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Abstract

Argument pair extraction (APE) is a research
task for extracting arguments from two pas-
sages and identifying potential argument pairs.
Prior research work treats this task as a se-
quence labeling problem and a binary clas-
sification problem on two passages that are
directly concatenated together, which has a
limitation of not fully utilizing the unique
characteristics and inherent relations of two
different passages. This paper proposes a
novel attention-guided multi-layer multi-cross
encoding scheme to address the challenges.
The new model processes two passages with
two individual sequence encoders and updates
their representations using each other’s repre-
sentations through attention. In addition, the
pair prediction part is formulated as a table-
filling problem by updating the representations
of two sequences’ Cartesian product. Further-
more, an auxiliary attention loss is introduced
to guide each argument to align to its paired ar-
gument. An extensive set of experiments show
that the new model significantly improves the
APE performance over several alternatives 1.

1 Introduction

Mining argumentation structures within a corpus
is a crucial task in argument mining research field
(Palau and Moens, 2009). There are usually two
main components in learning natural language argu-
ment structures: (1) detecting argumentative units,
(2) predicting relations between the identified argu-
ments. It has been widely studied by natural lan-
guage processing (NLP) researchers (Cabrio and
Villata, 2018) and applied to domains such as: web
debating platforms (Boltužić and Šnajder, 2015;
Swanson et al., 2015; Chakrabarty et al., 2019),

∗Liying Cheng is under the Joint Ph.D. Program between
Alibaba and Singapore University of Technology and Design.

1Our code and data are available at https://github.
com/TianyuTerry/MLMC.

persuasive essays (Stab and Gurevych, 2014; Pers-
ing and Ng, 2016), social media (Abbott et al.,
2016), etc. Unlike traditional argument extraction
tasks that are mainly from monologues, Cheng et al.
(2020) propose a new task - argument pair extrac-
tion (APE) from two passages in a new domain,
namely peer review process, focusing on exploit-
ing the interactions between reviewer comments
and author rebuttals. As shown in Figure 1, APE
task aims to extract the argument pairs from two
passages. Specific suggestions, questions or chal-
lenges in reviews are considered as review argu-
ments. Response sentences that answer or explain
the specific review argument are its paired rebut-
tal arguments. For example in the pink area, the
reviewer points out the lack of literature review
in submission (i.e., review sentences 11-12). As
a response, the authors argue that they select the
literature based on the special focus of their work
(i.e., rebuttal sentence 6-7).

Similar to the two components in the traditional
argumentation structure mining, the APE task can
be divided into two subtasks: (1) extracting the re-
view and rebuttal arguments from two passages, (2)
predicting if an extracted review argument and a
rebuttal argument form an argument pair. The first
subtask can be cast as a sequence labeling problem
and the second one can be cast as a binary classifi-
cation problem. One straightforward approach is
to couple the two subtasks in a pipeline. However,
such a pipeline approach learns two subtasks inde-
pendently without sharing ample information. To
address this limitation, the pioneering work (Cheng
et al., 2020) employs a multi-task learning frame-
work to train two subtasks simultaneously.

However, there are several shortcomings in the
multi-task model. First, the review passage and
its rebuttal passage are concatenated as a single
passage to perform the argument extraction subtask
with sequence labeling. It is obvious to see from

https://github.com/TianyuTerry/MLMC
https://github.com/TianyuTerry/MLMC
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1  This relatively novel work proposes to augment current
RL models by adding self-supervised tasks encouraging
better internal representations.

2 - 6  The proposed tasks are depth prediction and loop
closure detection. [...]

7  It is original, clearly presented, and strongly supp-orted
by empirical evidence.

8 One small downside of the experimental method (or
maybe just the results shown) is that by picking top-5 runs,
it is hard to judge whether such a model is better suited to
the particular hyperparameter range that was chosen, or is
simply more robust to these hyperparameter settings.

9 Maybe an analysis of performance as a function of
hyperparameters would help confirm the superiority of the
approach to the baselines.

10 My own suspicion is that adding auxiliary tasks would
make the model robust to bad hyperparameters.

11  Another downside is that the authors dismiss navigation
literature as "not RL".

12  I sympathize with the limit on the number of things that
can fit in a paper, but some experimental comparison with
such literature may have proven insightful, if just in
measuring the quality of the learned representations.

O

1   Thank you for your comments.

2   We provided additional analysis, in Appendix section C.4,
to address your comments.

3   For each of the experiments in this paper, 64 replicas were
run with hyperparameters (learning rate, entropy cost)
sampled from the same interval.

4    Figure 12 shows that the Nav architectures with auxiliary
tasks achieve higher results for a comparatively larger
number of replicas, suggesting that auxiliary tasks make
learning more robust to the choice of hyperparameters - in
line with the reviewer's intuition.

5    This observation is particularly strong for the small static
maze (more than a third of the replicas for FF A3C and
LSTM A3C baselines do not even reach the goal, whereas
less than 10 Nav agents out of 64 replicas suffer from this).

6   In this paper we focused on the potential benefits of
auxiliary tasks in enhancing the navigational capacities of
agents that use deep RL to map pixels directly to actions -
rather than designing a new state-of-the-art navigation
system.

7   Our discussion of the literature reflected this focus, but
was not intended to be dismissive of other navigation
approaches such as SLAM.

Figure 1: An example of APE task. The review and rebuttal passage pair is shown on the left. The grey area refers
to non-arguments, while the blue and pink areas refer to two paired arguments. The table representing the pairing
relation is shown on the right (filled entries: paired; unfilled entries: unpaired). Review and rebuttal sentence
indices are on the left and the top of the table. Review and rebuttal sequence labels for argument extraction are on
the right and the bottom of the table.

Figure 1 that the review and rebuttal passages have
their own styles in terms of structure and wording.
Hence, it is not suitable to concatenate them as
one long sequence, which is against the fact that
they are two unique sequences in essence and hin-
ders the model from well-utilizing their different
characteristics. To overcome this limitation, we
treat review and rebuttal passages as two individual
sequences and design two sequence encoders for
them respectively. In each sequence encoder, the
sequence representations will be updated by the
other’s representations through mutual attention. It
allows us to better distinguish two passages, and
meanwhile, to conveniently exchange information
between them through the attention mechanism.

