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Abstract

Structured information is an important knowl-
edge source for automatic verification of
factual claims. Nevertheless, the majority
of existing research into this task has fo-
cused on textual data, and the few recent in-
quiries into structured data have been for the
closed-domain setting where appropriate evi-
dence for each claim is assumed to have al-
ready been retrieved. In this paper, we in-
vestigate verification over structured data in
the open-domain setting, introducing a joint
reranking-and-verification model which fuses
evidence documents in the verification compo-
nent. Our open-domain model achieves perfor-
mance comparable to the closed-domain state-
of-the-art on the TabFact dataset, and demon-
strates performance gains from the inclusion
of multiple tables as well as a significant im-
provement over a heuristic retrieval baseline.

1 Introduction

Verifying whether a given fact coheres with a
trusted body of knowledge is a fundamental prob-
lem in NLP, with important applications to auto-
mated fact checking (Vlachos and Riedel, 2014)
and other tasks in computational journalism (Cohen
et al., 2011; Flew et al., 2012). Despite extensive
investigation of the problem under different con-
ditions including entailment and natural language
inference (Dagan et al., 2005; Bowman et al., 2015)
as well as claim verification (Vlachos and Riedel,
2014; Alhindi et al., 2018; Thorne and Vlachos,
2018), relatively little attention has been devoted
to the setting where the trusted body of evidence is
structured in nature — that is, where it consists of
tabular or graph-structured data.

Recently, two datasets were introduced for claim
verification over tables (Chen et al., 2020b; Gupta
et al., 2020). In both datasets, claims can be verified
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The Daily Express and the Sunday Mirror are
owned by the same company.

True

Title Established Parent Company
Daily Mail 1896 DMGT
Mail on Sunday 1982 DMGT
... ... ...
Daily Express 1900 Reach
Sunday Mirror 1915 Reach
Sunday People 1881 Reach

Title 2019 Election party support
Daily Mail Conservative Party
Mail on Sunday Conservative Party
... ...
The Sun Conservative Party
Daily Mirror Labour Party
Sunday Mirror Labour Party

Figure 1: Example query to be evaluated against two re-
trieved tables. Named entities represent a strong base-
line for retrieval, but ultimately a more complex model
is required to distinguish highly similar tables.

given a single associated table. While highly useful
for the development of models, this closed setting
is not reflective of real-world fact checking tasks
where it is usually not known which table to consult
for evidence. Realistic systems must first retrieve
evidence from a large data source. That is, realistic
systems must operate in an open setting.

Here, we investigate fact verification over tables
in the open setting. We take inspiration from sim-
ilar work on unstructured data (Chen et al., 2017;
Nie et al., 2019; Karpukhin et al., 2020; Lewis
et al., 2020), proposing a two-step model which
combines ad-hoc retrieval with a neural reader.
Drawing on preliminary work in open question
answering over tables (Sun et al., 2016), we per-
form retrieval based on simple heuristic model-
ing of individual table cells. We combine this re-
triever with a RoBERTa-based (Liu et al., 2019)
joint reranking-and-verification model, performing
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Figure 2: A diagram of our model, using the joint reranking- and verification approach described in Section 4.1.
Linearised tables are encoded separately with RoBERTa. Then, cross-attention is used to contextualize each indi-
vidual table with respect to the others. Finally, the model jointly predicts truth value and table selection.

fusion of evidence documents in the verification
component. This corresponds to the approach sug-
gested for question answering by e.g. Izacard and
Grave (2020).

We evaluate our models using the recently in-
troduced TabFact dataset (Chen et al., 2020b).
While initially developed for the closed domain,
the majority of claims are sufficiently context-
independent that they can be understood with-
out knowing which table they were constructed
with reference to. As such, the dataset is suitable
for the open domain as well. Our models repre-
sent a first step into the open domain, achieving
open-domain performance exceeding the previous
closed-domain state of the art—outside of Eisen-
schlos et al. (2020), which includes pretraining on
additional synthetic data. We demonstrate signifi-
cant gains from including multiple tables, and these
gains are increasing as more tables are used. We
furthermore present results using a more realistic
setting where tables are retrieved not just from the
16,573 TabFact tables, but from the full Wikipedia
dump. Our contributions can be summarized as
follows:

1. We introduce the first model for open-domain
table fact verification, demonstrating strong
performance exceeding the previous closed-
setting state of the art.

2. We propose two strategies with corresponding
loss functions for modeling table fact verifica-
tion in the open setting, suitable respectively
for high verification accuracy or identifying if
appropriate information has been retrieved for
verification.

