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Abstract

Wet laboratory protocols (WLPs) are critical
for conveying reproducible procedures in bi-
ological research. They are composed of in-
structions written in natural language describ-
ing the step-wise processing of materials by
specific actions. This process flow descrip-
tion for reagents and materials synthesis in
WLPs can be captured by material state trans-
fer graphs (MSTGs), which encode global tem-
poral and causal relationships between actions.
Here, we propose methods to automatically
generate a MSTG for a given protocol by ex-
tracting all action relationships across multiple
sentences. We also note that previous corpora
and methods focused primarily on local intra-
sentence relationships between actions and en-
tities and did not address two critical issues:
(i) resolution of implicit arguments and (ii) es-
tablishing long-range dependencies across sen-
tences. We propose a new model that incre-
mentally learns latent structures and is better
suited to resolving inter-sentence relations and
implicit arguments. This model draws upon
a new corpus WLP-MSTG which was created
by extending annotations in the WLP corpora
for inter-sentence relations and implicit argu-
ments. Our model achieves an F1 score of
54.53% for temporal and causal relations in
protocols from our corpus, which is a signifi-
cant improvement over previous models - Dy-
GIE++:28.17%; spERT:27.81%. We make our
annotated WLP-MSTG corpus available to the
research community. 1

1 Introduction

Wet laboratory protocols (WLPs) play an integral
role in bioscience and biomedical research by serv-
ing as a vehicle to communicate experimental in-
structions that allow for standardization and repli-
cation of experiments. These procedures, typically
written in natural language, prescribe actions (Fig-
ure 1) to be conducted on materials that generally

1The dataset and code is available on the authors’ websites

Isolation of temperate phages by plaque agar overlay
1. Grow the bacteria overnight.
2. ...
3. ...
4. Remove one tube of soft agar from the water bath.
5. Add 1.0 mL host culture and either 1.0 or 0.1 mL viral
concentrate.

Figure 1: Extraction of a MSTG from an example WLP.
The MSTG is composed of Action Graphs (in grey),
connected by temporal and causal relationships (e.g.,
temporal relation ”Site” between Remove and Add).
The arrow indicate the direction of material flow.

produce new materials which, in turn, are used by
future actions to make newer materials. However,
WLPs can be unclear, composed of disconnected
and distant parts, and built upon implicit informa-
tion that were referenced earlier or omitted entirely.
Lack of careful documentation has led to a repro-
ducibility crisis (Baker, 2016) in the biosciences
and also poses considerable challenges for automa-
tion of laboratory procedures: gleaning the effect
and semantics of actions requires understanding
the underlying experiment, the sentence structure
and rationale behind implicitly stated arguments.

Currently, there is a dearth of annotated re-
sources for natural language instructions in lab-
oratory protocols. The WLP corpus initially col-
lected by Kulkarni et al. (2018) and later updated
by Tabassum et al. (2020) focused solely on rela-
tions within sentences. However, actions in WLPs
are more complex, containing additional relations
between actions (e.g., temporal and causal rela-
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tions). We propose using material state transfer
graphs (MSTG), which are a natural extension of
Action Graphs (Kulkarni et al., 2018). MSTGs
link together several Action Graphs into a larger
structure by utilizing global temporal and causal
relationships that can span several sentences in or-
der to describe the flow of materials from action
to action (Section 3). An example of a MSTG is
shown in Figure 1. The action phrase Grow the bac-
teria overnight in Step 1 consists of an action Grow
that Acts-on the reagent bacteria for an amount of
time specified as overnight. This Action Graph is
then connected to other such graphs (like in Step
5) through temporal and causal relationships (e.g.,
Grow action’s product is host culture thus we use
a Product link to establish a temporal relation be-
tween Step 1 and Step 5).

To automate the generation of MSTGs, we
must overcome two distinct challenges prevalent
in WLPs. First, the result of a preceding step may
not be immediately used by the next step, result-
ing in long-range dependencies. Second, an action
may involve implicit information, which is either
mentioned earlier or omitted entirely. Current mod-
els usually fail to make accurate predictions for
long-range relations, as seen in Figure 1 when es-
tablishing a temporal relation between Step 1 and
Step 5. These methods rely on relation propagation
(DyGIE++ Wadden et al. (2019)) or use contextual
embeddings (spERT Eberts and Ulges (2019)). Fur-
thermore, neither successfully establish complex
relations involving implicit arguments. In Step
5, the host culture and viral concentrate must be
added to the tube containing soft agar that was re-
moved in Step 4. However, the location tube in
Step 5 is implicit and has to be correctly inferred
to make the Site relation between Remove and Add.

We propose a novel and effective neural net-
work model that: (i): uses a series of relational
convolutions to learn from relations within and
across multiple action phrases and (ii): iteratively
enriches entity representations with learned latent
structures using a multi-head R-GCN model. Our
model achieves an F1 score of 54.5% for temporal
and causal relations, significantly improving upon
previous methods DyGIE++ and spERT for such
long-range relations by 26.4% and 26.7% respec-
tively. We analyze our model for intra- and inter-
sentence relation extraction and show substantial
improvements. Further, we also show the model’s
ability in resolving implicit arguments to improve

temporal relation extraction over the best baseline
method by 23.3%.

