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Abstract

Given a set of related publications, related
work section generation aims to provide re-
searchers with an overview of the specific re-
search area by summarizing these works and
introducing them in a logical order. Most of
existing related work section generation mod-
els follow the inflexible extractive style, which
directly extract sentences from multiple origi-
nal papers to form a related work discussion.
Hence, in this paper, we propose a Relation-
aware Related work Generator (RRG), which
generates an abstractive related work section
from multiple scientific papers in the same re-
search area. Concretely, we propose a relation-
aware multi-document encoder that relates one
document to another according to their con-
tent dependency in a relation graph. The rela-
tion graph and the document representation in-
teract and are refined iteratively, complement-
ing each other in the training process. We
also contribute two public datasets composed
of related work sections and their correspond-
ing papers1. Extensive experiments on the two
datasets show that the proposed model brings
substantial improvements over several strong
baselines. We hope that this work will pro-
mote advances in related work section gener-
ation task.

1 Introduction

The related work section generation task aims to
automatically generate a summary of the most rele-
vant works in a specific research area, which can
help researchers to familiarize themselves with
the state of the art in the field. Several methods
(Hoang and Kan, 2010; Hu and Wan, 2014; Chen
and Zhuge, 2019) have been proposed to study how
to obtain the related work section automatically by

∗Corresponding author.
1https://github.com/iriscxy/

relatedworkgeneration

Extractive Related Work: We find that CRISPR/Cas9 can
robustly and specifically reduce the expression of these mi-
croRNAs up to 96% [1]. We find that miRNA knockdown
phenotypes caused by CRISPR/Cas9 transient editing can
be stably maintained in both in vitro and in vivo models
for a long term (up to 30 days) [2]. Although genome edit-
ing using the CRISPR-Cas system is highly efficient in
human cell lines, CRISPR-Cas genome editing in primary
human cells is more challenging [3].

Abstractive Related Work: Recently, [1] showed that
CRISPER-Cas9 targeted miRNA-17, miRNA-200c and
miRNA-141, repressed their activity in human colon can-
cer cell lines HCT116 and HT-29. Furthermore, in vivo
targeting was effective for at least a month [2]. However,
off-target mutagenesis and effects of a single miRNA on
various gene targets are the limitations to the use of this
modern technology specifically in brain disorders like
prion diseases [3].

Table 1: Comparison of a related work paragraph gen-
erated by an extractive method (human-annotated) and
an abstractive man-made related work paragraph with
the same multiple original papers.

extracting important sentences from multiple orig-
inal papers. However, extractive approaches lack
the sophisticated abilities that are crucial to high-
quality summarization such as paraphrasing and
generalization, and often lead to a related work sec-
tion with poor coherence and readability (See et al.,
2017; Hsu et al., 2018). For example, as shown in
Table 1, the extracted sentences share the pattern
“We find...” as the subject of sentences, which, as
a matter of fact, refer to different authors. On the
contrary, the abstractive related work in Table 1
reveals that the works are conducted by different
scholars. It also has conjunction words such as
“Furthermore” and “However”, which can explain
the logical relationship between the cited works,
and thus form an elegant narration. Hence, in this
paper, we target on the abstractive related work
generation task, which generates a related work
including novel words and phrases not copied from
the source text.

https://github.com/iriscxy/relatedworkgeneration
https://github.com/iriscxy/relatedworkgeneration
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There are two main challenges in this task: (1)
the related work should summarize the contribu-
tion of each paper, and (2) explain the relationship
between different papers such as parallel, turning,
and progressive relation, so as to introduce them
in a logical order. While existing summarization
models can address the first problem, they do not
target at comparing and explaining the relation-
ship between these articles. Hence, to tackle the
above challenges, we propose a Relation-aware
Related work Generator (RRG), which generates
an abstractive related work given multiple scien-
tific papers in the same research area. Firstly, we
encode the multiple input articles in a hierarchi-
cal manner, obtaining the overall representation
for each document. Then, we propose a relation-
aware multi-document encoder that relates multiple
input documents in a relation graph. In the train-
ing process, the relation graph and the document
representation interact and are refined iteratively,
complementing each other. Finally, in the decoder
part, we utilize the relation graph information to
assist the decoding process, where the model learns
to decide whether to pay attention to the input doc-
uments or the relationship between them.

