events in diverse languages.
We proposed an auxiliary pretraining task to in-
ject VerbNet- and FrameNet-based lexical verb
knowledge into dedicated verb adapter modules.
We demonstrated that state-of-the-art pretrained
models still benefit from the gold standard lin-
guistic knowledge stored in lexical resources, even
those with limited coverage. Crucially, we showed
that the benefits of the knowledge from resource-
rich languages can be extended to other, resource-
leaner languages through translation-based transfer
of verb class/frame membership information.
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Ivan Vulić, Goran Glavaš, Nikola Mrkšić, and Anna
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Train Test

TempEval English 830,005 7,174
Spanish 51,511 5,466
Chinese 23,180 5,313

ACE English 529 40
Chinese 573 43
Arabic 356 27

Table 6: Number of tokens (TempEval) and documents
(ACE) in the training and test sets.

A Frameworks for Annotating Event
Expressions

Two prominent frameworks for annotating event
expressions are TimeML (Pustejovsky et al., 2003,
2005) and the Automatic Content Extraction (ACE)
(Doddington et al., 2004). TimeML was developed
as a rich markup language for annotating event and
temporal expressions, addressing the problems of
identifying event predicates and anchoring them in
time, determining their relative ordering and tempo-
ral persistence (i.e., how long the consequences of
an event last), as well as tackling contextually un-
derspecified temporal expressions (e.g., last month,
two days ago). Currently available English corpora
annotated based on the TimeML scheme include
the TimeBank corpus (Pustejovsky et al., 2003), a
human annotated collection of 183 newswire texts
(including 7,935 annotated EVENTS, comprising
both punctual occurrences and states which ex-
tend over time) and the AQUAINT corpus, with
80 newswire documents grouped by their covered
stories, which allows tracing progress of events
through time (Derczynski, 2017). Both corpora,
supplemented with a large, automatically TimeML-
annotated training corpus are used in the TempEval-
3 task (Verhagen and Pustejovsky, 2008; UzZaman
et al., 2013), which targets automatic identifica-
tion of temporal expressions, events, and temporal
relations.

The ACE dataset provides annotations for enti-
ties, the relations between them, and for events in
which they participate in newspaper and newswire
text. For each event, it identifies its lexical instanti-
ation, i.e., the trigger, and its participants, i.e., the
arguments, and the roles they play in the event. For
example, an event type “Conflict:Attack” (“It could
swell to as much as $500 billion if we go to war in
Iraq.”), triggered by the noun “war”, involves two
arguments, the “Attacker” (“we”) and the “Place”
(“Iraq”), each of which is annotated with an entity
label (“GPE:Nation”).

B Adapter Training and
Hyperparameter Search

Following Pfeiffer et al. (2020a), we train the
adapters for 30 epochs using the Adam algorithm
(Kingma and Ba, 2015), a learning rate of 1e− 4
and the adapter reduction factor of 16 (Pfeiffer
et al., 2020a), i.e., d = 48. Our batch size is 64,
comprising 16 positive examples and 3× 16 = 48
negative examples (since k = 3).

We experimented with n ∈ {10, 15, 20, 30}
training epochs, as well as an early stopping ap-
proach using validation loss on a small held-out
validation set as the stopping criterion, with a pa-
tience argument p ∈ {2, 5}; we found the adapters
trained for the full 30 epochs to perform most con-
sistently across tasks.

The size of the training batch varies based on the
value of k negative examples generated from the
starting batch B of positive pairs: e.g., by generat-
ing k = 3 negative examples for each of 8 positive
examples in the starting batch we end up with a
training batch of total size 8+3∗8 = 32. We exper-
imented with starting batches of size B ∈ {8, 16}
and found the configuration k = 3, B = 16 to
yield the strongest results (reported in this paper).