Second, the subtask coordination capability of
their multi-task framework is weak as two subtasks
only coordinate with each other via the shared fea-
ture encoders, i.e., the sentence encoder for the se-
quence of word tokens and the passage encoder for
the concatenation of sentences. Thus, the shared
information between two subtasks is only learned
implicitly. To overcome this limitation, we pro-
pose an attention-guided multi-layer multi-cross
(MLMC) encoding mechanism. Inspired by the
table-filling approach (Miwa and Sasaki, 2014), we
form a table that represents features for the Carte-
sian Product of review and rebuttal sequences by

utilizing both of their embeddings, as shown in
the right portion of Figure 1. The table represen-
tations will be updated with the incorporation of
the two sequence representations, and in return, it
will also help to update the mutual attention men-
tioned above. It is named as multi-cross encoder
because these three encoding components (i.e., one
table and two sequences) interact with each other
explicitly and extensively. By stacking multiple
encoder layers, the two subtasks can further benefit
each other. In addition, we also design an auxiliary
attention loss to guide each argument to refer to
its paired arguments. This additional loss not only
enhances the model performance, but also signifi-
cantly improves the attention interpretability.

To summarize, the contributions of this paper
are three-fold. Firstly, we apply the table-filling
approach to model the sentence-level correlation
between two passages with multiple sentences for
the first time. Secondly, on the model side, we
propose an MLMC encoder to explicitly learn the
useful shared information in the two passages. Fur-
thermore, we introduce an auxiliary attention loss,
which is able to further improve the efficacy of the
mutual attentions. Thirdly, we evaluate our model
on the benchmark dataset (Cheng et al., 2020), and
the results show that our model achieves a new
state-of-the-art performance on the APE task.
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2 Related Work

Argument mining has wide applications in educa-
tional domain, including persuasive essays (Stab
and Gurevych, 2017; Eger et al., 2017), scientific ar-
ticles (Teufel et al., 2009; Guo et al., 2011), writing
assistance (Zhang and Litman, 2016), essay scor-
ing (Persing and Ng, 2015; Somasundaran et al.,
2016), peer reviews (Hua et al., 2019), etc. Unlike
previous works, Cheng et al. (2020) introduce a
new task named APE in the domain of peer review
and rebuttal, which intends to extract the argument
pairs from two passages simultaneously.

Table-filling approaches (Miwa and Sasaki,
2014; Gupta et al., 2016; Zhang et al., 2017) have
been proposed to work towards the joint task of
name entity recognition (NER) and relation ex-
traction (RE). In their work, the diagonal entries
of the table show the words’ entity types and the
off-diagonal entries show the relation types with
other words. More recently, there are more research
works to propose various table-filling models on
different tasks. Wang and Lu (2020) propose to
learn two separate encoders (a table encoder and a
sequence encoder) by interacting with each other
for joint NER and RE task. Wu et al. (2020) pro-
pose a grid tagging scheme to address the aspect-
oriented fine-grained opinion extraction task. Com-
pared to our model, one major difference is the
table shape. In their tables, the row and column
represent the same sequence, and thus in square
shape. In our model, the table is in a rectangle
shape where the row and column represent two dif-
ferent sequences with different lengths. Another
clear difference is that each entry in their table is for
word-pair relation, whereas each entry in our table
captures sentence-pair relation. As we can see from
Figure 1, the review/rebuttal sequence consists of
a list of sentences. Thus, it requires extra effort to
learn comprehensive sentence representations.

3 Task Formulation

In this paper, we tackle the APE task, which aims to
study the internal structure and relations between
two passages, e.g., review and rebuttal passages.
For example, as shown in Figure 1, given a pair of
review passage srv = [srv,1, · · · , srv,12] (in the red
box) and rebuttal passage srb = [srb,1, · · · , srb,7]
(in the orange box), we intend to automatically
extract all argument pairs between them. First,
for the argument mining subtask, we cast it as a
sentence-level sequence labeling problem follow-

ing the work (Cheng et al., 2020) using the stan-
dard BIO scheme (Ramshaw, 1995; Ratinov and
Roth, 2009). This subtask segments the argumen-
tative units (highlighted in blue/pink) from non-
argumentative units (highlighted in grey) for each
passage. The label sequences for the review pas-
sage and the rebuttal passage are shown in the right
portion of Figure 1. Second, the sentence pairing
subtask predicts whether the two sentences belong
to one argument pair. Here, we formulate it as a
table-filling problem following the work (Miwa and
Sasaki, 2014). Take the 8th review sentence srv,8
in the first review argument as an example, the re-
buttal argument sentences {srb,2, srb,3, srb,4, srb,5}
forming sentence pairs with it are filled with green,
as shown in the table. With the collaboration of
these two subtasks, we can perform the overall
argument pair extraction task. In this case, two
argument pairs (highlighted in blue/pink from two
passages) are extracted, which correspond to the
two green rectangles shown in the table.

4 Model

Figure 2 shows our proposed attention-guided
multi-layer multi-cross (MLMC) encoding based
model. The model mainly consists of three parts: a
sentence embedder, an n-layer multi-cross encoder,
and a predictor. The review sentences and rebuttal
sentences first go through the sentence embedder
separately to obtain their sentence embeddings re-
spectively. We then utilize the representations from
review and rebuttal sequences to form a table as
shown earlier in Figure 1. Next, the representa-
tions of the table and two sequences are updated
through n multi-cross encoder layers. Finally, the
model predicts the review and rebuttal arguments
through a conditional random field (CRF) (Laf-
ferty et al., 2001) layer based on two sequence
representations, and extracts the pairing informa-
tion through a multi-layer perceptron (MLP) based
on the table representations.

4.1 Sentence Embedder

The bottom left part of Figure 2 shows our sen-
tence embedder, the input of which is a review
sentence or a rebuttal sentence with l tokens
s = [t0, t1, · · · , tl−1]. We obtain the pre-trained
BERT (Devlin et al., 2019) token embeddings
[x0, x1, · · · , xl−1] for all word tokens in the sen-
tence, after which all token embeddings are fed into
a bidirectional long short-term memory (biLSTM)
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Figure 2: Overview of our model architecture with n multi-cross encoder layers (shown on the left). The sentence
embedder (in the grey dotted box at the bottom left) shows the process of obtaining initial review and rebuttal
sentence embeddings from pre-trained BERT token embeddings with biLSTM. The kth multi-cross encoder layer
(in the blue dotted box on the right) shows the process of getting the sentence representations of review and rebuttal
and the pair representations for the next layer.