3. In addition to our open-domain performance,
our model achieves a new closed-domain state-
of-the-art result.

4. We report the first results on Wikipedia-scale
open-domain table fact verification, using all
tables from a Wikipedia dump as the backend.

We release the source code for our experiments
at https://github.com/facebookresearch/

OpenTableFactChecking.

2 Open-Domain Table Fact Verification

Formally, the open table fact verification problem
can be described as follows. Given a claim q and
a collection of tables T , the task is to determine
whether q is true or false. As such, we approach
the task by modeling a binary verdict variable v
as p(v|q, T ). This is in contrast to the closed set-
ting, where a single table tq ∈ T is given, and the
task is to model p(v|q, tq). Since there are large
available datasets for the closed setting (Chen et al.,
2020b; Gupta et al., 2020), it is reasonable to ex-
pect to exploit tq during training; however, at test
time, this information may not be available. We fol-
low a two-step methodology that is often adopted
in open-domain setting for unstructed data (Chen
et al., 2017; Nie et al., 2019; Karpukhin et al., 2020;
Lewis et al., 2020) to our setting. Namely, given
a claim query q, we retrieve a set of evidence ta-
bles Dq ⊂ T (Section 3), and subsequently model
p(v|q,Dq) in place of p(v|q, T ) (Section 4).

3 Entity-based Retrieval

We first design a strategy for retrieving an appropri-
ate subset of evidence tables for a given query. For

https://github.com/facebookresearch/OpenTableFactChecking
https://github.com/facebookresearch/OpenTableFactChecking
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question answering over tables, Sun et al. (2016)
demonstrated strong performance on retrieving rel-
evant tables using entity linking information, fol-
lowing the intuition that many table cells contain
entities. We take inspiration from these results. In
their setting, claim entities are linked to Freebase
entities, and string matching on the alias list is used
to map entities to cells. To avoid reliance on a
knowledge graph, we instead use only the textual
string from the claim to represent entities, and per-
form approximate matching through dot products
of bi- and tri-gram TF-IDF vectors.

We pre-compute bi- and trigram TF-IDF vec-
tors z(c1t ), ..., z(c

m
t ) for every table t ∈ T with

cells c1t , ..., c
m
t . Then, we identify the named enti-

ties e1q , ..., e
n
q within the query q. For our experi-

ments, we use the named entity spans for TabFact,
provided by Chen et al. (2020b) as part of their
LPA-model.1 We compute bi- and trigram TF-IDF
vectors z(e1q), ..., z(e

n
q ) for the surface forms of

those entities. To retrieve Dq given q, we then
score every t ∈ T . Since we are approximating
entity linking between claim entities and cells, we
let the score between an entity and a table be the
best match between that entity and any cell in the
table. That is:

score(q, t) =

n∑
i=1

m
max
j=1

z(eiq)
ᵀ · z(cjt ) (1)

In other words, we compute for every entity the
best match in the table, and score the table as the
sum over the best matches. To construct the set
of evidence tables Dq, we then retrieve the top-k
highest scoring tables. Our choice to use bi- and
tri-gram TF-IDF as the retrieval strategy was deter-
mined empirically — see Section 5.1 and Table 1
for experimental comparisons.

4 Neural Verification

To model p(v|q,Dq), we employ a RoBERTa-
based (Liu et al., 2019) late fusion strategy (see
Figure 2 for a diagram of our model). Given a
query q with a ranked list of k retrieved tables
Dq = (d1q , ..., d

k
q ), we begin by linearising each

table. Our linearisation scheme follows Chen et al.
(2020b). We first perform sub-table selection by ex-
cluding columns not linked to entities in the query.
Here, we reuse the entity linking obtained during

1In the absence of named entity tags, named entity spans
would first need to be found though an off-the-shelf named
entity recognizer, such as SpaCy (Honnibal et al., 2020).

the retrieval step (see Section 3), and retain only
the three columns in which cells received the high-
est retrieval scores. We linearise each row sepa-
rately, encoding entries and table headers. Suppose
r is a row with cell entries c1, c2, ..., cm in a ta-
ble, where the corresponding column headers are
h1, h2, ..., hm. Row number r is mapped to “row
r is : h1 is c1 ; h2 is c2; ... ; hm is cm .”