To evaluate our model, we introduce two large-
scale related work generation datasets, which are
composed of related work sections and their cor-
responding papers. Extensive experimental results
show that RRG outperforms several strong base-
lines in terms of ROUGE metrics and human eval-
uations on both datasets.

In summary, our contributions include:
•We address an abstractive related work gener-

ation task, which aims to generate an abstractive
related work with novel words and phrases.
•We propose a relation-aware multi-document

encoder that relates one of the multiple input docu-
ments to another, and establishes a relation graph
storing the dependency between documents.
• We contribute two public large-scale related

work generation datasets that are beneficial for the
community.

2 Related Work

We discuss the related work on related work gener-
ation and multi-document summarization.

Related Work Generation. Most of the previ-
ous related work section generation methods are
extractive. For example, Hoang and Kan (2010)
take in a set of keywords arranged in a hierarchical

fashion to drive the creation of an extractive related
work. Later, (Hu and Wan, 2014) first exploits
a Probabilistic Latent Semantic Analysis (PLSA)
model to split the sentence set of multiple reference
papers into different topic-biased parts, and then
applies regression models to learn the importance
of the sentences. Finally, it employs an optimiza-
tion framework to generate the related work section.
Chen and Zhuge (2019) propose to first construct a
minimum Steiner tree of the keywords. Then the
summary is generated by extracting the sentences
from the papers that cite the reference papers of the
paper being written to cover the Steiner tree.

However, abstractive approaches on related work
generation have met with limited success. Apart
from the lack of sufficient training data, neural mod-
els also face the challenge of identifying the logic
relationship between multiple input documents.

Multi-document Summarization. The multi-
document summarization task aims to cover the
key shared relevant information among all the docu-
ments while avoiding redundancy (Goldstein et al.,
2000). Existing multi-document summarization
methods are mostly extractive (Christensen et al.,
2013; Parveen and Strube, 2014; Ma et al., 2016;
Chu and Liu, 2018). For example, Wang et al.
(2020) present a heterogeneous graph-based neural
network which contains semantic nodes of different
granularity levels apart from sentences. Recently,
a vast majority of the literature is dedicated to ab-
stractive multi-document summarization. Lu et al.
(2020) propose a large-scale multi-document sum-
marization dataset created from scientific articles.
Jin et al. (2020) propose a multi-granularity in-
teraction network for extractive and abstractive ap-
proaches. Li et al. (2020a) develop a neural abstrac-
tive multi-document summarization model which
leverages explicit graph representations of docu-
ments to guide the summary generation process.

While the multi-document summarization task
aims to extract information shared by multiple doc-
uments, related work generation aims to compare
and introduce the cited works in logic order.

3 Related Work Generation Dataset

Since there are no public large-scale related work
generation datasets, we collect two survey datasets
composed of related work sections and their corre-
sponding papers. The first dataset is collected from
S2ORC (Lo et al., 2020), which consists of papers
in multiple domains (physics, math, computer sci-
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Dataset # Pairs
(train/valid/test)

# source
(articles)

# words
(doc)

# sents
(docs)

# words
(summary)

# sents
(summary) vocab size

S2ORC 126,655/5,000/5,000 5.02 1,079 45 148 6.69 377,431
Delve 72,927/3,000/3,000 3.69 626 26 181 7.88 190,381

Multi-News 44,972/5,622/5,622 2.78 2,103 82 263 9.97 666,515
RWS 25 9.47 5,496 237 367 18.28 15,019

DUC03+04 320 10 4,636 173 109 2.88 19,734
TAC 2011 176 10 4,695 188 99 1.00 24,672

Table 2: Comparison of our S2ORC and Delve dataset to other related work and multi-document datasets. Training,
validation, and testing size splits are provided when applicable. Statistics for multi-document inputs are calculated
on the concatenation of all input sources.

ence, etc.), and the second is Delve (Akujuobi and
Zhang, 2017), which consists of computer science
papers. All the papers in each of these two datasets
form a large connected citation graph, allowing
us to make full use of the citation relationships
between papers.