(Hochreiter and Schmidhuber, 1997) layer. The last
hidden states from both directions are concatenated
as the sentence embedding S(0). A more common
practice is to use the [CLS] token embedding to
represent the sentence embedding. However, given
the high density of scientific terms and the corre-
spondence between review and rebuttal, token-level
information is naturally crucial for the task. The
same conclusion is drawn by the experimental re-
sults in the previous work (Cheng et al., 2020).

4.2 Multi-Cross Encoder
The entire multi-cross encoder consists of n lay-
ers. The details of each multi-cross encoder layer
are shown in the blue dotted box on the right of
Figure 2. The input of the layer includes table rep-
resentations and two sequence representations, i.e.,
review and rebuttal sequence representations. In
each layer, table features are updated by sequence
features and vice versa.

Sequence Encoder Phase I To well-utilize dif-
ferent characteristics of review and rebuttal, we
regard them as two individual sequences. Two se-
quence embeddings S(k−1)

rv and S
(k−1)
rb of length

I and J respectively (i.e., the output from the pre-
vious layer) are passed through the same biLSTM
layer colored light yellow in Figure 2. Take review
sequence as an example, the review hidden states
at position i are updated as follows:

S
(k)′[1]

rv,i = LSTMforward(S
(k−1)
rv,i , S

(k)′[1]

rv,i−1),

S
(k)′[2]

rv,i = LSTMbackward(S
(k−1)
rv,i , S

(k)′[2]

rv,i+1),

S
(k)′

rv,i = [S
(k)′[1]

rv,i , S
(k)′[2]

rv,i ].

The rebuttal hidden states S
(k)′

rb in layer k is ob-
tained from the same biLSTM in the same manner.

Table Encoder To capture the pairing informa-
tion explicitly, we adopt the table-filling approach.
At layer k, we update the table T

(k−1)
rv×rb through

the table encoder. The table input T(0)
rv×rb before

the first encoder layer are set as 0. At each layer
k, in order to incorporate the information extracted
in S

(k)′
rv and S

(k)′

rb , we form another table T
(k−1)′′

rv×rb

with them through concatenation and linear projec-
tion as follows:

T
(k−1)′′

rv×rb = Linear(S(k)′
rv ⊗ S

(k)′

rb ).

The table features from previous layer T(k−1)
rv×rb are

then updated by T
(k−1)′′

rv×rb with layer normalization:

T
(k−1)′

rv×rb = LayerNorm(T
(k−1)
rv×rb ⊕T

(k−1)′′

rv×rb ).

The entry T (k−1)′

i,j at row i and column j represents
specific features between review sentence at posi-
tion i and rebuttal sentence at position j. The table
hidden states T (k)

i,j are updated through 2D-GRU:

T
(k)[1]

i,j = GRUforward(T
(k)[1]

i−1,j , T
(k)[1]

i,j−1 , T
(k−1)′

i,j ),

T
(k)[2]

i,j = GRUbackward(T
(k)[2]

i+1,j , T
(k)[2]

i,j+1 , T
(k−1)′

i,j ),

T
(k)
i,j = [T

(k)[1]

i,j , T
(k)[2]

i,j ].
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The 2D-GRU settings are similar to the previous
work (Wang and Lu, 2020) except that the table to
be processed is not necessarily a square (I 6= J
in general). Therefore, the 2D-GRU implemented
here is more general. The previous hidden states for
table boundaries (T (k)[1]

0,j , T
(k)[1]

i,0 , T
(k)[2]

I+1,j , T
(k)[2]

i,J+1)

are set as 0. The outputs T
(k)
rv×rp of layer k are

further exploited by the mutual attention mecha-
nism explained below to update review and rebuttal
sequence embeddings.

Mutual Attention The mutual attention mecha-
nism (shown as review attention and rebuttal atten-
tion modules in Figure 2) links review embedding,
rebuttal embedding and table embedding together,
through which review embedding and rebuttal em-
bedding update each other with the help of table
features. The attention weights α(k)

i,j and β(k)i,j at
position (i, j) in layer k are updated as follows:

α
(k)
i,j = tanh(vTα · T

(k)
i,j ), β

(k)
i,j = tanh(vTβ · T

(k)
i,j ),

where vα and vβ are learnable vectors. We further
normalize the attention weights:

a
(k)
i,j =

exp(α
(k)
i,j )∑J

j
′
=1

exp(α
(k)

i,j
′ )
, b

(k)
i,j =

exp(β
(k)
i,j )∑I

i
′
=1

exp(β
(k)

i
′
,j
)
.

Here, a(k)i,j and b(k)i,j are the normalized attention
weights ranging from 0 to 1. We then get the
weighted average of sentence representations S(k)′′

rv,i

and S(k)′′

rb,j from S
(k)′

rb and S
(k)′
rv respectively.

S
(k)′′

rv,i =
J∑
j=1

a
(k)
i,j · S

(k)′

rb,j , S
(k)′′

rb,j =
I∑
i=1

b
(k)
i,j · S

(k)′

rv,i .

Here, S(k)′′
rv and S

(k)′′

rb are the updated review em-
bedding and rebuttal embedding. Information in
review and rebuttal sequences is exchanged via
mutual attention.

Sequence Encoder Phase II The addition and
layer normalization used to combine S(k)′ and
S(k)′′ in the sequence encoder are similar to the one
in table encoder. We obtain the review sequence
embedding S

(k)
rv and rebuttal sequence embedding

S
(k)
rb as the sequence outputs of layer k as follows:

S
(k)
rv = LayerNorm(S

(k)′
rv ⊕ S

(k)′′
rv ),

S
(k)
rb = LayerNorm(S

(k)′

rb ⊕ S
(k)′′

rb ).