We construct a final linearisation Lq,t for each
query-table pair q, t by prepending the query to the
filtered table linearisation. We then encode each
Lq,t with RoBERTa, and obtain a contextualised
embedding f(dkq ) ∈ Rn for every table by using the
final-layer embedding of the CLS-token. We con-
struct the sequence of embeddings f(d1q), ...f(d

k
q )

for all k tables.
When the model attempts to judge whether to

rely on a given table for verification, other highly-
scored tables represent useful contextual informa-
tion (e.g., in the example in Figure 1, newspapers
belonging to the same owner may be likely to also
share political leanings). Nevertheless, each table
embedding f(dkq ) is functionally independent from
the embeddings of the other tables. As such, con-
textual clues from other tables cannot be taken into
account. To remedy this, we introduce a cross-
attention layer between all tables corresponding to
the same query. We collect the embeddings f(dkq )
of each table into a tensor F (Dq). We then apply
a single multi-head self-attention transformation
as defined by Vaswani et al. (2017) to this tensor,
and concatenate the result. That is, we compute an
attention score for head h from table i to table j
with query q as:

αh
ij = σ

(
W h

Qf(d
i
q)(W

h
Kf(d

j
q))T√

dim(K)

)
(2)

where σ is the softmax function, and WQ and
WK represent linear transformations to queries and
keys, respectively. We then compute an attention
vector for that head as:

Ah
i =

∑
j∈Dq

αijW
h
V f(d

j
q) (3)

and finally construct contextualized table represen-
tations through concatenation as:

f∗(dkq ) = [f(dkq ), A
1
i , ..., A

h
i ] (4)

We subsequently use F ∗(Dq), i.e. the tensor con-
taining f∗(d1q), ..., f

∗(dkq ), for downstream predic-
tions. We note that our approach can be viewed



6790

as an extension of the Table-BERT algorithm in-
troduced by Chen et al. (2020b) to the multi-table
setting, using an attention function to fuse together
the information from different tables.

4.1 Training & Testing

Relying on a closed-domain dataset provides a ta-
ble with appropriate information for answering
each query; namely, the table against which the
claim is to be checked in the closed setting. Al-
though this information is not available at test time,
we can construct a training regime that allows us
to exploit it to improve model performance. We ex-
periment with two different strategies: jointly mod-
eling reranking of tables along with verification of
the claim, and modeling for each table a ternary
choice between indicating truth, falsehood, or giv-
ing no relevant information. Later, we demonstrate
how the former leads to increased performance on
verification, while the latter gives access to a strong
predictor for cases where no appropriate table has
been retrieved.

Joint reranking and verification For the joint
reranking and verification approach, we assume
that a best table for answering each query is given
and can be used to learn a ranking function. We
model this as selecting the right table from Dq,
e.g., through a categorical variable s that indicates
which table should be selected. We then learn a
joint probability of s and the truth value of the
claim v over the tables for a given query. Assuming
that s and v are independent, p(s, v|q,Dq) is also
a categorical distribution with one correct outcome
that can be optimized for (that is, one correct pair
of table and truth value). As such, we let:

p(s, v|q,Dq) = σ(W (F ∗(Dq)s)v) (5)

Where W : R2n → R2 is an MLP and σ is the
softmax function. At train time, we obtain one
cross-entropy term corresponding to p(s, v|q,Dq)
per query. At test time, we marginalize over s to
obtain a final truth value:

pv(v|q,Dq) =
∑
t∈Dq

p(v, s = t|q,Dq) (6)

This formulation has the additional benefit of also
allowing us to make a prediction on which table
matches the query. We can do so by marginalizing

over v:

ps(s|q,Dq) =
∑

vq∈{true,false}

p(s, v = vq|q,Dq)

(7)
With this loss, we train the model by substituting
forDq a setD∗q containing wherein the gold table is
guaranteed to appear. We ensure this by replacing
the lowest-scored retrieved table in Dq with the
gold table whenever it has not been retrieved.

Ternary verification At test time, there may be
cases where a table refuting or verifying the fact
is not contained in Dq. For some applications, it
could be useful to identify these cases. We there-
fore design an alternative variant of our system
better suited for this scenario. Intuitively, each ta-
ble can represent three outcomes – the query is true,
the query is false, or the table is irrelevant. We can
model this through a ternary variable i such that
for table t:

p(i|q, t,Dq) = σ(W ′(F ∗(Dq)t)i) (8)

Where W ′ : R2n → R3 is an MLP and σ is the
softmax function. During training, we assign true
or false to the gold table depending on the truth
of the query, and irrelevant to every other table.
We then use the mean cross-entropy over the tables
associated with each query as the loss for each
example. At test time, we compute the truth value
v of each query as:∑
t∈Dq

p(i = true|q, t) >
∑
t∈Dq

p(i = false|q, t)