This paper is organized around two main con-
tributions: (i): the WLP-MSTG Corpus that ex-
tends the WLP Corpus (Kulkarni et al., 2018) by
including intra- and cross-sentence temporal and
causal relationships and (ii): a novel model that
builds upon latent structures to resolve implicit
arguments and long-range relations spanning mul-
tiple sentences. In Section 2, we describe related
works and in Section 3, we introduce MSTGs high-
lighting the two challenges. Next, we describe our
proposed model in Section 4 and demonstrate its
performance in Section 5.

2 Related Work

Temporal and Causal Relation Extraction:
Prior efforts have shown great promise in learn-
ing local and global features (Leeuwenberg and
Moens, 2017; Ning et al., 2017). Neural-network-
based methods have proven effective (Meng et al.,
2017; Meng and Rumshisky, 2018). Notably, Han
et al. (2019) use neural support vector machine
which can be difficult to train. Early methods for
extracting causal relations resorted to feature engi-
neering (Bethard and Martin, 2008; Yang and Mao,
2014). Recently several researchers (Zeng et al.,
2014; Nguyen and Grishman, 2015; Santos et al.,
2015) used convolutional neural networks (CNNs)
for extracting causal features. Notably, Li and Mao
(2019) addressed scarcity of training data thorough
knowledge-based CNN. However, such methods
are not scalable to multiple sentences.

Cross Sentence Relation Extraction: Long
range relations are understudied in literature. Prior
work focused on relations within a sentence or at
best between pairs of sentences (Peng et al., 2017;
Lee et al., 2018; Song et al., 2018; Guo et al., 2019).
In addition to joint entity and relation extraction
models, Wadden et al. (2019) proposed a model
that passes useful information across graphs over
cross-sentence contexts while Eberts and Ulges
(2019) encoded per sentence contextual informa-
tion for relation extraction over longer sentences.

Implicit Arguments: Early methods selected
specific features to build linear classifiers (Ger-
ber and Chai, 2010, 2012). Others incorporated
additional, manually-constructed resources like
named entity taggers and WordNet (Gerber and
Chai, 2012; Laparra and Rigau, 2013; Fellbaum,
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2012). In contrast, a few notable studies used un-
labeled training data to resolve implicit arguments
(Chiarcos and Schenk, 2015; Schenk et al., 2016).
Finally, Do et al. (2017) explored the full proba-
bility space of semantic arguments; however, the
method does not scale well.

3 Task Formulation: Material State
Transfer Graph

(I-I) Dilute 5x buffer to 1x (???). Store (???) in a tube.

(I-E) Dilute 5x buffer to 1x (???). Store the Sol in a tube.

(E-I) Dilute 5x buffer to 1x Sol . Store (???) in a tube.

(E-E) Dilute 5x buffer to 1x Sol. Store the Sol in a tube.
COREF
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Figure 2: Implicit Arguments in WLPs. (a) Classifi-
cation of implicit arguments into four cases. Using the
same two actions, we denote the presence of implicit ar-
guments by ”(???)” for clarity. (I-I): both product and
source are implicit. (I-E): only the product is implied.
(E-I): the source is implied. (E-E): both product and
source are explicit. (b) Distribution of relations that
capture a specific category of implicit arguments. (n =
90 WLPs)

To construct a MSTG from an input protocol,
we define the following four concepts. (i) Action
Graphs: Introduced by Kulkarni et al. (2018), they
are extracted from action phrases as seen in Fig-
ure 1. Forming the fundamental unit of a MSTG,
Action Graphs are composed of an Action, 17
types of named entities as explicit arguments (e.g,
”Reagent”, ”Location”, etc.), and 13 local seman-
tic relations (e.g., ”Using”, ”Measure”, ”Acts-on”,

Data Split #Docs #Entities #iAP #cAP-TaC

Train 387 34,355 32,585 5,049
Dev 99 13,713 12,578 2,209
Test 128 16,869 15,679 2,724

Total 615 64,937 60,842 9,982

Table 1: Statistics of the Wet Lab Protocol-Material
State Transfer Graph Corpus extended with cross Ac-
tion Phrase Temporal and Causal relationships.

etc.) represented as directed edges, which we shall
refer to as inter-Action Phrase (iAP) relations here-
after. (ii) Temporal Relations: Inspired from prior
work (Allen, 1984), we define temporality as a re-
lationship between two action phrases such that an
action’s product (output) is connected to another
action’s source (input), thereby imposing a partial
or total order. It is also necessary to determine
whether an action is executed before or simultane-
ously with respect to other actions. We use 5 tem-
poral relations, (namely ”Acts-on”, ”Site”, ”Coref-
erence”, ”Product”, and ”Overlaps”) to capture the
flow of materials. (iii) Causal Relations: Following
(Barbey and Wolff, 2007), we define causality as
the relationship between two actions where one ac-
tion directly affects the execution of another action
(e.g., if a given action enables or prevents2 another
action). (iv) Implicit Arguments: We characterize
implicit arguments into four cases (Figure 2a) de-
pending on whether the source or product of the
connected actions is implicit or explicit. Four of the
five temporal relations in WLP-MSTG are defined
to handle implicit arguments: ”Acts-on”, ”Site”,
”Coreference”, and ”Product”.