Stacking Multi-Cross Encoder Layers The up-
dating process described above continues as layer
grows from 1 to n. The table feature is updated
by both review and rebuttal sequences, and each
sequence updates the other via the table later on.

There are also residual connections between adja-
cent layers which accept the previous layer’s output
as the current layer’s input and include it as part
of the new embedding, making the system more
robust. All three features (i.e., review sequence,
rebuttal sequence, table) are intertwined with each
other and information flows across different com-
ponents of the encoder. This is also the reason why
the encoder is described as MLMC.

4.3 Argument Pair Predictor
After the final multi-cross encoder layer, sequence
features are used for argument mining and table
features are used for pair prediction.

Argument Predictor We adopt CRF to predict
argument sequence labels. The sequence labeling
loss Lseq for both review sequence srv and rebuttal
sequence srb in each instance is defined as:

Lseq = −
(

log p(yrv|srv) + log p(yrb|srb)
)
,

where yrv and yrb are the review and rebuttal se-
quence labels 2.

During inference, the predicted sequence label
is the one with the highest conditional probability
given the original sequence:

y∗
rv = arg max

y
p(y|srv), y∗

rb = arg max
y

p(y|srb).

Pair Predictor We use MLP to predict sentence
pairs 3. The pairing loss Lpair for each instance is:

Lpair = −
∑

i,j

(
ypairi,j log p(ypairi,j = 1|srv, srb)

+ (1− ypairi,j ) log p(ypairi,j = 0|srv, srb)
)
,

where ypairi,j is 1 when srv,i and srb,j are paired, and
is 0 otherwise 4.

Following (Cheng et al., 2020), during evalua-
tion, a pair of candidate spans ([srv,i1 , · · · , srv,i2 ]
and [srb,j1 , · · · , srb,j2 ]) form a pair if they satisfy
the following criterion:∑i2

i=i1

∑j2
j=j1

1
{p(ypair

i,j
=1)>0.5}

(i2−i1+1)×(j2−j1+1) × 100% > 50%

Attention Loss Attention loss is a loss term
specifically designed for the task. It aims to in-
crease the effectiveness of review attention and
rebuttal attention discussed above. Even without

2We provide the detailed steps of deriving the loss Lseq in
Appendix A.1.

3MLP is chosen because more complex structures like con-
volutional neural networks (CNN) demonstrate no superiority.
The comparison results are attached in Appendix B.3.

4We provide the detailed steps of deriving the pairing loss
Lpair in Appendix A.2.
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this auxiliary loss term, sentences in review are sup-
posed to attend to relevant sentences in rebuttal and
vice versa. The auxiliary loss is thus aimed at aug-
menting the effect of mutual reference explicitly by
guiding the paired arguments to refer to each other.
Intuitively, under the settings of argument mining
and pairing, it is natural that review arguments re-
fer to the paired rebuttal arguments to update their
embedding and vice versa during mutual attention.
Hence, we introduce an auxiliary loss term to in-
crease the attention weights computed for paired
arguments and decrease the attention weights oth-
erwise for both review and rebuttal attentions in all
layers. For each instance, Lattn is defined as:

Lattn =
∑
i,j

(1− 2ypairi,j ) ·
( n∑
k=1

γn−k · (a(k)i,j + b
(k)
i,j )
)
,

where γ is the decaying parameter used to com-
pute exponential moving average for the sum of
attention. Larger weights are assigned to layers
closer to the final predictor as they are more related
to the prediction in the end. The attention loss is
defined in the form of summation across all layers
to increase the accuracy and interpretability of both
review and rebuttal attentions in all layers. If the
tendency to attend to the paired argument is aug-
mented, the benefits of attention mechanism can be
further exploited (e.g., learning better sentence rep-
resentations, increasing pair prediction accuracy).

The overall loss L is then defined by summing
up three losses together:

L = Lseq + λ1 · Lpair + λ2 · Lattn,

where λ1 and λ2 are tuned hyperparameters.

5 Experiments

5.1 Data
We conduct experiments on the benchmark dataset,
i.e., RR dataset (Cheng et al., 2020) to evalu-
ate the effectiveness of our proposed model. RR
dataset includes 4,764 pairs of peer reviews and au-
thor rebuttals collected from ICLR 2013 to ICLR
2020. There are two dataset versions provided:
RR-Submission-v1 and RR-Passage-v1. In RR-
Submission-v1, multiple review-rebuttal passage
pairs of the same paper submission are in the same
set of train, dev or test; while in RR-Passage-v1,
different review-rebuttal passage pairs of the same
submission could be put into different sets. We
further modify the RR-Submission-v1 dataset by
fixing some minor bugs in the labels, and name it
RR-Submission-v2. The data are split into train,

dev and test sets by a ratio of 8:1:1 for all three
dataset versions.

5.2 Baselines

We compare our model with two baselines:

• The pipeline approach is used as a baseline
model in the previous work (Cheng et al., 2020).
It independently trains two subtasks and then
pipes them together to extract argument pairs.

• The multi-task learning model proposed by
(Cheng et al., 2020) trains two subtasks simul-
taneously via the shared feature encoders.

5.3 Experimental Settings

We implement our attention-guided MLMC encod-
ing based model in Pytorch. The dimension of
pre-trained BERT sentence embeddings is 768 by
default. Maximum number of BERT tokens for
each sentence is set as 200. MLP layer is com-
posed of 3 linear functions and 2 ReLU functions.
We use Adam (Kingma and Ba, 2014) with an ini-
tial learning rate of 0.0002, and update parameters
with a batch size of 1 and dropout rate of 0.5. We
train our model for 25 epochs at most. We select
the best model parameters based on the best overall
F1 score on the development set and apply it to
the test set for evaluation. All models are run with
V100 GPU. Note that in this paper, the parameters
are mainly tuned based on RR-Submission-v1 5.
Following the previous work (Cheng et al., 2020),
we report the precision (Prec.), recall (Rec.) and
F1 scores for the performance on both subtasks as
well as the overall extraction performance.