Dataset Preprocessing. For each case, the gen-
eration target is a paragraph with more than two
citations, as a comprehensive related work usu-
ally compares multiple works under the same topic.
The abstract of each cited paper is regarded as input,
considering that the main idea of a cited paper is
described in its abstract. We then conduct a human
evaluation to examine the dataset quality. Con-
cretely, we sample 200 cases from both datasets
and ask three annotators to state how well they
agree with the following statement, on a scale of
one to three (disagree, neutral, agree): the related
work can be partly generated based on the given
abstracts of the cited papers. The evaluation is con-
ducted on the Amazon Mechanical Turk, which has
been employed in a variety of NLP tasks including
summarization (Liu and Lapata, 2019a), question
answering (Gan and Ng, 2019), and dialog system
(Li et al., 2020b). The result shows that 94.5%
cases win 3 scores, while only 3.5% cases obtain
1 score. This demonstrates the good quality of the
datasets.

Statistics. Table 2 compares Delve and S2ORC
to other public datasets including DUC data from
2003 and 2004, TAC 2011 data, and Multi-News,
which are typically used in multi-document set-
tings. We also list the statistics of a recent related
work generation dataset RWS, which is proposed
by Chen and Zhuge (2019). The total number of
collected samples for the S2ORC and Delve is
about 150,000 and 80,000, respectively. It can be
seen that Multi-News is most similar to our dataset
due to its large-scale. However, the average num-
ber of documents per case in Multi-News is smaller

than ours.

4 Problem Formulation

Before presenting our approach for related work
generation, we first introduce our problem formu-
lation and used notations.

To begin with, for a set of relevant papers
D = (d1, d2, · · · , dN ) in a specific area, where
di denotes a paper, we assume there is a cor-
responding related work Y = (y1, y2, · · · , yT ).
N is the number of relevant papers, and di =
(wi

1, w
i
2, · · · , wi

Ni
), where wi

j is the j-th word in
i-th paper, and Ni is the number of words in di. T
is the number of words in a related work. Given the
multiple papers D, our model generates a related
work Ŷ = (ŷ1, ŷ2, · · · , ŷT̂ ). Finally, we use the
difference between generated related work Ŷ and
ground truth related work Y as the training signal
to optimize the model parameters.

5 The Proposed RRG Model

5.1 Overview

In this section, we introduce the Relation-aware
Related work Generator (RRG) in detail. An
overview of RRG is shown in Figure 1, which has
three main parts:
•Hierarchical Encoder reads multiple input doc-

uments and learns the multi-level representations
for words and documents.
• Relationship Modeling relates one paper to

another and obtains their relationship graph.
• Related Work Generator produces the abstrac-

tive related work by attending to the hierarchical
representations and the relation graph between doc-
uments.

5.2 Hierarchical Encoder

To begin with, each input wi
j is converted into the

vector representation êij by the learned embeddings.



6071

Related work
Generator

Hierarchical
Encoder

Document-level attentionWord-level attention

...
...

...

Relationship
Modeling

Transformer

Transformer

Transformer

TOKEN 
POSITION 
ENCODING

Vocab distribution

... ...
Weighted

Read

xL

...
Relation Graph

Updater

Relation-aware
Attention Module

do
c1

do
c2

do
c3

Relation-aware 
Document

...

Polished 
Relation Graph

Relation 
Graph

Figure 1: Overview of RRG, which consists of three parts: (1) Hierarchical Encoder encodes the multiple inputs in
hierarchical levels; (2) Relationship Modeling relates one paper to another and stores their relation graph; and (3)
Related Work Generator generates the related work by attending to input documents and the relationship between
them.

We then assign positional encoding (PE) to indi-
cate the position of the word wi

j where two po-
sitions need to be considered, namely document
index i and word index j. We concatenate the posi-
tion embedding PEi, PEj to obtain the final posi-
tion embedding pij . The definition of positional en-
coding is consistent with the Transfomer (Vaswani
et al., 2017). The input word representation eij
is obtained by adding embedding êij and position
embedding pij .