(9)

5 Experiments

We apply our model to the TabFact dataset (Chen
et al., 2020b), which consists of 92,283 training,
12,792 validation and 12,792 test queries over
16,573 tables. The task is binary classification of
claims as true or false, with an even proportion of
the two classes in each split. To benchmark our
open-domain models and construct performance
bounds, we begin by evaluating in the closed do-
main. As an upper bound, we can then compare
against the performance of the closed-domain sys-
tem scored using a single table retrieved through
an oracle. As a lower bound, we can again use
the closed-domain system, but using the highest-
ranked table according to our TF-IDF retriever. The
evaluation metric is simply prediction accuracy.
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Dataset H@1 H@3 H@5 H@10

Query-matching word-level TF-IDF 41.7 54.2 59.0 65.3
Query-matching character-level (2,3)-gram TF-IDF 34.7 45.5 50.2 56.8

Entity-matching word-level exact match 48.2 57.9 64.2 67.3
Entity-matching word-level TF-IDF 56.0 65.6 74.1 81.2
Entity-matching character-level (2,3)-gram TF-IDF 69.6 78.8 82.3 86.6
Entity-matching character-level (1,2,3)-gram TF-IDF 62.3 75.2 80.1 86.1

Table 1: Retrieval accuracy for our entity-based TF-IDF retrieval along with several baselines for the TabFact
validation set, computed using all 16,573 TabFact tables. We experiment with matching the entire query against
table cells (above), and matching individual entities in the query against table cells using Equation 1 (below). For
all subsequent experiments we rely on character-level (2,3)-grams with entity-matching for retrieval.

Model Dev Test Simple Test Complex Test Small Test

Table-BERT (Chen et al., 2020b) 66.1 65.1 79.1 58.2 68.1
LogicalFactChecker (Zhong et al., 2020) 71.8 71.7 85.4 65.1 74.3
ProgVGAT (Yang et al., 2020) 74.9 74.4 88.3 67.6 76.2
TAPAS (Eisenschlos et al., 2020)* 81.0 81.0 92.3 75.6 83.9
Ours (Oracle retrieval) 78.2 77.6 88.9 72.1 79.4

Ours (1 retrieved table) 74.1 73.2 86.7 67.8 76.6
Ours (Ternary loss, 3 tables) 73.8 73.5 86.9 68.1 76.9
Ours (Ternary loss, 5 tables) 74.1 73.7 87.1 67.9 76.5
Ours (Ternary loss, 10 tables) 73.9 73.1 86.5 67.9 77.3
Ours (Joint loss, 3 tables) 74.6 73.8 87.0 68.3 78.1
Ours (Joint loss, 5 tables) 75.9 75.1 87.8 69.5 77.8
Ours (Joint loss, 10 tables) 73.9 73.8 86.9 68.1 76.9

Table 2: Prediction accuracy of our RoBERTa-based model on the official splits from the TabFact dataset. We
include closed-domain performance of several models from the literature, as well as the performance of our model
in both the closed and the open domain, using both proposed loss functions. The first section of the table contains
closed-domain results, the second open-domain. * employs intermediary pretraining on additional synthetic data.

5.1 Retrieval

We choose bi- and tri-gram TF-IDF as the retrieval
strategy empirically. To address the comparative
performance of this choice, we compute and rank
in Table 1 the retrieval scores obtained through
our strategy on the TabFact test set. We compare
against several alternative strategies: bi- and tri-
gram TF-IDF vectors for all words in the query
(rather than just the entities), word-level TF-IDF
vectors for entities, and entity-level exact match-
ing. Our bi- and tri-gram TF-IDF strategy yields
by far the strongest performance. We furthermore
demonstrate how the exclusion of unigrams from
the TF-IDF vectors slightly increases performance.

5.2 Verification

In Table 2, we compare our best-performing mod-
els to the closed-setting system from Chen et al.

(2020b), as well as to several recent models from
the literature (Zhong et al., 2020; Yang et al., 2020;
Eisenschlos et al., 2020). We include results with
both losses as discussed in Section 4, using varying
numbers of tables.

With an accuracy of 75.1%, we obtain the best
open-domain results with our model using the joint
reranking-and-verification loss and five tables. We
see performance improvements when increasing
the number of tables, both from 1 to 3 and from
3 to 5. In the closed domain, the 77.6% accuracy
our model achieves is a significant improvement
over the 74.4% the strongest comparable baseline
reached. This may be due to our use of RoBERTa,
which has previously been found to perform well
for linearised tables (Gupta et al., 2020).