5.4 Main Results on RR Dataset

Table 1 shows the performance comparison be-
tween our proposed models and the pervious
work on RR-Submission-v1 and RR-Passage-v1
datasets 6. Besides the two baseline models men-
tioned before, we implement a bi-cross encoding
scheme (Bi-Cross) for comparisons as well. The
key difference between the bi-cross encoder and the
multi-cross encoder is that in the bi-cross encoder,

5More details about hyperparameter settings (e.g. weight
for pair loss λ1, weight for attention loss λ2, decaying parame-
ter γ of exponential moving average) and experimental results
(e.g. running time, number of parameters, performance on the
development set) could be found in Appendix B.

6The previous work adopts negative sampling technique
for sentence pairing subtask and evaluates the performance on
the partial test set. In this work, we re-evaluate the previous
work’s sentence pairing subtask on the whole test dataset for a
fair comparison. Those results are marked with * in Table 1.
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Data Models Argument Mining Sentence Pairing APE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

R
R

-S
ub

m
is

si
on

-v
1

Pipeline (Cheng et al., 2020) 67.63 68.51 68.06 *50.05* *47.15* *48.56* 19.86 19.94 19.90
Multi-task (Cheng et al., 2020) 70.09 70.14 70.12 *53.44* *42.71* *47.48* 26.69 26.24 26.46
Bi-Cross (n=1) 68.13 69.69 68.90 57.14 42.28 48.60 35.56 22.95 27.90
Bi-Cross (n=2) 70.38 68.12 69.23 61.93 43.56 51.15 38.36 23.34 29.02
Bi-Cross (n=3) 68.04 71.65 69.80 62.73 42.33 50.55 39.43 24.45 30.18
Bi-Cross (n=4) 67.45 71.48 69.41 61.19 43.88 51.11 36.59 25.28 29.90
Bi-Cross (n=5) 68.47 70.30 69.37 57.29 41.30 48.00 36.37 24.06 28.96
Multi-Cross (n=1) 67.64 69.27 68.45 60.08 44.33 51.01 36.56 23.62 28.70
Multi-Cross (n=2) 67.23 70.55 68.85 62.57 43.71 51.46 37.50 25.39 30.28
Multi-Cross (n=3) 69.52 70.03 69.77 60.81 47.14 53.11 38.70 27.93 32.44
Multi-Cross (n=4) 65.84 70.60 68.14 60.07 40.59 48.45 35.98 26.33 30.41
Multi-Cross (n=5) 65.52 70.79 68.05 60.69 44.90 51.61 36.32 27.82 31.51

R
R

-P
as

sa
ge

-v
1

Pipeline (Cheng et al., 2020) 73.10 67.65 70.27 *51.34* *42.08* *46.25* 21.24 19.30 20.23
Multi-task (Cheng et al., 2020) 71.85 71.01 71.43 *54.28* *43.24* *48.13* 30.08 29.55 29.81
Bi-Cross (n=1) 67.77 70.91 69.31 62.05 41.27 49.57 40.72 25.74 31.54
Bi-Cross (n=2) 69.44 71.59 70.50 60.20 43.26 50.34 41.48 27.53 33.09
Bi-Cross (n=3) 66.79 71.97 69.28 61.22 43.02 50.53 39.04 26.89 31.85
Bi-Cross (n=4) 67.55 71.95 69.70 62.35 39.98 48.72 42.02 27.32 33.11
Bi-Cross (n=5) 66.32 71.35 68.74 62.72 37.70 47.09 40.85 25.26 31.22
Multi-Cross (n=1) 67.18 72.29 69.64 61.29 45.94 52.52 38.82 29.32 33.40
Multi-Cross (n=2) 68.28 72.12 70.15 61.54 44.23 51.47 40.13 29.11 33.74
Multi-Cross (n=3) 66.79 72.17 69.37 62.69 42.33 50.53 40.27 29.53 34.07
Multi-Cross (n=4) 65.77 73.54 69.44 62.80 39.98 48.86 38.96 27.32 32.12
Multi-Cross (n=5) 67.84 71.42 69.58 60.94 41.08 49.08 39.60 26.95 32.07

Table 1: Main results on RR-Submission-v1 and RR-Passage-v1. The results with * are re-evaluated.

Data Models Argument Mining Sentence Pairing APE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

R
R

-S
ub

m
is

si
on

-v
2

Multi-task (Cheng et al., 2020) 70.74 69.46 70.09 52.05 46.74 49.25 27.24 26.00 26.61
Bi-Cross (n=1) 68.46 70.47 69.45 66.10 41.25 50.80 37.86 24.78 29.95
Bi-Cross (n=2) 68.69 72.54 70.56 59.40 47.61 52.86 35.17 27.42 30.81
Bi-Cross (n=3) 69.04 72.35 70.66 58.87 44.10 50.43 35.68 26.26 30.25
Bi-Cross (n=4) 68.78 72.54 70.61 61.72 43.87 51.28 35.54 26.68 30.48
Multi-Cross (n=1) 69.20 72.30 70.72 60.92 43.10 50.48 36.18 26.68 30.71
Multi-Cross (n=2) 69.13 72.66 70.85 59.94 47.60 53.06 34.97 29.01 31.71
Multi-Cross (n=3) 69.53 73.27 71.35 60.01 46.82 52.60 37.15 29.38 32.81
Multi-Cross (n=4) 69.73 71.36 70.54 62.87 48.15 54.53 36.17 28.53 31.90
Multi-Cross (n=5) 67.80 71.36 69.54 64.31 43.91 52.19 39.56 27.69 32.58

Table 2: Main results on RR-Submission-v2.

the review sentences and rebuttal sentences are con-
catenated as one sequence, and thus it only has
one sequence encoder. In contrast, there are two
individual sequence encoders in our multi-cross
encoder. With the same number of layers, our
multi-cross model outperforms the bi-cross model
on both datasets except for RR-Passage-v1 with 4
layers. This is especially conspicuous when the
number of layers is 3. The superiority of the multi-
cross model demonstrates the importance and ro-
bustness of learning review and rebuttal sequences
separately. Our model achieves the highest F1 score
when the number of layers increases to 3. Adding
more layers hurts the performance, probably be-
cause the model overfits with too many layers. Ta-

ble 2 shows the performance on RR-Submission-
v2 7. The main conclusion is consistent with the
performace on RR-Submission-v1. Both the bi-
cross and multi-cross models outperform the multi-
task model, and the multi-cross models further out-
perform the bi-cross models.