3.1 Corpus for Cross Sentence Relations

Annotation Process: We annotate six-hundred-
and-fifteen (615) protocols derived from the WLP
Corpus to include the 6 global cross-Action Phrase
Temporal and Causal (cAP-TaC) relationships. We
split the annotation task into two phases. In the
first phase, we worked with 7 expert annotators
to develop the guidelines over 8 iterations. Each
iteration consisted of 10 protocols that were indi-
vidually annotated by each expert annotator, and
the inter-annotator agreement (IAA) was measured
for each of the 10 protocols. At the end of each iter-

2Due to the limited instances of ”Prevents” relations found
in WLPs, we replace these with the relation ”Enables”. E.g.,
Mix regents carefully to not spill contents, implies a ”Prevents”
relation from Mix to spill which is equivalent to an ”Enables”
relation from Mix to not spill.
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Statistics WLP-MSTG W-NUT 2020 WLPC

# Docs 615 615 622
# Entities 64,937 80,659 60,721
# Relations 70,824 54,212 42,425
# Rels/Doc 115.16 88.14 68.20
# cAP-TaC 9,982 - -

Table 2: Comparison of existing WLP corpora. The
WLP-MSTG corpus expands relation coverage by in-
cluding temporal and causal relationships.

ation, we refined the set of rules to reduce the guide-
lines’ ambiguity. The agreement measured across
all annotators using Krippendorff’s Alpha (Krip-
pendorff, 2004) on the last iteration was 78.23%.

With a good IAA attained, we began the second
phase to collect the train, dev, and test datasets.
To ensure the highest quality of the test data, we
employed all 7 annotators to work on the same
128 protocols and merged the resulting annotations
based on majority voting. In contrast, individual an-
notators collected the train and dev sets separately
to speed up the annotation process. A typical proto-
col of 30 steps required 25 minutes on average for
an annotator to identify all the cAP-TaC relations.

Comparison with previous corpora: Our cor-
pus, WLP-MSTG, extends the WLP corpus (Kulka-
rni et al., 2018) which was later updated for a
WNUT 2020 shared task (Tabassum et al., 2020).
WNUT 2020 was primarily designed to facili-
tate supervised named entity taggers and within-
sentence relation extraction methods. We extend
the 615 protocols therein to include intra- and inter-
sentence temporal and causal relations. To ensure
a fully connected graph, we exclude entities and
relations annotated for spurious descriptive sen-
tences that do not prescribe any actions (e.g., title,
notations, definitions, etc.). Table 2 provides a
comparison of statistics among the three corpora.

Analysis: We conducted a distribution analysis
of 90 protocols that would typically serve as the
dev set for machine learning models. Actions con-
nected by temporal and causal relations tend to be
consecutive (78.4%); however, a non-trivial num-
ber are considerably spaced apart (21.6%) with
1.08% of the total at least 8 actions apart. For
implicit arguments, we observed: (i) implicit argu-
ments are unusually prevalent in WLPs (88.44%),
(ii) a higher percentage (55.98%) of the products
of an action are implied, and (iii) temporally con-
nected actions are closer if they contain implicit

arguments; otherwise, they are relatively farther
apart Figure 2b. This analysis provides valuable in-
sight about the challenges in the form of long-range
relations and implicit arguments that are present in
extracting MSTGs from WLPs.

4 A Latent Structure Model for Joint
Entity and Relation Extraction

We develop a latent structure model for jointly
learning entity and relations within and across mul-
tiple sentences. A schematic of the model is shown
in Figure 3. In Section 4.1 we describe construction
of span representation (Figure 3A) from protocol
text that incorporates critical features necessary for
long-range relation extraction. Section 4.2 explains
how the transcoder block (Figure 3B) builds upon
latent structures (as illustrated in Figure 3D) to im-
prove entity and relation representations. Finally, in
Section 4.3 we discuss training and regularization
strategies to jointly learn span, entity, and relations
through a multi-task loss function derived from
span, entity, and relation scores (Figure 3C). We
shall use Figure 1 as a running example throughout
the model description.

4.1 Span Representation

Following prior span-based approaches (Wadden
et al., 2019; Eberts and Ulges, 2019), our goal is
to (i): collect a series of tokens from the protocol
text, (ii): enumerate all spans, and (iii): rank top-
scoring spans for considerations as candidates for
entity and relation extraction.