C VTRANS: Technical Details

First, we automatically translate the verbs by re-
trieving their nearest neighbour in the target lan-
guage from the shared cross-lingual embedding
space, aligned using the Relaxed Cross-domain
Similarity Local Scaling (RCSLS) model of Joulin
et al. (2018). Such translation procedure is liable
to error due to an imperfect cross-lingual embed-
ding space as well as polysemy and out-of-context
word translation. We dwarf these issues in the
second step, where we purify the set of noisily
translated target language verb pairs by means of a
neural lexico-semantic relation prediction model,
the Specialization Tensor Model (Glavaš and Vulić,
2018a), here adjusted for binary classification. We
train the STM for the same task as verb adapters
during verb knowledge injection (§2.2): to distin-
guish (positive) verb pairs from the same English
VN class/FN frame from those from different VN
classes/FN frames. In training, the input to STM
are static word embeddings of English verbs taken
from a shared cross-lingual word embedding space.
We then make predictions in the target language
by feeding vectors of target language verbs (from
noisily translated verb pairs), taken from the same
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cross-lingual word embedding space, as input for
STM. We provide more details on STM training in
what follows.

STM Training Details. We train the STM using
the sets of English positive examples from each
lexical resource (Table 1). Negative examples are
generated using controlled sampling (see §2.2),
using a k = 2 [cc] configuration, ensuring that
generated negatives do not constitute positive con-
straints in the global set. We use the pre-trained
300-dimensional static distributional word vectors
computed on Wikipedia data using the FASTTEXT

model (Bojanowski et al., 2017), cross-lingually
aligned using the RCSLS model of Joulin et al.
(2018), to induce the shared cross-lingual embed-
ding space for each source-target language pair.
The STM is trained using the Adam optimizer
(Kingma and Ba, 2015), a learning rate l = 1e− 4,
a batch size of 32 (positive and negative) training
examples, for a maximum of 10 iterations. We set
the values of other training hyperparameters as in
Ponti et al. (2019), i.e., the number of specialisation
tensor slices K = 5 and the size of the specialised
vectors h = 300.

D Sequential Fine-tuning Details

In the sequential fine-tuning setup, we first train
the full cased variant of the BERT-based model
on the VN/FN data. We generate negative exam-
ples using the strongest performing configuration
of sampling parameters: k = 3 [ccr]. We train
the model for 4 epochs using the Adam algorithm
(Kingma and Ba, 2015), a learning rate of 2e− 5
with 1000 warmup steps and a batch size of 64.
Next, we fine-tune the VN/FN-pretrained model on
the two downstream tasks. For Task 1, we train for
10 epochs in batches of 32 and a learning rate of
1e−4 and a maximum input sequence T = 128. In
Task 2, we find an optimal hyperparameter config-
uration for each language-setup combination from
the grid: learning rate l ∈ {1e− 5, 1e− 6}, epochs
n ∈ {3, 5, 10, 25, 50}, batch size b ∈ {8, 16}, with
maximum input sequence length of T = 128.

E Additional Results

Table 9 presents the results of monolingual eval-
uation substituting the monolingual target lan-
guage BERT with the massively multilingual
encoder, with or without the FN/VN adapters
trained on (noisy) target language verb signal (AR-
MBERT/ZH-MBERT). Table 10 provides addi-