Although the baselines achieve slightly better
performance on the argument mining subtask than
both the bi-cross model and the multi-cross model,
they still perform worse than our models on the
sentence pairing subtask and the overall APE task.
This is plausibly because of two main reasons.
First, in the multi-task model, the subtask coordi-

7We encourage the researchers to use RR-submission-v2
and compare to its performance in the future.
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Figure 3: F1 scores of the argument mining subtask.

nation capability is weak as the shared information
between two subtasks is learned implicitly. How-
ever, in our model, the three encoding components
are explicitly mingled with each other through the
mutual attention mechanism and the table encoder.
On one hand, the better sentence pairing subtask
performance demonstrates the effectiveness of the
table-filling approach. On the other hand, the better
overall APE performance demonstrates the strong
subtask coordination capability of our model archi-
tecture. Second, we further analyze the breakdown
performance of the multi-task model and our multi-
cross (n=3) model on the argument mining subtask.
Figure 3 shows the subtask performance on RR-
Submission-v1 dataset for reviews, rebuttals, and
both of them. We can observe that the difference
of F1 scores between reviews and rebuttals of our
model is smaller than the multi-task model. De-
spite the slight decrease in the overall argument
mining performance, a more balanced argument
extraction performance on reviews and rebuttals
brings in better overall APE performance, which
is because more accurate review argument extrac-
tion increases the chance for the extracted rebuttal
arguments to be paired correctly.

5.5 Ablation study

We conduct an ablation study of the multi-cross
(n=3) model on RR-Submission-v1 dataset from
three perspectives, as presented in Table 3. Firstly,
we evaluate the effect of sharing the biLSTM layer
(the light yellow modules in Figure 2) and the CRF
layer. We can notice that the F1 drops 1.92 without
sharing the biLSTM layer, drops 1.75 without shar-
ing the CRF layer, and drops 1.02 when sharing
neither. It is interesting to notice that when two
sequences use their own biLSTMs and CRF simul-
taneously (i.e., w/o sharing both), the F1 drops less
compared to the models without sharing only one
of them. This suggests that having an individual
set of biLSTM and CRF layers for each type of
sequence is plausibly a worthwhile setting, but it

Model Settings APE

Prec. Rec. F1 ∆ (F1)

Multi-Cross (n=3) 38.70 27.93 32.44 -
w/o sharing biLSTM 36.95 26.00 30.52 -1.92
w/o sharing CRF 33.80 28.10 30.69 -1.75
w/o sharing both 36.86 27.38 31.42 -1.02
w/o cross update 38.31 25.55 30.66 -1.78
w/o attention loss 37.15 24.56 29.57 -2.87

Table 3: Ablation study of multi-cross (n=3) model on
RR-Submission-v1 dataset.

is not as effective as sharing both. One possible
reason is that the advantage brought in by such
a tailor-made sequential tagging configuration for
each type is overwhelmed by the disadvantage of
fewer training instances. Secondly, without cross
updates between the review and rebuttal embed-
dings (the mutual attention modules still exist), the
F1 drops 1.78. This result again demonstrates the
effectiveness of explicitly blending two sequence
embeddings via the mutual attention mechanism
specifically designed for this task. Thirdly, we also
investigate the effect of attention loss term by re-
moving it from the overall loss. The performance
drops about 2.87 F1 points. We will elaborate more
with the attention visualization below.

5.6 Attention Visualization
To examine the effectiveness of the auxiliary atten-
tion loss, we visualize the sum of attention weights
of all layers for four test samples, as shown in
Figure 4. The sum is computed for visualization
because attention weights in all layers are guided
by the attention loss. The distribution of attention is
significantly improved as the colors for arguments
in Column (c) are considerably darker. In Column
(b) without the guidance of attention loss, despite
some patterns, attention weights are distributed in
a quite haphazard manner. Therefore, the inter-
pretability of our model is much better as we can
easily understand which part of the discourse each
sentence refers to. Specifically, the boundary of
most attention blocks in Column (c) matches well
with the start and end positions of the ground truth
review and rebuttal arguments. The gold and pre-
dicted argument spans and argument pairs of these
four samples are shown in Appendix C.1, and more
discussions are given regarding the reason for some
mistakenly predicted boundaries. The effectiveness
of the auxiliary attention loss is also quantitatively
illustrated by a higher F1 score after its incorpora-
tion (32.44 v.s. 29.57) in Table 3.
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Figure 4: Visualization of attention weights in four test data samples. In each plot, the y-axis corresponds to the
review sentences and the x-axis corresponds to the rebuttal sentences. Each pixel shows the attention weight of
a review and rebuttal sentence. (a) Ground truth: the gold labels of argument pairs; (b) w/o attention loss: the
attention weights of the model trained without the auxiliary attention loss; (c) w/ attention loss: the attention
weights with the attention loss.

6 Conclusions

In this paper, we adopt the table-filling approach for
modeling the sentence-level correlation between
two passages, and propose the attention-guided
multi-layer multi-cross (MLMC) encoding scheme
for the argument pair extraction (APE) task. Our
model can better capture the internal relations be-

tween a review and its rebuttal with two sequence
encoders and a table encoder via mutual attention
mechanism. We also introduce an auxiliary at-
tention loss to further improve the efficacy of the
mutual attentions. Extensive experiments on the
benchmark dataset demonstrate the effectiveness
of our model architecture, which is potentially ben-
eficial for other NLP tasks.
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A Details of Argument Pair Predictor

A.1 Argument Predictor
We cast the task of predicting argument spans as a
sequence labeling problem. We adopt conditional
random field (CRF) (Lafferty et al., 2001) that as-
signs each label sequence a score. The probability
for each sequence (both review and reply) is de-
fined as following:

p(y|s) = exp(score(s,y))∑
y exp(score(s,y)) ,

where s represents the original sequence and y is
the gold sequence label encoding argument spans
under the BIO scheme (Ramshaw, 1995; Ratinov
and Roth, 2009). The score function is defined as:

score(s,y) =
n∑
i=0

Ayi,yi+1 +
n∑
i=1

Fθ1(s, yi).