We then perform multi-head self-attention across
the word representations in the same document to
obtain the contextual word representation hwi

j
:

hwi
j
= MHAM(eij , e

i
∗), (1)

where MHAM denotes the Multi-head Attention
Module (Vaswani et al., 2017), and ∗ denotes index
j ∈ (1, Ni). Concretely, The first input is for query
and the second input is for keys and values. Each
output element, hwi

j
, is computed as the weighted

sum of linearly transformed input values:

hwi
j
=
∑Ni

l=1 α
i
j,l

(
eilW

V
w

)
, (2)

αi
j,l =

exp
(
βij,l

)
∑Ni

k=1 exp
(
βij,k

) . (3)

Here, βij,l is computed using a compatibility func-
tion that compares two input elements:

βij,l =

(
eijW

Q
w

) (
eilW

K
w

)T
√
d

, (4)

where d is the hidden dimension, and
WQ

w ,WK
w ,W

V
w are parameter matrices. From the

word-level representation we obtain the overall
representation for each document:

h0di = meanpool
({
hwi

1
, · · · , hwi

Ni

})
. (5)

5.3 Relationship Modeling
The document representation h0di does not contain
cross-document information, thus, it cannot learn
richer structural dependencies among textual units.
In this subsection, we introduce a novel graph-
based Relationship Modeling (RM), which not only
allows sharing information across multiple docu-
ments but also models the logic dependency be-
tween documents. Note that it is impossible to ex-
plicitly list all the relationships between documents
because the relationships vary from document pair
to pair depending on the document content, and
the content of documents is unlimited. Hence, we
model the relationships hidden vectors and let the
model capture such diverse relationships by the
hidden vectors. Concretely, since the relationship
graph is constructed based on the representation of
each document, while a comprehensive document
representation should consider its relationship with
other documents. These two processes complement
each other. Hence, our RM module is an iterative
module, which has a stack of L identical layers.
In each layer, we iteratively update the relation-
ship graph, and then fuse the information from the
graph to the document representation, as shown in
Figure 2.
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Figure 2: Framework of the relationship modeling,
which consists of a relation graph updater (in the right
cyan part), and a relation-aware attention module (in
the left gray part).

For a start, the relation edge in our graph is ini-
tialized by the document representation:

h0ri,j = MLPa([h
0
di
;h0dj ]), (6)

where MLP is a multi-layer perceptron, and [; ] is
the concatenation operation.

In each iteration, we first propose a Relation
Graph Updater (RGU) to renew the graph based on
the polished document representation so far (shown
in the right part of Figure 2):

hlri,j = RGU(hl−1
ri,j , h

l−1
d∗

). (7)

Here, ∗ denotes index i ∈ (1, N), meaning that
all document representations will be involved in
updating the relation graph. Concretely, RGU first
aggregates the information from both the previous
graph hl−1

ri,j and the document states hl−1
d∗

from the
last layer, using a multi-head attention (MHAM in-
trodced in §5.2). The input for queryQ is hl−1

ri,j , and
input for key K and value V is hl−1

d∗
. The output

intermediate graph states sl−1
i,j are further encoded

using a feed-forward layer and then merged with
the intermediate hidden states hl−1

ri,j using a residual
connection and layer norm.

We summarize the procedure below:

sl−1
i,j = MHAM(hl−1

ri,j , h
l−1
d∗

),

cl−1
i,j = tanh(W l−1

a hl−1
ri,j +W l−1

b sl−1
i,j ),

zl−1
i,j = sigmoid(W l−1

c hl−1
ri,j +W l−1

d sl−1
i,j ),

hlri,j = (1− zl−1
i,j )� cl−1

i,j + zl−1
i,j � h

l−1
ri,j ,

where� denotes Hadamard product, and cl−1
i,j is the

internal cell state. zl−1
i,j is the update gate that con-

trols which information to retain from the previous

memory state. This update strategy is conceptu-
ally similar to long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997). It differs in
that multi-head attention is used and thus multi-
ple graph slots are supported instead of a single
one in LSTM, which gives it a higher capacity of
modeling complex relations.