+FNseq +VNseq

AR MBERT-ZS T-IDENT 16.1 15.2
T-CLASS 15.1 14.1
ARG-IDENT 1.2 1.1
ARG-CLASS 1.0 1.0

AR-BERT T-IDENT 70.5 69.1
T-CLASS 65.0 63.7
ARG-IDENT 32.9 30.2
ARG-CLASS 29.5 27.6

AR-mBERT T-IDENT 64.6 65.5
T-CLASS 55.6 57.1
ARG-IDENT 24.6 23.4
ARG-CLASS 20.5 19.9

ZH MBERT-ZS T-IDENT 41.6 39.9
T-CLASS 29.6 27.8
ARG-IDENT 4.6 7.6
ARG-CLASS 4.0 6.4

ZH-BERT T-IDENT 75.6 75.7
T-CLASS 69.0 68.5
ARG-IDENT 26.8 26.1
ARG-CLASS 25.9 25.0

ZH-mBERT T-IDENT 72.6 72.6
T-CLASS 64.1 62.2
ARG-IDENT 27.0 24.9
ARG-CLASS 25.8 23.9

Table 7: Results on Arabic and Chinese ACE test sets
for the sequential fine-tuning setup for zero-shot (ZS)
transfer with mBERT and the VTRANS transfer ap-
proach with language-specific BERT (AR-BERT / ZH-
BERT) or mBERT, on noisily translated FN/VN data
(§2.4). F1 scores averaged over 5 runs; significant im-
provements (paired t-test; p < 0.05) over both base-
lines marked in bold.

tional results for Spanish Task 1 (TempEval) using
an alternative multilingual encoder, XLM-R (large)
(Conneau et al., 2020), as the underlying model
(trained with the following hyperparameters: learn-
ing rate l = 2e − 5, batch size b ∈ {16, 32}).
Tables 8 and 7 include the results for the sequential
fine-tuning setup for Task 1 (TempEval) and Task 2
(ACE), respectively. Table 11 shows the results on
Spanish TempEval for different configurations of
Spanish BERT with an added Spanish FN-Adapter
trained on Spanish FrameNet data.

+FNseq +VNseq

Spanish MBERT-ZS 37.3 37.4
ES-BERT 77.8 77.6
ES-mBERT 73.3 73.2

Chinese MBERT-ZS 51.4 50.0
ZH-BERT 82.3 82.2
ZH-mBERT 80.1 79.1

Table 8: Results on Spanish and Chinese TempEval test
sets for monolingual sequential fine-tuning. Significant
improvements over the baselines in Table 3 in bold.
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FFT +Random +FN +VN TA +Random +FN +VN

Arabic AR-MBERT T-IDENT 64.9 65.2 65.1 65.6 20.7 18.0 23.2 19.5
T-CLASS 56.2 56.5 57.4 56.2 14.4 14.0 16.5 14.5
ARG-IDENT 25.4 25.4 27.2 24.6 – – – –
ARG-CLASS 21.3 21.9 23.0 19.9 – – – –

Chinese ZH-MBERT T-IDENT 74.1 74.4 74.0 73.3 62.2 62.6 63.8 62.5
T-CLASS 62.9 62.9 64.3 63.6 52.4 52.2 54.3 54.0
ARG-IDENT 26.2 26.3 27.2 28.0 – – – –
ARG-CLASS 24.8 25.3 26.2 26.4 – – – –

Table 9: Results on Arabic and Chinese ACE test sets for full monolingual fine-tuning (FFT) and the task adapter
(TA) setup with underlying mBERT and VTRANS FN/VN adapters. F1 scores averaged over 5 runs; significant
improvements (paired t-test; p < 0.05) over both baselines marked in bold.

FFT +Random +FN +VN TA +Random +FN +VN

Spanish XLM-R-ZS 42.2 42.3 42.7 42.0 40.7 40.3 40.9 40.8
ES-XLM-R 77.1 77.1 77.6 77.6 74.8 73.9 74.5 75.4

Table 10: Results on Spanish TempEval test sets for full fine-tuning (FFT) and the task adapter (TA) setup, for
zero-shot (ZS) transfer and monolingual target language evaluation with XLM-R Large, with FN/VN adapters
trained on VTRANS-translated verb pairs (see §2.4). F1 scores are averaged over 10 runs; significant improvements
(paired t-test; p < 0.05) over both baselines marked in bold.

FFT+FNES TA+FNES 2TA+FNES

ES-BERT 78.0 (+0.4) 70.9 (+0.2) 73.8 (+0.2)

Table 11: Results (F1 scores) on Spanish TempEval for
different configurations of Spanish BERT with added
Spanish FN-Adapter (FNES), trained on clean Spanish
FN constraints. Numbers in brackets indicate relative
performance w.r.t. the corresponding setup with FN-
Adapter trained on (a larger set of) noisy Spanish con-
straints obtained through automatic translation of verb
pairs from English FN (VTRANS approach).