Relying purely on TF-IDF for retrieval — that
is, using our system with only one retrieved table
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Model R@1 R@2-3 R@4-5

Oracle retrieval 80.6 74.1 75.0

1 table 80.6 55.6 53.9
3 tables 78.8 66.7 58.2
5 tables 79.4 73.1 71.7

Table 3: Peformance of our RoBERTa-based model on
the parts of the TabFact test set where our TF-IDF re-
triever assigns the gold table rank respectively 1, 2-3,
or 4-5.

— yields a performance of 73.2%. This is a sur-
prisingly small decrease compared to the closed
domain, given that an incorrect table is provided in
approximately a third of all cases (see Table 1). We
suspect that many cases for which the retriever fails
are also cases for which the closed-domain model
fails. To make sure we are not seeing the effect of
false negatives (e.g., tables which are not the gold
table, but which nevertheless have the information
to verify the claim), we run the model in a setting
where one retrieved table is used, but the gold ta-
ble is removed from the retrieval results; here, the
model achieves an accuracy of only 56.2%. We fur-
thermore test a system relying on a random table
rather than a retrieved table; with a performance
drop to 53.1, we find that the information in the
retrieved table is indeed crucial to obtain high per-
formance (rather than the performance being purely
a consequence of, say, RoBERTa weights).

To understand how our model derives improve-
ment from the addition of more tables, we compute
in Table 3 the performance of our reranking-and-
verification model when TF-IDF returns the correct
table at rank 1, rank 2-3, or rank 4-5. Immediately,
we notice a much stronger improvement from us-
ing multiple tables when TF-IDF fails to correctly
identify the gold table. This is natural, as those are
exactly the cases where our model (as opposed to
the baseline) has access to the appropriate informa-
tion to verify or refute the claim.

Interestingly, using three tables improves on us-
ing one table even when the gold table is not in-
cluded among the top three (from 53.9% to 58.2%),
and using five tables improves on using three ta-
bles also when the gold table is included among
the top three (from 66.7% to 73.1%). Manual in-
spection reveals that our model in some cases relies
on correlations between tables — if a sports team
loses games in three tables, then that may give a

Model Accuracy

Full model 75.1
- Attention 73.6
- Joint objective 72.9
- Both 71.2

Table 4: Ablation study for our model, performing ver-
ification with the five-table version on the TabFact test
set. We remove respectively our cross-attention func-
tion, the reranking component in the loss, and both.

higher probability of that team also losing in an
unretrieved, hypothetical fourth table. To test this,
we apply the model in a setting where we retrieve
the top five tables excluding the gold table, and a
setting where we use five random tables. Using
highly scored (but wrong) tables, we achieve a per-
formance of 59.4%, a significant improvement on
the 53.1% we achieve using random tables. This
supports our hypothesis that other good tables can
provide useful background context for verification.

It should be noted that such inferences, while
increasing model performance, may also increase
the degree to which the model exhibits biases. De-
pending on the application, this may as such not
be a desirable basis for verification. Returning to
the example in Figure 1, inferring ownership on
the basis of political affiliation when no other in-
formation is available may increase accuracy on
average, but it can also lead to erroneous or biased
decisions (indeed, for the claim in the example, the
prediction would be wrong).

5.3 Ablation Tests

Our best-performing model from Table 2 relies
on two innovations: The cross-attention function
which contextualizes retrieved tables in relation to
each other, and the joint reranking-and-verification
loss. In Table 4, we evaluate the model without
either of these. Leaving the attention function out
is simple — we use f(dkq ) for each table directly
for predictions. We model performance without
the reranking component of our loss function by
assuming a uniform distribution over the tables.

As can be seen, the combination of both is
strictly necessary to obtain strong performance
— indeed, without our joint objective, the model
performs worse than simply applying the baseline
model to the top table returned by TF-IDF as in
Table 2. The ability for the model to express the
relative relatedness of tables to the query is crucial.
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Figure 3: Precision-recall curve for determining
whether a set of five retrieved tables in the TabFact vali-
dation set contains the gold table, using respectively en-
tropy of the reranking scores with our joint loss ( )
or the maximum probability of some table being the
gold table with our ternary loss, ( ). We also include
a most frequent class baseline ( ).

We include further investigation of the role our
cross-attention mechanism plays in Appendix E.