A is the matrix with trainable parameters repre-
senting transition scores within the CRF layer and
Fθ1 represents the emission scores obtained after
feeding review sequence and rebuttal sequence into
the multi-cross encoder with parameters θ1. The
negative log-likelihood loss for both review and
reply sequence in each instance is then defined as:

Lseq(A, θ1) = −
(

log p(yrv|srv) + log p(yrb|srb)
)
.

A.2 Pair Predictor
Given table features T(k) and an MLP layer, the
probability that two sentences are from an argu-
ment pair can be expressed as following:

p(ypair = 1|(srv, srb)) = 1
1+exp (−Fθ2 (T

(k)))
.

Fθ2 is a composite function of Linear and ReLU
functions, the final linear function among which
has an output dimension of 1. The pairing loss
Lpair(θ2, θ1) for each instance is then defined as:
Lpair(θ2, θ1) =

−
∑

i,j

(
ypairi,j log p(ypairi,j = 1|srv, srb)

+ (1− ypairi,j ) log(1− p(ypairi,j = 1|srv, srb))
)
,

where θ2 are parameters within the MLP layer.
Note that the attention loss is a function of θ1

and the overall loss is a function of θ1, A and θ2.
The formulae provided in the main paper omit the
related parameters for brevity.

B More Experimental Details

B.1 Hyperparameters
We manually tune the hyperparameter values (e.g.
weight for pair loss λ1, weight for attention loss

λ2, decaying parameter γ of exponential moving
average) for our proposed multi-layer multi-cross
model. We manually tune the weight for pair loss
λ1 from 0.3 to 0.7 with step size of 0.1 (Table 4),
the weight for attention loss λ2 from 0.5 to 2.5
with step size of 0.5 (Table 5) and the decaying
paramter γ of exponential moving average from
0.7 to 1 with step size of 0.1 (Table 6) for our
proposed multi-layer multi-cross model. We select
the best hyperparameters based on the best F1 score
achieved on the development set and apply them to
the test set for evaluation. Specifically, λ1 is set as
0.5, λ2 is set as 2, γ is set as 0.9.

B.2 Running Time, Number of Parameters
and Results on Development Set

Table 8 shows the running time, the number of pa-
rameters, and the results on the development set of
our models on RR-Submission-v1 dataset. For the
bi-cross models, as review sentences and rebuttal
sentences are concatenated as one sequence in one
sequence encoder during training, the sequences
are generally longer. Thus, the bi-cross models
require a longer running time. As the number of
layers increases, the performance on the develop-
ment set improves yet the performance on the test
set becomes worse. It is plausibly because that the
model might face the overfitting issue.

B.3 MLP v.s. CNN

We replace the MLP module with convolutional
neural networks (CNN) to predict the pairs and
compare their performance on RR-Submission-v1
dataset. The comparison results are presented in Ta-
ble 7. The theoretical advantage of CNN over MLP
is that CNN is able to capture surrounding informa-
tion with the help of kernels. However, the experi-
ment results show that the convolutional structure
performs worse than the simple MLP structure. By
examining the kernel weight of the convolution
layers, we observe no significant magnitude differ-
ence between the center weights and the peripheral
weights. Take a 3x3 kernel as an example, the
center weights are the weights at the center grid,
while the weights located in the rest of the 8 grids
are peripheral weights. This indicates that CNN
accords way more importance to the surrounding
information (8 times more important in the case of
a 3x3 kernel) than to the original grid. The over-
emphasis on surrounding information brings too
much noise to the pair prediction.
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Models Argument Mining Sentence Pairing APE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

λ1=0.3 68.47 70.67 69.55 59.09 43.05 49.81 38.06 24.94 30.14
λ1=0.4 68.50 70.67 69.57 60.02 46.07 52.13 39.13 26.99 31.95
λ1=0.5 69.52 70.03 69.77 60.81 47.14 53.11 38.70 27.93 32.44
λ1=0.6 66.56 71.87 69.12 59.32 44.93 51.13 36.59 26.27 30.59
λ1=0.7 68.62 70.20 69.40 57.39 46.39 51.31 36.44 27.27 31.19

Table 4: Performance of Multi-cross (n=3) when applying different pair loss weights λ1.

Models Argument Mining Sentence Pairing APE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

λ2=0.5 67.68 70.20 68.92 58.28 45.82 51.30 35.20 26.83 30.45
λ2=1 68.83 70.18 69.50 62.39 44.86 52.20 40.23 26.99 32.31
λ2=1.5 67.83 71.01 69.39 57.26 46.45 51.29 35.52 27.88 31.24
λ2=2 69.52 70.03 69.77 60.81 47.14 53.11 38.70 27.93 32.44
λ2=2.5 66.60 70.72 68.60 60.15 44.72 51.30 36.64 26.33 30.64

Table 5: Performance of Multi-cross (n=3) when applying different attention loss weights λ2.

Models Argument Mining Sentence Pairing APE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

γ=1 67.40 71.14 69.22 60.09 45.19 51.59 37.76 25.77 30.64
γ=0.9 69.52 70.03 69.77 60.81 47.14 53.11 38.70 27.93 32.44
γ=0.8 66.17 70.77 68.39 58.92 47.46 52.58 34.12 26.44 29.79
γ=0.7 67.40 70.18 68.76 60.21 46.43 52.43 36.36 26.11 30.39

Table 6: Performance of Multi-cross (n=3) when applying different values for the decaying parameter γ of expo-
nential moving average.

Models Argument Mining Sentence Pairing APE

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

with CNN 65.91 71.68 68.67 59.56 44.01 50.62 36.77 26.44 30.76
with MLP 69.52 70.03 69.77 60.81 47.14 53.11 38.70 27.93 32.44

Table 7: Performance of Multi-cross (n=3) when adopting CNN or MLP for pair prediction.

Models RT (min) # Params APE F1 (Dev)

Bi-Cross (n=1) 33 5.7M 36.27
Bi-Cross (n=2) 61 7.4M 37.23
Bi-Cross (n=3) 86 9.1M 37.16
Bi-Cross (n=4) 104 10.8M 37.11
Bi-Cross (n=5) 115 12.5M 38.35
Multi-Cross (n=1) 22 5.8M 35.07
Multi-Cross (n=2) 33 7.4M 36.60
Multi-Cross (n=3) 44 9.1M 36.65
Multi-Cross (n=4) 55 10.8M 35.26
Multi-Cross (n=5) 66 12.5M 36.72

Table 8: Running Time (RT) per epoch (minutes), num-
ber of parameters and the APE F1 score of our models
on RR-Submission-v1 dataset.