Token embeddings: We use SciBERT (Beltagy
et al., 2019) for learning token representations for
a given protocol P . As shown in Figure 3, the
input is a protocol P represented as a collection
of sentences S = {s1, ..., sP}. Each sentence si
is composed of a sequence of tokens {t1, ..., tn}.
For example, within the sentence, Add 1.0 mL host
culture and either 1.0 or 0.1 mL viral concentrate
(Figure 1, Step 5), we identify host, culture, and
etc., as the tokens to be passed to the SciBERT
model. We batch process sentences in the protocol
to generate context-aware embeddings {t1, ..., tn}
for each sentence.

Span Enumeration: The spans between two
tokens ti and tj is represented as sij =
{ti, ti+1, ...tj}. We enumerate all possible spans of
upto a size of 10 tokens. For each enumerated span,
the span representation eij ∈ Rde is derived from
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SciBERT (fine-tuned)

1. Grow the bacteria overnight
...
5. Add 1.0 mL host culture and ...

SciBERT (fine-tuned)
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Figure 3: Overview of latent structure model. The model first builds (A) span representations (Section 4.1), which
are passed into the (B) transcoder block (Section 4.2) that leverages (D) latent structures to improve entity and
relation representations which are scored alongside spans in the (C) multi-task loss function (Section 4.3). As
indicated in (D), the model first learns simple structures like action graphs. The next set of layers discovers simple
temporal and causal relations and uses these connections to discover more complex relations in the final layers.

applying a feed-forward neural network (FFNN)
on a concatenation of tokens representations and
embeddings:

eij = FFNN([ti; tj ;φsh(sij);φpos(sij);

φstep(sij);φw(sij)])
(1)

where, ti and tj are the first and last token rep-
resentation. Note, φsh(sij) is a soft head repre-
sentation (Bahdanau et al., 2014) and, φw(sij) is
a learnt span width embedding respectively. Fur-
ther, φpos(sij) and φstep(sij) are two positional
embeddings, the former for within sentence while
the latter defines the step position within the pro-
tocol respectively. Hence, host culture and host
culture and are two valid spans that are enumerated
through this process.

Span Pruning: Next, low scoring spans are
filtered out during both training and evaluation
phases. Following (Lee et al., 2017), the scoring
function is implemented as a feed-forward network
φs(eij) = wT

s FFNNs(eij). We rank and pick a
number of top scoring spans per sentence by using
a combination of (i): a maximum fraction λp = 0.1
of spans per sentence, and (ii): a minimum score
threshold λt = 0.5. Thus, the span host culture
receives a significantly higher score than host cul-
ture and, indicating that the former is the correct
reagent entity in the prescribed step. These span
candidates are then passed to the transcoder block.

4.2 Transcoder Block

In the transcoder block, we propose a novel archi-
tecture to improve relation and entity representation
from latent structures. The objective is two fold:
(i): to leverage localized features at phrase and sen-
tence levels to resolve long range relations through
a relation convolutions, and (ii): to learn from la-
tent structures how to resolve implicit arguments
through a multi-head relational graph convolution
network (multi-head R-GCN).

Each transcoder block is composed of a Rela-
tion Encoder (Section 4.2.1), Convolution (Sec-
tion 4.2.2) and Decoder (Section 4.2.3) compo-
nents, to discover local relationships between the
input entities. These relations (represented as la-
tent structures A ∈ Rm×m×r) are then passed to
the Multi-Head R-GCN (Section 4.2.4) component
of the same transcoder block to enrich the entity
representation with information about those discov-
ered local relationships. These enriched entities
can now be used to predict more complex cross
sentence relationships in the next transcoder block.
To facilitate deeper networks, we make use of resid-
ual connections (He et al., 2016) followed by layer
normalization (Ba et al., 2016) as denoted by Add
+ Norm in Figure 3B.

We shall make use of the example (Figure 1),
focusing on the long range relationships between
Step 1 (i.e., Grow the bacteria overnight.) and Step
5 (i.e., Add 1.0 mL host culture and either 1.0 or
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0.1 mL viral concentrate.) to illustrate the flow
of information throughout the transcoder block.
The first transcoder block takes as input m high
scoring candidate entity span representations (as
E(0) ∈ Rm×de) as determined by the pruner 3. For
instance, from Step 1 we identify the following
high scoring candidate entities grow, bacteria, and
overnight and from Step 5 we find add, 1.0 mL,
host culture, 0.1 mL, and viral concentrate.

4.2.1 Relation Encoder:
Following (Nguyen and Verspoor, 2019), we make
use of a bi-affine pairwise function to encode re-
lations for every pair of entity span representa-
tion. That is, we generate relational embeddings
for entity pairs like grow and bacteria, grow and
overnight, etc. Each entity span eij ∈ Rde is first
projected using two FFNNs to generate the rep-
resentations ehij ∈ Rdh and etij ∈ Rdt indicating
the first (head) and the second (tail) argument of a
relation:

ehij = FFNNh(eij); e
t
ij = FFNNt(eij)

In practice, we batch process all entities to gener-
ate Eh ∈ Rm×dh and Et ∈ Rm×dt where m is the
number of candidate spans. In our experiments, we
let dh = dt then use a bi-affine operator to calculate
a tensor R̃(l) ∈ Rm×dr×m for relational embed-
dings: R̃(l) = (EhL)E

T
t . Here L ∈ Rdh×dr×dt is

a learned parameter tensor and dr is the relation
embedding size.