Next, the updated graph is fused in the Relation-
aware Attention Module (RAM) to update the doc-
ument representation:

hldi = RAM(hl−1
di
, hl−1

d∗
, hlri,∗). (8)

RAM is similar to MHAM, where hl−1
di

is for query,
hl−1
d∗

is for key and value. However, there are two
changes in Equation 2 and Equation 4. Specifically,
we modify Equation 2 to propagate edge informa-
tion to the sub-layer output:

hldi =
∑N

j=1 α
l−1,r
i,j

(
hl−1
dj
W V

r + hlri,j

)
. (9)

In this way, the representation of each document is
more comprehensive, consisting of its relation de-
pendency information with other documents. What
is more, when deciding the weight of each edge, i.e.,
βl−1,r
i,j , we also incorporate relation edge informa-

tion, since close relationships such as succession or
transition can have a great impact on edge weight.
Concretely, Equation 4 is changed to:

βl−1,r
i,j =

(
hl−1
di
WQ

r

)(
hl−1
dj
WK

r + hlri,j

)T
√
d

.

(10)
We summarize the whole relationship modeling

process as:

hLd , h
L
r = RM(h0d, h

0
r). (11)

For brevity, we omit the subscript L in the follow-
ing section.

5.4 Related Work Generator
To generate a consistent and informative sum-
mary, we propose an RNN-based decoder follow-
ing (Chen et al., 2019; Gao et al., 2019) that incor-
porates the outputs of the hierarchical encoder and
the relationship graph as illustrated in Figure 1.

Our decoder is a single-layer unidirectional
LSTM. At each step t, the decoder updates the
hidden state from st−1 to st:

st = LSTM
(
st−1,

[
cwt−1, c

d
t−1, e(yt−1)

])
.

(12)
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Following previous works (Bahdanau et al., 2015),
we employ an attention mechanism to compute the
attention distribution over the source words in the
sequence-to-sequence structure:

αw′,i
t,j =W g

a tanh
(
W g

b st +W g
c hwi

j

)
, (13)

αw,i
t,j = exp

(
αw′,i
t,j

)
/
∑Ni

l=1 exp
(
αw′,i
t,l

)
, (14)

cwt =
∑N

i=1

∑Ni
j=1 α

w,i
t,j hwi

j
, (15)

where cwt denotes word context vector. Similarly,
we extend the attention mechanism to document
level:

αd′
t,i =W g

d tanh
(
W g

e st +W g
f hdi

)
, (16)

αd
t,i = exp

(
αd′
t,i

)
/
∑N

l=1 exp
(
αd′
t,l

)
, (17)

cdt =
∑N

i=1 α
d
t,ihdi . (18)

The encoded relationship information is also im-
portant for facilitating the transition introduction
in the related work, and the specific information
in the graph that is needed at each step depends
on which document is being introduced. Hence,
we employ the document-level attention weights in
Equation 17 to read the relationship graph:

hrmi = meanpool
({
hri,1 , · · · , hri,N

})
,

crt =
∑N

i=1 α
d
t,ihrmi .

(19)

Finally, an output projection layer is applied to
get the final generating distribution P v

t over vocab-
ulary, as shown in Equation 20:

P v
t = softmax(MLPc[st; c

w
t ; c

d
t ; c

r
t ]). (20)

Our objective function is the negative log likeli-
hood of the target word yt:

L = −
∑T

t=1 logP
v
t (yt). (21)

In order to handle the out-of-vocabulary (OOV)
problem, we equip our decoder with a pointer net-
work (Gu et al., 2016; See et al., 2017). This pro-
cess is the same as the model described in (See
et al., 2017), thus, is omit here due to limited space.