5.4 Predicting Insufficient Information

In realistic settings, some claims will not be directly
answerable from any retrieved table. In such cases,
it can be valuable to explicitly inform the user —
giving false verifications or refutations when suf-
ficient information is not available is misleading,
and can decrease user trust. To model a scenario
where the lack of relevant information must be de-
tected, we create a classification task wherein the
model must predict for all examples, whether the
gold table is among the k documents in Dq.

Using the ternary loss, our model directly gives
the probability of each table containing appropri-
ate information as (1 − p(It = irrelevant|q, t)).
We can estimate the suitability of the best retrieved
table for verifying the claim as max

t
(1 − p(It =

irrelevant|q, t)), and apply a threshold τ1 to clas-
sify Dq as suitable or unsuitable. For the joint
loss, a more indirect approach is necessary. Intu-
itively, if our model is too uncertain about which
table answers the query, there is a high likelihood
that no suitable table has been retrieved. This cor-
responds to the entropy of the reranking compo-
nent Hs(s|q,Dq) after marginalizing over the truth
value of the claim exceeding some threshold τ2.

We compare these strategies in Figure 3, obtain-
ing Precision-Recall curves by measuring at vary-
ing τ1 and τ2. We find that while both approaches

outperform a most frequent class baseline by a sig-
nificant margin, the ternary loss performs better
than the joint loss. As such, the choice between
the two losses represents a tradeoff between raw
performance (see Tables 2 and 5) and the ability to
identify missing or incomplete information.

5.5 Wikipedia-scale Table Verification
In our experiments so far, we have relied on the
16,573 TabFact tables as the knowledge source.
The tables selected for TabFact were taken from
WikiTables (Bhagavatula et al., 2013), and filtered
so as to exclude “overly complicated and huge ta-
bles” (Chen et al., 2020b). Moving beyond the
scope of that dataset, a fully open fact verification
system should be able to verify claims over even
larger collections of tables — for example, the full
set of tables available on Wikipedia. To make a
preliminary exploration of that larger-scale setting,
we include in Table 5 the performance of our ap-
proach evaluated using roughly 3 million tables
automatically extracted from Wikipedia.

Model Accuracy

RoBERTa only 52.1
Ours (1 table) 53.6
Ternary loss, 3 tables 55.8
Ternary loss, 5 tables 57.5
Joint loss, 3 tables 56.1
Joint loss, 5 tables 58.1

Table 5: Performance of our RoBERTa-based model on
the TabFact test set, using all Wikipedia tables rather
than just the TabFact tables as a backend.

As can be seen, our approach improves on the
naive strategy of using a single table and a closed-
domain verification component also in this more
complex setting. To verify that the inference hap-
pens on the basis of the retrieved tables and not
simply the RoBERTa-weights, we include also the
performance of a model which simply uses clas-
sification on top of a RoBERTa-encoding of the
claim. Similar to our previous experiments, the
joint-loss model with five retrieved tables performs
the strongest. We note that it is unclear whether
the performance we observe here originates from
correlations obtained through background informa-
tion (as we see in Section 5.2 when the retriever
fails to find the appropriate table), or due to veri-
fication against a single entirely appropriate table
happening at a lower rate than when using TabFact.



6794

6 Related Work

Semantic querying against large collections of ta-
bles has previously been studied for question an-
swering. Sun et al. (2016) used string matching
between aliases of linked entities to search mil-
lions of tables crawled from the Web, with re-
trieved table cells providing evidence for a ques-
tion answering task. Jauhar et al. (2016) demon-
strated strong results with a Lucene index and a
Markov Logic Network-based model for answer-
ing scientific questions. Recently, Chakrabarti et al.
(2020a,b) developed an improved model for table
retrieval combining neural representations of the
table and the query with a BM25 index.

Cafarella et al. (2008, 2009) employed
keyphrase-based table retrieval by reranking a list
of tables returned by a search engine. Pimplikar
and Sarawagi (2012) used a graphical model to
perform retrieval on the basis of co-occurence
statistics, table metadata, and column headers. In
(Ghasemi-Gol and Szekely, 2018), non-parametric
clustering was employed as a strong heuristic for
table retrieval. Zhang and Balog (2018) introduced
a ranking method based on mapping available
features into several semantic spaces. Recently,
Zhang et al. (2019) introduced a neural method
for table retrieval and completion using word- and
entity-embeddings of table elements.

Neural modeling of tables has been the subject
of several recent papers. Aside from the original
BERT-based model in (Chen et al., 2020b), the clos-
est to our work is (Yin et al., 2020). In these paper,
a pretrained BERT-based encoder for tables is in-
troduced and demonstrated to yield strong improve-
ments on several semantic parsing tasks. Chen et al.
(2019) introduced a model to automatically predict
and compare column headers for tables in order to
find semantically synonymous schema attributes.
Similarly, Zhang and Balog (2019) introduced an
autoencoder for predicting table relatedness.