4.2.2 Relation Convolutions:
We enrich the relational embeddings R̃(l) with lo-
cal relational features within a single phrase (found
near the diagonal) and across multiple phrases
(found in the upper and lower triangle) using a
stack of convolutional layers. We denote Cw(.) to
be a 2D convolutional operator applying a kernel
width of size w × w. In our model, we make use
of a two-layer convolution:

T(0) = ReLU(C3(R̃
(l)))

R(l) = ReLU(C3(T
(0)))

The input R̃(l) is reshaped as Rm×m×dr such that
the dimensions dr acts as the channel dimension
in the convolutions. The dimensions of T(0) is in
Rm×m×2dr with the final output R(l) ∈ Rm×m×dr .

3The entity span representation from the entire sub-
protocol, (i.e., from steps 1 to 5), are passed as a bag of
entities E(0) ∈ Rm×de . However, there aren’t any relations
(i.e., R(0)) to be passed to the first transcoder block

4.2.3 Relation Decoder:

The relational embeddings R(l) are decoded us-
ing a 2-layer FFNN. The decoded scores A ∈
Rm×m×r captures the latent structures (as shown in
Figure 3B). This is re-encoded using the multi-head
R-GCN to strengthen the model’s ability to predict
more complex relations in the next transcoder layer.

4.2.4 Multi-head R-GCN:

For each predicted relation score Ar ∈ Rm×m, we
add self loops and perform Laplacian smoothing
(Kipf and Welling, 2017; Li et al., 2018) for nor-
malization following: Âr = D̃−

1
2 ÃrD̃

− 1
2 where

Ãr = Ar + I and D̃ =
∑

j Ãijr. Then, using
Âr as an adjacency matrix, we learn multi-head,
direction-specific graph convolution transforma-
tions. Each head corresponding to a given relation
r performs graph convolutions on the entity rep-
resentation E(l−1) ∈ Rm×de to generate E

(l)
r ∈

Rm×(dr/r). A single R-GCN(i)
r (.) (Schlichtkrull

et al., 2018) operation for a given relation type r
and ith GCN layer corresponds to:

R-GCN(i)
r (Âr,E

(i−1)
r ) = σ(ÂrE

(i−1)
r W

(i)
fr )

+ σ(ÂT
r E

(i−1)
r W

(i)
br ) + b(i)

r (2)

where W
(i)
fr ∈ Rdi−1×di , W(i)

br ∈ Rdi−1×di are
learnable parameters for incoming and outgoing
edge directions respectively and b

(i)
r is the bias.

We use the ReLU activation function σ in our net-
works. As shown in Figure 3B, the outputs of
the individual R-GCN heads are concatenated and
passed through a FFNN layer to compute the final
output E(l).

For instance, suppose we discovered a local rela-
tion in Step 1 between grow and bacteria after the
Relation Decoder component in the first transcoder
block. The Multi-head R-GCN takes in the dis-
covered relation (through the latent structure A)
and enriches grow’s entity embeddings, enabling
the next transcoder layer to predict a more com-
plex cross sentence relation between grow (Step
1) and host culture (Step 5). Since bacteria and
host culture are semantically related, they have sim-
ilar entity embeddings, and therefore the enriched
representation of grow (now containing informa-
tion about bacteria) allows for establishing the re-
lation between grow and host culture in the next
transcoder block.
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4.3 Training and Regularization

The loss function is a linear combination of cross
entropy losses for each of the tasks. We addition-
ally apply label smoothing (Szegedy et al., 2016).
The relation extraction is trained on gold entity
spans. For regularization, we apply dropout (Sri-
vastava et al., 2014) to the output of each FFNN
layer. We make use of dropedge (Rong et al., 2019)
for the adjacency matrix Ar before it is passed to
the multi-head R-GCN model.

5 Experiments

In contrast to general language models, domain-
specific methods have resulted in more competitive
baselines and are better suited (Tabassum et al.,
2020; Wadden et al., 2019; Eberts and Ulges, 2019)
for simultaneously resolving and predicting entities
and relations over longer contexts. Thus, we eval-
uate our model against two state-of-the-art mod-
els for jointly predicting entities and relations in
scientific-text domain, namely DyGIE++ (Wadden
et al., 2019) and spERT (Eberts and Ulges, 2019),
on the WLP-MSTG.

We conduct five (5) runs with random initial-
izations for each evaluation and report the test set
performance on the model that achieved the me-
dian relation F1 score on the dev(elopment) set.
All models are evaluated end-to-end, where the
model takes as input tokenized sentences and pre-
dicts all the entities and the relations generating a
MSTG. We use the standard precision, recall and
F1 metrics. An entity is considered correct if its
predicted span and label match the ground truth.
Relation extraction is performed on the predicted
entity spans. A relation is correct if its relation type
and the entity pairs are both correct (in span and
type) against the ground truth. We also evaluate
our model’s performance on WNUT 2020 (Tabas-
sum et al., 2020) corpus. To fairly evaluate relation
extraction, we use gold entities to make relation
predictions4 by modifying the loss function to only
train on relation scores. We additionally concate-
nate entity label embeddings to the span represen-
tation in Equation (1).