6 Experimental Setup

6.1 Baselines
To evaluate the performance of our proposed model,
we compare it with the following baselines:
Extractive Methods:

(1) LEAD: selects the first sentence of each doc-
ument as the summary as a baseline. (2) TextRank
(Mihalcea and Tarau, 2004): is a multi-document
graph-based ranking model. (3) BertSumEXT
(Liu and Lapata, 2019b): is an extractive summa-
rization model with BERT. (4) MGSum-ext (Jin
et al., 2020): is a multi-granularity interaction net-
work for extractive multi-document summariza-
tion.
Abstractive Methods:

(1) PTGen+Cov: combines the sequence-to-
sequence framework with copy and coverage mech-
anism in summarization task (See et al., 2017).
(2) TransformerABS: is an abstractive summa-
rization model based on the Transformer (Vaswani
et al., 2017). (3) BertSumABS (Liu and Lapata,
2019b): is an abstractive summarization network
built on BERT. (4) MGSum-abs (Jin et al., 2020):
is a multi-granularity interaction network for ab-
stractive multi-document summarization. (5) GS
(Li et al., 2020a): is a neural abstractive multi-
document summarization model that leverages
well-known graphs to produce abstractive sum-
maries. We use the TF-IDF graph as the input
graph.

6.2 Implementation Details

We implement our model in TensorFlow (Abadi
et al., 2016) on an NVIDIA GTX 1080 Ti GPU.
For all the neural models, we truncate the input ar-
ticles to 500 tokens in the following way: for each
example with S source input documents, we take
the first 500/S tokens from each source document.
The maximum document number is set to 5. The
minimum decoding step is 50, and the maximum
step is 100. The word embedding dimension is
set to 128 and the number of hidden units is 256.
We initialize all of the parameters randomly using
a Gaussian distribution. The batch size is set to
16, and we limit the vocabulary size to 50K. We
use Adagrad optimizer (Duchi et al., 2010) as our
optimizing algorithm. We also apply gradient clip-
ping (Pascanu et al., 2013) with a range of [−2, 2]
during training. For the testing, we employ beam
search with a beam size of 4 to generate more fluent
summaries.

To obtain the extractive oracle, since it is com-
putationally expensive to find a globally optimal
subset of sentences that maximizes the ROUGE
score, we employ a greedy approach, where we
add one sentence at a time incrementally to the
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Models
S2ORC Dataset Delve Dataset

RG-1 RG-2 RG-L RG-1 RG-2 RG-L

oracle ext 38.68 7.23 34.31 38.07 7.21 33.27

Sentence extraction methods
LEAD 20.60 2.05 16.50 23.18 2.30 19.09
TextRank (Mihalcea and Tarau, 2004) 22.36 2.65 19.73 25.25 3.04 22.14
BertSumEXT (Liu and Lapata, 2019b) 24.62 3.62 21.88 28.43 3.98 24.71
MGSum-ext (Jin et al., 2020) 24.10 3.19 20.87 27.85 3.95 24.28

Abstractive methods
PTGen+Cov (See et al., 2017) 23.54 4.38 21.18 27.54 4.09 24.12
TransformerABS (Vaswani et al., 2017) 21.65 3.64 20.43 26.89 3.92 23.64
BertSumABS (Liu and Lapata, 2019b) 23.63 4.17 21.69 28.02 3.50 24.74
MGSum-abs (Jin et al., 2020) 23.94 4.58 21.57 28.13 4.12 24.95
GS (Li et al., 2020a) 23.92 4.51 22.05 28.27 4.36 25.08
RRG 25.46 4.93 22.97 29.10 4.94 26.29

Ablation models
RRG w/o PP 24.80 4.75 22.30 28.89 4.64 25.60
RRG w/o RM 24.32 4.50 21.95 28.40 4.01 25.12
RRG w/o Upd 24.58 4.71 22.11 28.79 4.13 25.30

Table 3: ROUGE scores comparison between RRG and baselines. All our ROUGE scores have a 95% confidence
interval of at most ±0.22 as reported by the official ROUGE script.

summary, such that the ROUGE score of the cur-
rent set of selected sentences is maximized with
respect to the entire gold summary.

7 Experimental Results

7.1 Automatic Evaluation

Following Chen et al. (2018), we evaluate sum-
marization quality using ROUGE F1 (Lin, 2004).
We report unigram and bigram overlap (ROUGE-1
and ROUGE-2) to assess the informativeness and
the longest common subsequence (ROUGE-L) as
a means of the assessing fluency.