Closed-domain semantic parsing over tables has
been studied extensively in the context of ques-
tion answering (e.g., Pasupat and Liang (2015);
Khashabi et al. (2016); Yu et al. (2018)). In Zhong
et al. (2020), a logic-based fact verification system
was introduced to improve on the model presented
in the initial TabFact paper (Chen et al., 2020b).
Yang et al. (2020) builds on the program induc-
tion model also introduced in Chen et al. (2020b),
using a graph neural network to verify generated
programs. Orthogonally, a similar dataset for table-

based natural language inference was introduced
by Gupta et al. (2020) — interestingly, like in our
experiments, they found RoBERTa-large to work
extremely well for linearised tables. Finally, Herzig
et al. (2020); Eisenschlos et al. (2020) introduced
BERT-based models for various table semantic
tasks, extending BERT with additional position
embeddings denoting columns and rows.

Open-domain fact verification and question an-
swering over unstructured, textual data has been
studied in a series of recent papers. Early work re-
sulted in several highly sophisticated full pipeline
systems (Brill et al., 2002; Ferrucci et al., 2010;
Sun et al., 2015). These provided inspiration for
the influential DrQA model (Chen et al., 2017),
which like ours relies on a TF-IDF-based heuristic
retrieval model, and a complex reading model. Re-
cent work (Karpukhin et al., 2020; Lewis et al.,
2020) has built on this approach, developing
learned dense retrieval models with dot-product
indexing (Johnson et al., 2017), and increasingly
advanced pretrained transformer-models for read-
ing. The development of similarly fast, reliable and
learnable indexing techniques for tables as well as
text is an important direction for future work.

Concurrently with our work, Chen et al. (2020a)
have introduced a BERT-based model to perform
question answering over open collections of data
including tables. Like ours, their model consists
of separate retriever- and reader-steps. Their best-
performing reader employs a long-range sparse at-
tention transformer (Ainslie et al., 2020) to jointly
summarize all retrieved data. As in our case, their
model demonstrates significant improvements from
using multiple retrieved tables.

7 Conclusion

We have introduced a novel model for fact verifica-
tion over large collections of tables, along with two
strategies for exploiting closed-domain datasets to
increase performance. Our approach performs on
par with the current closed-domain state of the art,
with larger gains the more tables we include. When
using an oracle to retrieve a reference table, our ap-
proach also represents a new closed-domain state
of the art. Finally, we have made an initial foray
into Wikipedia-scale open-domain table fact verifi-
cation, demonstrating improvements from multiple
tables also when using a full set of Wikipedia ta-
bles as the knowledge source. Our results indicate
that the use of multiple tables can provide contex-
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tual clues to the model even when those tables do
not explicitly verify or refute the claim, because
they can provide evidence for the probability of the
claim. This is a double-edged sword, as reliance
on such clues can increase performance while also
inducing biased claims of truthfulness. Care will
be needed in future work to disentangle the positive
and negative aspects of this phenomenon.
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Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Pe-
ter Clark, Oren Etzioni, and Dan Roth. 2016. Ques-
tion answering via integer programming over semi-
structured knowledge. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pages 1145–1152. IJCAI/AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
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2017) with two attention heads. We then use an
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Model Dev Test Simple

Table-BERT (Chen et al., 2020b) 66.1 65.1 79.1 58.2 68.1
LogicalFactChecker (Zhong et al., 2020) 71.8 71.7 85.4 65.1 74.3
ProgVGAT (Yang et al., 2020) 74.9 74.4 88.3 67.6 76.2
TAPAS (Eisenschlos et al., 2020)* 81.0 81.0 92.3 75.6 83.9
Ours (Roberta-base, oracle retrieval) 72.3 69.9 85.7 62.1 71.4
Ours (Roberta-large, oracle retrieval) 78.2 77.6 88.9 72.1 79.4

Ours (Roberta-base, 1 table) 64.7 64.2 78.4 57.8 67.3
Ours (Roberta-base, 3 tables) 67.8 67.0 81.5 60.5 69.4
Ours (Roberta-base, 5 tables) 68.1 68.3 83.4 61.2 70.2
Ours (Roberta-base, 10 tables) 67.5 67.1 82.3 59.9 70.1

Ours (Roberta-large, 1 tables) 74.1 73.2 86.7 67.8 76.6
Ours (Roberta-large, 3 table) 74.6 73.8 87.0 68.3 78.1
Ours (Roberta-large, 5 tables) 75.9 75.1 87.8 69.5 77.8
Ours (Roberta-large, 10 tables) 73.9 73.8 86.9 68.1 76.9

Table 6: Prediction accuracy of our RoBERTa-based model on the official splits from the TabFact dataset, using
RoBERTa-base in addition to RoBERTa-large. The first section of the table contains closed-domain results, the
second and third open-domain. All results use the joint objective described in Section 4.1. * employs intermediary
pretraining on additional synthetic data.