5.1 Results

On the WLP-MSTG corpus, Table 3 shows our best
model with N = 8 transcoder block layers making

4The best models on WNUT2020 make direct use of gold
entities during the training and inference and only focus on
relation extraction task.

modest improvement on entity extraction at 82.0%
but improving significantly upon the previous state-
of-the-art methods (i.e. DyGIE++ and spERT) in
predicting relations. Our model outperforms the
baselines for relation extraction with an F1 score
on predicting inter-Action Phrase (iAP) relations
at 68.0% and cross-Action Phrase Temporal and
Causal (cAP-TaC) relations at 54.5%. We further
enhanced the performance of our model by sharing
the relational decoders’ parameters across all layers
of the transcoder block (Section 4.2.3). This en-
ables the latent structures to be grounded in output
relation types, which also lends itself to be inter-
pretable. The shared relation decoder marginally
outperforms the not-shared configuration by 0.5%
for iAP relations and 1.1% for cAP-TaC relations.

Short and Long Range Relations: On the
WNUT 2020 corpus, which only includes intra-
sentence relations, Table 4 shows that our model
outperforms the best single model that used the
original data by 1.0%. We also report that our
model is competitive against the ensemble ap-
proach that included models trained on an altered
version of the original corpus where they removed
duplicate text after clustering. On the WLP-MSTG
corpus, we can evaluate both short and long range
relations: from Table 3 we see a 3.5% improvement
in F1 score over DyGIE++ for iAP relations. This
shows that our model leverages the cross-sentence
temporal and causal relations that were addition-
ally annotated in WLP-MSTG to improve local
iAP relations. Our model outperforms DyGIE++
and spERT on intra-sentence by 4.3% and 26.1%
respectively, and significantly improves for inter-
sentence cAP-TaC relations by 45.5% and 21.5%
respectively. This is attributed to positional em-
beddings along with the relational convolutions
which enables the model to learn intra and inter
action phrase relations effectively. We see spERT
performing better for ”Overlaps” which is largely
attributed to the ’CLS’ token that spERT embeds
to make relation predictions. Figure 4 shows per-
formance on varying the number of sentences in
between entities involved in a relation. We observe
our model performing the best for all distances
between sentences. This is once again attributed
to the relational convolution component which is
effective in capturing far away relations.

Temporal and Implicit Arguments: In Table 6
we show our model outperforming the baselines for
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Action + Entities iAP Relations (85.2%) cAP-TaC Relations (14.8%)

Models P R F1 P R F1 P R F1

DyGIE++ (Wadden et al., 2019) 85.0 78.5 81.6 66.1 62.9 64.5 61.5 18.2 28.1
spERT (Eberts and Ulges, 2019) 76.4 83.1 79.6 34.3 59.0 43.4 20.1 45.1 27.8

Our Model (No-Sharing) 82.9 81.2 82.1 66.9 68.2 67.5 60.1 48.1 53.4
Our Model (Shared Decoder) 82.8 81.3 82.0 67.9 68.2 68.0 57.8 51.5 54.5

Table 3: Micro F1 scores for actions + entities and relation extraction (split into iAP and cAP-TaC relations) on
the WLP-MSTG test set.

Models P R F1

Miller and Vosoughi (2020) 45.4 86.5 59.6
Single (Sohrab et al., 2020) 80.3 77.4 78.9
Ensemble (Sohrab et al., 2020) 80.8 80.1 80.5

Our Model (single) 80.4 79.3 79.9

Table 4: Micro F1 scores for relation extraction on
WNUT 2020 shared task based on gold entities.
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Figure 4: Micro F1 scores for cAP-TaC relation extrac-
tion on the test set split by the distance between head
and tail entities as measured by number of sentences.

temporal relations at 53.4% F1 score. We also ob-
serve significant improvements across the board for
resolving implicit arguments. We see the highest
gains (at 55.6%) compared to the baseline mod-
els (1.6% for DyGIE++ and 10.2% for spERT) for
(E-I) case (Figure 2a) which only contains 169 sam-
ples in the test set. Our model is able to correctly
resolve the implicit source (input) to an action by
utilizing simple relations that is typically connected
to explicit arguments.