Table 3 summarizes our results. The first block
in the table includes extractive systems, and the sec-
ond block includes abstractive baselines. As can
be seen, abstractive models generally outperform
extractive ones, especially in terms of ROUGE-L
scores. We attribute this result to the observation
that the gold related work of this dataset tends to
use novel word combinations to summarize the
original input documents, which demonstrates the
necessity of solving the abstractive related work
generation task. Among abstractive models, sur-
prisingly, BertSumABS does not perform as well
as other state-of-the-art baselines. This is probably
because BERT does not fit well on scholar data
that have technical terms. Finally, our model RRG
gains an improvement of 1.83 (1.08) points com-
pared with BertSumABS, 1.54 (0.83) points com-
pared with GS on ROUGE-1 on S2ORC (Delve),

QA(%) Inform Coh Succ

BertSumABS 26.8 1.86 1.93 1.80
MGSum-abs 29.9 2.03 1.96 1.90
GS 32.8 2.23 2.06 2.03
RRG 38.8 2.37 2.16 2.10

Table 4: Model scores based on questions answered by
AMT participants and summary quality rating.

verifying the effectiveness of our RRG.
Table 3 also summarizes ablation studies aiming

to assess the contribution of individual components
in our RRG model. The results confirm that the
encoding paragraph position in addition to token
position within each paragraph is beneficial (see
row w/o PP), as well as relationship modeling (row
w/o RM). Updating the relation graph also helps
the summarization process, where removing the
update mechanism causes ROUGE-L drop by 0.86
(0.99) (row w/o Upd) on S2ORC (Delve) dataset.

7.2 Human Evaluation
We also assessed the generated results by elicit-
ing human judgments on 30 randomly selected test
instances from Delve dataset. Our first evaluation
study quantified the degree to which summarization
models can retain the key information following
a question-answering paradigm (Liu and Lapata,
2019a). We created a set of questions based on
the gold-related work and examined whether par-
ticipants were able to answer these questions by
reading generated related works. The principle
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G
O

L
D given a set of annotated images as training data , many methods have been proposed in the literature to find most

representative keywords to annotate new images [1] [2] . however , in most cases , the labeled data are insufficient
. compared to the large size of an image or video data set , the annotated images have a relative small number . the
semisupervised learning techniques leverage the unlabeled data in addition to labeled data to tackle this difficulty [3] [4] .

Q
A Are labeled data large enough for image annotation in most cases? [no]

What techniques have been proposed to leverage the unlabeled data? [semisupervised techniques]

M
-e

xt

we introduce a new method to automatically annotate and retrieve images using a vocabulary of image semantics [1] .
we evaluate the innovative sdf-based approach on corel images compared with support vector machine-based approach
. in this paper , we propose a novel scheme that exploits both semi-supervised kernel learning and batch mode active
learning for relevance feedback in cbir [3] . this paper presents a novel semi-supervised learning method which combines
the power of learned similarity functions and classifiers [4] .

M
-a

bs active learning methods have been widely used in computer vision tasks , including speech recognition and computer
vision [1] [2] . in the context of machine learning , there has been substantial research effort in the field of active learning
[3] . [4] address the problem of active learning to a set of labeled data based on the idea of boosting .

G
S the problem of image annotation has been studied extensively in recent years [1] [2] . in contrast , the majority of

work on image annotation has focused on reducing the amount of the number of required training samples , such as
semi-supervised learning ( [3] ) , support vector machine ( svm [4] ) .

R
R

G there has been a lot of work on image annotation learning [1] [2] . however , most of the existing methods is not
applicable when training data size is small . [3] propose a semi-supervised learning algorithm for active learning such as
local svm. [4] address the problem of active learning to a set of labeled data .