C More Experimental Analysis

C.1 Case Study on Attention Weights
Each row in Table 9 in which the exact gold and
predicted results are shown corresponds to the re-

spective row in Figure 4 in the main paper. We can
see that instance (1) and instance (2) are perfectly
predicted whereas one predicted reply argument
is shorter than the gold argument in instance (3)
and some argument pairs are identified wrongly in
instance (4).

Attention distribution turns out to be strongly
connected with the final output of the model, as
attention weights exhibit exactly the same error as
the wrongly predicted argument spans and argu-
ment pairs. In instance (3), we can see from the
attention visualization that the review argument at
position 15 only refers to the reply sentences from
position 14 to 16. The wrong prediction of reply
span (14, 16) (gold: (14, 26)) directly results from
the inaccurate distribution of attention weights. For
instance in Figure 4 row (4) as highlighted in red,
it can also be noticed that some review arguments
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Sample
Gold Review
Arguments

Pred Review
Arguments

Gold Rebuttal
Arguments

Pred Rebuttal
Arguments

Gold Argument
Pairs

Pred Argument
Pairs

(1)
(7,9)

(10,12)
(13,13)

(7,9)
(10,12)
(13,13)

(2,10)
(12,14)
(16,24)

(2,10)
(12,14)
(16,24)

(7,9) - (2,10)
(10,12) - (12,14)
(13,13) - (16,24)

(7,9) - (2,10)
(10,12) - (12,14)
(13,13) - (16,24)

(2)

(7,7)
(8,11)

(12,14)
(15,17)

(7,7)
(8,11)
(12,14)
(15,17)

(3,4)
(6,8)

(10,12)
(14,18)

(3,4)
(6,8)

(10,12)
(14,18)

(7,7) - (3,4)
(8,11) - (5,8)

(12,14) - (10,12)
(15,17) - (14,18)

(7,7) - (3,4)
(8,11) - (6,8)

(12,14) - (10,12)
(15,17) - (14,18)

(3)

(9,10)
(11,13)
(14,15)
(16,16)
(17,18)
(19,19)
(20,21)

(9,10)
(11,13)
(14,15)
(16,16)
(17,18)
(19,19)
(20,21)

(4,5)
(7,9)

(12,13)
(14,26)
(29,31)
(32,33)
(36,38)

(4,5)
(7,9)

(12,13)
(14,16)
(29,31)
(32,33)
(36,38)

(9,10) - (4,5)
(11,13) - (7,9)

(14,15) - (12,13)
(16,16) - (14,26)
(17,18) - (29,31)
(19,19) - (32,33)
(20,21) - (36,38)

(9,10) - (4,5)
(11,13) - (7,9)

(14,15) - (12,13)
(16,16) - (14,16)
(17,18) - (29,31)
(19,19) - (32,33)
(20,21) - (36,38)

(4)

(8,9)
(10,12)
(13,13)
(14,14)
(15,15)
(16,16)
(17,17)
(18,18)
(19,20)
(21,21)

(8,9)
(10,12)
(13,13)
(14,14)
(15,15)
(16,16)
(17,17)
(18,18)
(19,20)
(21,21)

(2,5)
(6,7)
(8,9)

(10,10)
(11,12)
(13,16)
(17,18)

(20,21)
(22,22)

(2,7)

(8,9)
(10,10)
(11,12)
(13,16)
(17,18)

(20,21)
(22,22)

(8,9) - (2,5)
(10,12) - (6,7)
(13,13) - (8,9)

(14,14) - (10,10)
(15,15) - (11,12)
(16,16) - (13,16)
(17,17) - (17,18)

(19,20) - (20,21)
(21,21) - (22,22)

(8,9) - (2,7)
(10,12) - (8,9)

(13,13) - (10,10)

(15,15) - (11,12)
(16,16) - (13,16)
(17,17) - (17,18)

(19,20) - (20,21)
(21,21) - (22,22)

Table 9: Gold and predicted review arguments, rebuttal arguments and argument pairs for four test data samples.
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Figure 5: F1(%) scores (y-axis) with different number
of argument pairs (x-axis).

attend to the wrong rebuttal argument and some
rebuttal arguments attend to the wrong review argu-
ment. The attention blocks in Figure 4 row (4) are
(8, 9) - (2, 7), (10, 12) - (8, 9), (13, 13) - (10, 10)
and the wrongly predicted argument pairs are also
(8, 9) - (2, 7), (10, 12) - (8, 9), (13, 13) - (10, 10).
Together with all 4 test instances, the conclusion
can be reached that one-to-one correspondence can
be found in the predicted paired arguments and
the distribution of attention weights. Therefore,
the hindrance to further improve the model per-
formance comes from the inaccurately allocated
attention weights.

C.2 Breakdown by Argument Density
We further evaluate the multi-cross (n=3) model
performance on RR-Submission-v1 among differ-

ent numbers of argument pairs in each instance.
Figure 5 shows the argument mining performance
on review and rebuttal separately and the overall
APE performance. Their F1 scores all increase as
the number of argument pairs grows from 1 to 4
and reach plateaus afterwards. The reason is likely
to be that most of the review and rebuttal pairs with
about 4 argument pairs are written in a more for-
matted manner and are hence easier to be extracted.
When the number of argument pairs is smaller than
3, it is highly likely that authors only reply to one or
two review arguments. The irregular format might
increase the difficulty of pair extraction. When
the number of argument pairs is larger than aver-
age, the F1 score of APE decreases slightly as the
structure becomes more complicated.

In addition, we can see from Figure 5 that when
the number of argument pairs is from 2 to 6, the
F1 scores of the argument mining subtask between
review and rebuttal are very close. Compare to the
multi-task model in the previous work (Cheng et al.,
2020), our model’s performance on the argument
mining subtask between review and rebuttal is more
balanced, which leads to the better overall APE
performance.