Causal relations: The performance for causal
relations for our model against DyGIE++ is com-
parable as seen in Table 6. Causal relations are
relatively easier for the baseline models to capture,
as they tend to have specific prepositions in be-

cAP-TaC Relations DyGIE++ spERT Ours

Acts-on 62.8 25.4 66.9
Site 30.1 22.8 49.3
Coreference-Link 6.6 8.8 23.6
Product 51.7 45.0 59.5
Enables 62.3 48.5 61.9
Overlaps 14.7 25.4 29.1

Micro F1 52.6 30.8 56.9

(a) Intra-Sentence cAP-TaC Relations

cAP-TaC Relations DyGIE++ spERT Ours

Acts-on 13.7 35.7 65.4
Site 5.4 45.6 58.2
Coreference-Link 1.9 4.6 14.2
Product 6.8 34.4 56.2
Enables 0.0 0.0 0.0
Overlaps 0.0 2.7 1.7

Micro F1 7.4 31.4 52.9

(b) Inter-Sentence cAP-TaC Relations

Table 5: cAP-TaC relation extraction performance on
the test set, split into (a) intra- and (b) inter-sentence
relations and presented as per class and micro averaged
F1 scores. Bold indicates best performance per row.

tween action phrases.5 However, more complex
causal relations are hard. Still, our model is able
to deal with such examples, presenting about 0.7%
performance gain compared to DyGIE++ and about
10.9% improvement against spERT. This is pri-
marily attributed to the multi-head R-GCN which
builds upon simple relations that provide clues to
establish harder causal relations. Cross-sentential
’Enables’ relations (as seen in Table 5) are chal-
lenging even for our model as once again we do
not encode any contextual features.

Model Ablation: Table 7 presents the results of
the ablation test of our model on the development
set of WLP-MSTG. All three components (i.e.,
positional embeddings, relation convolutions and

5For instance, in Step Resuspend by vortexing the pellets
baseline models can easily identify an ”Enables” relation from
vortexing to Resuspend with the help of the preposition ’by’.
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Groups DyGIE++ spERT Ours

Temporal (5034) 23.4 30.1 53.4
- (I-I) (1608) 41.5 33.0 56.4
- (I-E) (2331) 15.5 35.7 67.5
- (E-I) (169) 1.6 10.2 55.6
- (E-E) (546) 3.1 5.7 31.0

Causal (608) 55.5 45.3 56.2

Table 6: Micro F1 scores for cAP-TaC relations split
into temporal (and subgroups) and causal relations on
WLP-MSTG test set. Refer to Figure 2a for acronym
definitions. Bold indicates best performance per row.
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Figure 5: Micro F1 scores for cAP-TaC relation ex-
traction on the dev set for different number (N ) of
transcoder blocks as illustrated in Figure 3.

multi-head R-GCN) play a significant role in im-
proving cAP-TaC performance. Relation convo-
lutions contributes the most to iAP and cAP-TaC
relations by about 1.2% and 2.4% respectively. Po-
sitional embeddings impacts iAP relations more (by
1.1%) whereas Multi-Head R-GCN only impacts
the more complex relations (cAPTaC by 1.1%) and
does not help in improving simpler relations.

How Many Layers?: Figure 5 shows that more
layers generally improve far away relations without
improving closer ones. This shows that although
our model can build upon simple relations that are
typically close by, it cannot do the opposite, i.e.,

Model All iAP cAP

Final Model 59.5 64.3 47.5
- Pos + Step Embedding 58.3 63.2 46.6
- Relation Convolutions 58.0 63.1 45.1
- Multi-head R-GCN 59.2 64.3 46.4
- All above 46.3 52.3 26.0

Table 7: Ablation test of proposed latent structure
model evaluated on WLP-MSTG dev set. We present
micro F1 scores for both iAP and cAP-TaC relation ex-
traction.

leverage far away relations (which are typically
more complicated) to improve more challenging
closer relations. Our model discovers those com-
plex, distant relations too deep into the network to
be utilized to predict the challenging local relations.

6 Conclusions and Future Work

We present the WLP-MSTG corpus, an extension
of the WLP corpus that includes cAP-TaC relation-
ships for building MSTGs. This corpus highlights
two unique challenges: (i) the implicit argument
problem and (ii) long-range relations. To address
these issues, our model builds upon latent struc-
tures thus outperforming previous state-of-the-art
models for predicting iAP and cAP-TaC relations.
We also report significant improvements in under-
standing implicit arguments and identifying long
range relationships across multiple sentences. How-
ever, our model’s lower absolute performance in-
dicates that we have not fully captured the infor-
mation needed to facilitate modeling end-to-end
workflows, which will have a lasting impact in im-
proving automation in the life sciences and other
domains.
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7 Appendix

7.1 Material State Transfer Graph Example

We describe a full material state transfer graph (as
seen in Figure 7) designed for the protocol in Fig-
ure 6. Each action phrase found in the protocol text
is converted into an action graph (as seen in grey
boxes in Figure 7). For example, the action phrase:
Grow the bacteria overnight, we identify an ”Ac-
tion” Grow and all of its arguments like ”Reagent”
bacteria and ”Time” overnight. These actions and
entities are interconnected with local relations that
we call iAP (inter-Action Phrase) relations. For
instance, relations like ”Acts-on” between Grow
to bacteria and ”Setting” from Grow to overnight
to indicate that is how long we should be grow-
ing the bacteria. Then, the action phrases as action
graphs are interconnected with cross-Action Phrase
Temporal and Causal (cAP-TaC) relations. These
relations can connect to any action or entity in the
action graph as seen in Figure 7. For example, the
”Product” relation from Grow to host culture in-
dicates two things, (i) that the actual product of
the Grow ”Action” is host culture and (ii) the steps
involving Grow must take place first before the
”Action” Add. We carefully define each relation
used as cAP-TaC relations below:

7.2 Temporal Relations

The following four relations behave as ”before”
temporal relations (ie ”Acts-on”, ”Site”, ”Product”,
”Coreference”). Whereas the fifth relation ”Over-
laps” is used when any two actions have any degree
of overlap in time. The four relations also define
which implicit argument relation group do they fall
under. The four groups are (i)(I-I) as in both the
product and the sources are implicit. (ii)(E-I) The
product is explicit, but the source is implied. (iii)
(I-E) the product is implied but the source is ex-
plicit. And, (iv) (E-E) both the source and product
are explicit.

Acts-on: Connects to a previous ”Action” if the
product of that ”Action” is implicit. Otherwise
directly connects to the named entity (which can
be a ”Reagent”, ”Location”, ”Device” etc) that
the previous Action has a ”Product” relation to.
If directly connected to an ”Action”, this would
fall under (I-I) case of implicit argument types. If
connected to any named entity which is a product
of the previous action then it would fall under (E-I)
case.

Isolation of temperate phages by plaque agar overlay

1. Grow the bacteria overnight.
2. Melt soft agar overlay tubes in boiling water.
3. Place in the 47C water bath.
4. Remove one tube of soft agar from the water bath.
5. Add 1.0 mL host culture and either 1.0 or 0.1 mL viral concentrate to

the tube.
6. Mix the culture contents in the tube well by rolling back and forth

between two hands.
7. Immediately empty the tube contents onto an agar plate.
8. Sit RT for 5 min.
9. Gently spread the top agar over the agar surface by sliding the plate on

the bench surface using a circular motion.
10. Harden the top agar by not disturbing the plates for 30 min.
11. Incubate the plates (top agar side down) overnight to 48 h.
12. Temperate phage plaques will appear as turbid or cloudy plaques,

whereas purely lytic phage will appear as sharply defined, clear
plaques.

Figure 6: An example experimental protocol. The first
11 steps contain imperative phrases, while the last sen-
tence describes the end results and their subsequent uti-
lization. A full material state transfer graph for this
protocol is shown in Figure 7

Site: Similar to ”Acts-on”, this relation links to
the previous ”Action” if the product of that ”Ac-
tion” is implicit, and that product is where the
current ”Action” is taking place. Otherwise we
directly connect to the appropriate named entity.
Once again, similar to ”Acts-on”, if directly con-
nected to ”Action”, it falls under (I-I) case, other-
wise its (E-I) case.

Product: This relation is used to identify the
product of the current ”Action”, either its found
in its own action phrase or in some future action
phrase. If the product is identified within its action
phrase (which is quite rare) it would be considered
an iAP relation. Otherwise, this would fall under
(I-E) case.

Coreference: This is used when the objects or
arguments are in the same state. We connect the
object to the same object referred before only if
that object has not undergone any transformations
by any actions in between. This relation falls under
(E-E) case.

Overlaps: This relation is used to indicate which
two actions are being performed simultaneously or
that have any degree of overlap between them in
terms of time.

7.3 Causal Relation

We only make use of one causal relation type ”En-
ables”. Due to low numbers on ”Prevents” rela-
tions, we turn them into an ”Enables” relation by
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simply negating the ”Action” involved in the re-
lationship. For example, Mix regents carefully to
not spill contents, we replace a ”Prevents” rela-
tion from Mix to spill with an ”Enables” relation
from Mix to not spill. In many elaborate negative
words we make use of ”Mod-Link” to connect to
the additional descriptors to the relevant action.

7.4 Implementation Details
In evaluating on WLP-MSTG, we overcome mem-
ory limitations in baseline models during training
and inferencing, we sub-divide long protocols into
overlapping windows of 5 sentences each, with a
stride of 2 (i.e., each consecutive window shares
3 sentences). To ensure fair comparison we also
incorporate this restriction to our model, although
our models is capable of a much larger window size.
The final evaluation is done by merging the predic-
tions in the form of sub-graphs into one complete
material state transfer graph (MSTG) and resolving
duplicate predictions through majority voting. We
identify duplicates through exact match of spans
boundaries for entities and exact match of entity
span and its types for relations.

Hyperparameters We make use of Adam opti-
mizer with a initial learning rate of 2.13 × 10−5.
For generating span candidates we only enumerate
them upto 10 tokens in width. We set the positional
embedding φpos(sij) table size to 100. For step em-
bedding φstep(sij) we only learn embeddings for
5 steps. Both embeddings use embedding dimen-
sions as 50. The span embedding size de = 340,
and the relational embedding size dr is set to 100.
Label smoothing [symbol] is set to the default value
of 0.1. Dropout used in every FFNN has p = 0.2
and the dropedge used right before multi-head R-
GCN model is set with p = 0.5.
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Figure 7: A full material state transfer graphical representation of the example protocol in Figure 6.


