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Abstract

Recently, the performance of Pre-trained Lan-
guage Models (PLMs) has been significantly
improved by injecting knowledge facts to en-
hance their abilities of language understanding.
For medical domains, the background knowl-
edge sources are especially useful, due to the
massive medical terms and their complicated
relations are difficult to understand in text. In
this work, we introduce SMedBERT, a med-
ical PLM trained on large-scale medical cor-
pora, incorporating deep structured semantics
knowledge from neighbours of linked-entity.
In SMedBERT, the mention-neighbour hybrid
attention is proposed to learn heterogeneous-
entity information, which infuses the semantic
representations of entity types into the homo-
geneous neighbouring entity structure. Apart
from knowledge integration as external fea-
tures, we propose to employ the neighbors of
linked-entities in the knowledge graph as addi-
tional global contexts of text mentions, allow-
ing them to communicate via shared neighbors,
thus enrich their semantic representations. Ex-
periments demonstrate that SMedBERT signif-
icantly outperforms strong baselines in various
knowledge-intensive Chinese medical tasks. It
also improves the performance of other tasks
such as question answering, question matching
and natural language inference.1

1 Introduction

Pre-trained Language Models (PLMs) learn effec-
tive context representations with self-supervised
tasks, spotlighting in various NLP tasks (Wang
et al., 2019a; Nan et al., 2020; Liu et al., 2020a). In
addition, Knowledge-Enhanced PLMs (KEPLMs)
(Zhang et al., 2019; Liu et al., 2020b; Wang et al.,
2019b) further benefit language understanding by

∗Corresponding author.
1The code and pre-trained models will be available at

https://github.com/MatNLP/SMedBERT.
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Figure 1: Example of neighboring entity information
in medical text. (Best viewed in color)

grounding these PLMs with high-quality, human-
curated knowledge facts, which are difficult to learn
from raw texts.

In the literatures, a majority of KEPLMs (Zhang
et al., 2020a; Hayashi et al., 2020; Sun et al.,
2020) inject information of entities corresponding
to mention-spans from Knowledge Graphs (KGs)
into contextual representations. However, those
KEPLMs only utilize linked-entity in the KGs as
auxiliary information, which pay little attention
to the neighboring structured semantics informa-
tion of the entity linked with text mentions. In
the medical context, there exist complicated do-
main knowledge such as relations and medical facts
among medical terms (Rotmensch et al., 2017; Li
et al., 2020), which are difficult to model using
previous approaches. To address this issue, we
consider leveraging structured semantics knowl-
edge in medical KGs from the two aspects. (1)
Rich semantic information from neighboring struc-
tures of linked-entities, such as entity types and
relations, are highly useful for medical text under-
standing. As in Figure 1, “新型冠状病毒” (novel
coronavirus) can be the cause of many diseases,
such as “肺炎” (pneumonia) and “呼吸综合征”

https://github.com/MatNLP/SMedBERT
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(respiratory syndrome). 2 (2) Additionally, we
leverage neighbors of linked-entity as global “con-
texts” to complement plain-text contexts used in
(Mikolov et al., 2013a; Pennington et al., 2014).
The structure knowledge contained in neighbour-
ing entities can act as the “knowledge bridge” be-
tween mention-spans, facilitating the interaction of
different mention representations. Hence, PLMs
can learn better representations for rare medical
terms.

In this paper, we introduce SMedBERT, a KE-
PLM pre-trained over large-scale medical corpora
and medical KGs. To the best of our knowledge,
SMedBERT is the first PLM with structured se-
mantics knowledge injected in the medical do-
main. Specifically, the contributions of SMedBERT
mainly include two modules:
Mention-neighbor Hybrid Attention: We fuse
the embeddings of the node and type of linked-
entity neighbors into contextual target mention rep-
resentations. The type-level and node-level atten-
tions help to learn the importance of entity types
and the neighbors of linked-entity, respectively, in
order to reduce the knowledge noise injected into
the model. The type-level attention transforms the
homogeneous node-level attention into a heteroge-
neous learning process of neighboring entities.
Mention-neighbor Context Modeling: We pro-
pose two novel self-supervised learning tasks for
promoting interaction between mention-span and
corresponding global context, namely masked
neighbor modeling and masked mention modeling.
The former enriches the representations of “con-
text” neighboring entities based on the well trained
“target word” mention-span, while the latter focuses
on gathering those information back from neighbor-
ing entities to the masked target like low-frequency
mention-span which is poorly represented (Turian
et al., 2010).