We train the model using Adam (Kingma and
Ba, 2015) with a learning rate of 5e − 6. We use
a linear learning rate schedule, warming up over
the first 30000 batches. We use a batch size of 32.
Training was done on 8 NVIDIA Tesla V100 Volta
GPUs (with 32GB of memory), and completed in
approximately 36 hours.

C Retrieval accuracy for TabFact splits

The TabFact dataset comes with several different
data splits. We include here the performance of our
retrieval component for each split:

Dataset H@1 H@3 H@5 H@10

Train 59.5 71.2 74.8 79.2
Dev 69.6 78.8 82.3 86.6
Test 69.7 78.7 81.9 86.3
Simple Test 92.7 97.1 98.1 99.0
Complex Test 64.7 75.2 79.5 84.8
Small Test 82.1 89.6 91.4 94.7

Table 7: Retrieval accuracy with our entity-based TF-
IDF heuristic on the different TabFact splits.

D Reranking Performance

In Section 4, we introduced our model as a joint
system for fact verification and evidence rerank-
ing. A benefit of our formulation is the ability to

reason about the ability of our model to rerank by
marginalizing over the truth value of the claim, fol-
lowing Equation 7. In Table 8, we compare the
table retrieval ranking performance of our joint
model to a model only trained for reranking, as
well as to the TF-IDF baseline.

Model H@1 H@3 H@5

TF-IDF 69.6 78.8 82.3
Reranking only 69.9 78.9 82.3
Ours (no attention) 67.4 78.3 82.3
Ours (attention) 70.9 79.4 82.3

Table 8: Ranking performance on the TabFact vali-
dation set, using either our TF-IDF retriever alone or
reranking with our model. We test a version of our
model using only a reranking loss, as well as joint-loss
model with and without attention.

As can be seen, our joint loss provides a slight
performance improvement when the attention com-
ponent is included. Interestingly, the joint-loss
model performs better than a system trained purely
for reranking — this highlights the complementary
nature of the reranking and verification tasks.

E The Role of Attention

An interesting question is the role attention plays in
our model. As can be seen from Tables 2 and 8, our
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(a) Head 1, R@1
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(b) Head 1, R@2-3
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(c) Head 1, R@4-5
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(d) Head 2, R@1
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(e) Head 2, R@2-3
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(f) Head 2, R@4-5

Figure 4: Confusion matrices for the cross-attention between each pair of tables for the five-table version of our
model. Each head is represented separately, and individual figures are included for the parts of the dataset where
our TF-IDF retriever assigns the gold table rank respectively 1, 2-3, or 4-5.

cross-attention module is necessary to achieve high
performance – without it, the model struggles to
identify which table should be used for verification.
To investigate the function of attention, we plot in
Figure 4 the strength of the cross-attention between
each table for our five-table model. We produce
separate plot for the two attention heads, as well as
for each of the splits used in Table 3 representing
the parts of the dataset where our TF-IDF retriever
assigns the gold table rank respectively 1, 2-3, or
4-5.

For both attention heads, the attention function
has clearly distinct behaviour when the gold table
is retrieved as top 1; the degree to which that table
attends to itself is much greater. We suspect that
this is because of “easy” cases, where the attention
function is used to separate a clearly identifiable
“appropriate” table from the other tables. In harder
cases, the model uses the attention focus to com-
pare information across tables. To test this, we run
the model in a setting where four random tables are
used along with the gold table. In that setting, the
division is even clearer. For the gold table, respec-
tively 86 and 82 percent of the attention for the two
heads is on average focused on itself; for the four

random tables, the attention is evenly distributed
over all tables except the gold table.

To distinguish the two heads, we in general see
the first head exhibit a pattern of behaviour where
each table assigns the majority of attention to itself
— especially when that table is the gold table. The
second head seemingly encodes a more even spread
over the retrieved tables, perhaps representing gen-
eral context more than an attempt to identify the
gold table.