Table 5: Gold human authored summaries, questions based on them (answers shown in square brackets) and auto-
matic summaries produced by MGSum-ext, MGSum-abs, GS, and our RRG. Blue denotes inconsistent sentences,
while pink denotes relation conjunction that explains the relationship between different works.

for writing a question is that the information to
be answered is about factual description, and is
necessary for a related work section. Two Ph.D.
students majoring in computer science (also the au-
thors) wrote five questions independently for each
sampled ground truth related work since the Delve
dataset also consists of computer science papers.
Then they together selected the common questions
as the final questions that they both consider to be
important. Finally we obtain 67 questions, where
correct answers are marked with 1 and 0 otherwise.
Examples of questions and their answers are given
in Table 5. Our second evaluation study assessed
the overall quality of the related works by asking
participants to score them by taking into account
the following criteria: Informativeness (does the
related work convey important facts about the topic
in question?), Coherence (is the related work coher-
ent and grammatical?), and Succinctness (does the
related work avoid repetition?). The rating score
ranges from 1 to 3, with 3 being the best. For both
evaluation metrics, a model’s score is the average
of all scores.

Both evaluations were conducted on the Amazon
Mechanical Turk platform with 3 responses per hit.
Participants evaluated related works produced by
the BertSumABS, MGSum-abs, GS, and our RRG.
All evaluated models are those who achieved the
best performance in automatic evaluations. Table 4
lists the average scores of each model, showing that
RRG outperforms other baseline models among all

metrics. We calculate the kappa statistics in terms
of informativeness, coherence, and succinctness,
and the scores are 0.38, 0.29, 0.34, respectively. To
verify the significance of these results, we also con-
duct the paired student t-test between our model
and GS (the row with shaded background). We ob-
tain a p-value of 6× 10−6, 5× 10−9, and 7× 10−7

for informativeness, coherence, and succinctness.
Examples of system output are provided in Table 5.
We can see that related work generated by RRG
correctly captures the relationship between papers
[1,2] and [3,4], and successfully summarizes the
contributions of corresponding papers. Among
baselines, MGSum-ext fails to connect the cited
papers in logic. MGSum-abs and GS fail to cap-
ture the transitional relationship between the first
two works and the last two works.

7.3 Analysis of Relation Graph

To fully investigate what is stored by the relation
graph, we draw a heatmap of the graph for the case
in Table 5. Since the edge in relation graph is a vec-
tor containing semantic meaning, which cannot be
directly explained, we use the edge between paper
[2] and [3] as a benchmark and compute the cosine
similarity between the benchmark and other rela-
tion edges. Dark color means that the relationship
between the corresponding two papers is similar
with edge [2]-[3], and vice versa. We already know
that there is a transitional relationship between [2]
and [3], so if an edge has a high cosine similarity
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Figure 3: The similarity between each relation edge
and paper [3]-[4] edge. The darker the color is, the
higher the similarity is.

with [2]-[3] pair, then the two papers on this edge
also form a transitional relationship. As shown in
Figure 3, relationship vectors between paper [1],
[2] with [4] are relatively more similar to [2]-[3]
pair. This is consistent with the fact that paper
[1] and [2] are parallel with each other, while they
form a transitional relationship compared with [4].
Note that the heatmap is not symmetrical because
our relation graph is a bipartite graph.

8 Conclusion

In this paper, we conceptualized the abstractive re-
lated work generation task as a machine learning
problem. We proposed a new model that is able
to encode multiple input documents hierarchically
and model the latent relations across them in a re-
lation graph. We also come up with two public
large-scale related work generation datasets. Ex-
perimental results show that our model produces
related works that are both fluent and informative,
outperforming competitive systems by a wide mar-
gin. In the future, we would like to apply our model
to abstract generation and paper generation tasks.
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Ethics Impact

In this paper, we propose a relation-aware related
work generator which aims to provide researchers
with an overview of the specific research area by

summarizing the related works and introducing
them in a logical order. The positive impact lies
in that it can help improve the work efficiency of
scholars. The negative impact may be that in some
extreme cases, the system may not be able to give
an accurate and faithful related work, which can
be misleading. Hence, in such situation, scholars
should not directly employ the generated related
work as the final edition. Instead, they can rely on
this system to give insightful related work sugges-
tion.
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