In the experiments, we compare SMedBERT
against various strong baselines, including main-
stream KEPLMs pre-trained over our medical re-
sources. The underlying medical NLP tasks in-
clude: named entity recognition, relation extrac-
tion, question answering, question matching and
natural language inference. The results show that
SMedBERT consistently outperforms all the base-
lines on these tasks.

2Although we focus on Chinese medical PLMs here. The
proposed method can be easily adapted to other languages,
which is beyond the scope of this work.

2 Related Work

PLMs in the Open Domain. PLMs have gained
much attention recently, proving successful for
boosting the performance of various NLP tasks
(Qiu et al., 2020). Early works on PLMs focus
on feature-based approaches to transform words
into distributed representations (Collobert and We-
ston, 2008; Mikolov et al., 2013b; Pennington et al.,
2014; Peters et al., 2018). BERT (Devlin et al.,
2019) (as well as its robustly optimized version
RoBERTa (Liu et al., 2019b)) employs bidirec-
tional transformer encoders (Vaswani et al., 2017)
and self-supervised tasks to generate context-aware
token representations. Further improvement of per-
formances mostly based on the following three
types of techniques, including self-supervised tasks
(Joshi et al., 2020), transformer encoder architec-
tures (Yang et al., 2019) and multi-task learning
(Liu et al., 2019a).
Knowledge-Enhanced PLMs. As existing BERT-
like models only learn knowledge from plain cor-
pora, various works have investigated how to in-
corporate knowledge facts to enhance the lan-
guage understanding abilities of PLMs. KEPLMs
are mainly divided into the following three types.
(1) Knowledge-enhanced by Entity Embedding:
ERNIE-THU (Zhang et al., 2019) and KnowBERT
(Peters et al., 2019) inject linked-entity as hetero-
geneous features learned by KG embedding algo-
rithms such as TransE (Bordes et al., 2013). (2)
Knowledge-enhanced by Entity Description: E-
BERT (Zhang et al., 2020a) and KEPLER (Wang
et al., 2019b) add extra description text of entities to
enhance semantic representation. (3) Knowledge-
enhanced by Triplet Sentence: K-BERT (Liu et al.,
2020b) and CoLAKE (Sun et al., 2020) convert
triplets into sentences and insert them into the train-
ing corpora without pre-trained embedding. Pre-
vious studies on KG embedding (Nguyen et al.,
2016; Schlichtkrull et al., 2018) have shown that
utilizing the surrounding facts of entity can obtain
more informative embedding, which is the focus of
our work.
PLMs in the Medical Domain. PLMs in the med-
ical domain can be generally divided into three
categories. (1) BioBERT (Lee et al., 2020), Blue-
BERT (Peng et al., 2019), SCIBERT (Beltagy et al.,
2019) and ClinicalBert (Huang et al., 2019) ap-
ply continual learning on medical domain texts,
such as PubMed abstracts, PMC full-text articles
and MIMIC-III clinical notes. (2) PubMedBERT
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Figure 2: Model overview of SMedBERT. The left part is our model architecture and the right part is the details of
our model including hybrid attention network and mention-neighbor context modeling pre-training tasks.

(Gu et al., 2020) learns weights from scratch using
PubMed data to obtain an in-domain vocabulary,
alleviating the out-of-vocabulary (OOV) problem.
This training paradigm needs the support of large-
scale domain data and resources. (3) Some other
PLMs use domain self-supervised tasks for pre-
training. For example, MC-BERT (Zhang et al.,
2020b) masks Chinese medical entities and phrases
to learn complex structures and concepts. Disease-
BERT (He et al., 2020) leverages the medical terms
and its category as the labels to pre-train the model.
In this paper, we utilize both domain corpora and
neighboring entity triplets of mentions to enhance
the learning of medical language representations.

3 The SMedBERT Model

3.1 Notations and Model Overview

In the PLM, we denote the hidden feature of each
token {w1, ..., wN} as {h1, h2, ..., hN} where N
is the maximum input sequence length and the total
number of pre-training samples as M . Let E be
the set of mention-span em in the training corpora.
Furthermore, the medical KG consists of the enti-
ties set E and the relations set R. The triplet set
is S = {(h, r, t) | h ∈ E , r ∈ R, t ∈ E}, where h
is the head entity with relation r to the tail entity
t. The embeddings of entities and relations trained
on KG by TransR (Lin et al., 2015) are represented
as Γent and Γrel, respectively. The neighboring
entity set recalled from KG by em is denoted as
Nem = {e1m, e2m, ..., eKm} where K is the threshold
of our PEPR algorithm. We denote the number of

entities in the KG as Z. The dimensions of the hid-
den representation in PLM and the KG embeddings
are d1 and d2, respectively.

The main architecture of the our model is shown
in Figure 2. SMedBERT mainly includes three
components: (1) Top-K entity sorting determine
which K neighbour entities to use for each men-
tion. (2) Mention-neighbor hybrid attention aims
to infuse the structured semantics knowledge into
encoder layers, which includes type attention,
node attention and gated position infusion module.
(3) Mention-neighbor context modeling includes
masked neighbor modeling and masked mention
modeling aims to promote mentions to leverage
and interact with neighbour entities.

3.2 Top-K Entity Sorting

Previous research shows that simple neighboring
entity expansion may induce knowledge noises dur-
ing PLM training (Wang et al., 2019a). In order
to recall the most important neighboring entity set
from the KG for each mention, we extend the Per-
sonalized PageRank (PPR) (Page et al., 1999) algo-
rithm to filter out trivial entities. 3 Recall that the it-
erative process in PPR is Vi = (1−α)A·Vi−1+αP
where A is the normalized adjacency matrix, α
is the damping factor, P is uniformly distributed
jump probability vector, and V is the iterative score
vector for each entity.

PEPR specifically focuses on learning the weight
for the target mention span in each iteration. It

3We name our algorithm to be Personalized Entity PageR-
ank, abbreviated as PEPR.
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assigns the span em a higher jump probability 1 in
P with the remaining as 1

Z . It also uses the entity
frequency to initialize the score vector V :

Vem =

{
tem
T em ∈ E
1
M em /∈ E

(1)

where T is the sum of frequencies of all entities.
tem is the frequency of em in the corpora. After
sorting, we select the top-K entity set Nem .

3.3 Mention-neighbor Hybrid Attention

Besides the embeddings of neighboring entities,
SMedBERT integrates the type information of med-
ical entities to further enhance semantic representa-
tions of mention-span.

3.3.1 Neighboring Entity Type Attention
Different types of neighboring entities may have
different impacts. Given a specific mention-span
em, we compute the neighboring entity type atten-
tion. Concretely, we calculate hidden representa-
tion of each entity type τ as hτ =

∑
eim∈Eτm heim .

Eτm are neighboring entities of em with the same
type τ and heim = Γent

(
eim
)
∈ Rd2 .

h′em = LN (σ (fsp (hi, . . . , hj)Wbe)) (2)

where fsp is the self-attentive pooling (Lin et al.,
2017) to generate the mention-span representation
hem ∈ Rd1 and the (hi, hi+1, . . . , hj) is the hid-
den representation of tokens (wi, wi+1, . . . , wj) in
mention-span em trained by PLMs. h′em ∈ Rd2
is obtained by σ(·) non-linear activation function
GELU (Hendrycks and Gimpel, 2016) and the
learnable projection matrix Wbe ∈ Rd1×d2 . LN is
the LayerNorm function (Ba et al., 2016). Then, we
calculate the each type attention weight using the
type representation hτ ∈ Rd2 and the transformed
mention-span representation h′em :

α′τ = tanh
(
h′emWt + hτWt′

)
Wa (3)

where Wt ∈ Rd2×d2 , Wt′ ∈ Rd2×d2 and Wa ∈
Rd2×1. Finally, the neighboring entity type atten-
tion weights ατ are obtained by normalizing the
attention score α′τ among all entity types T .

3.3.2 Neighboring Entity Node Attention
Apart from entity type information, different
neighboring entities also have different influences.
Specifically, we devise the neighboring entity node

attention to capture the different semantic influ-
ences from neighboring entities to the target men-
tion span and reduce the effect of noises. We cal-
culate the entity node attention using the mention-
span representation h′em and neighboring entities
representation heim with entity type τ as:

β′emeim
=

(
h′emWq

) (
heimWk

)T
√
d2

ατ (4)

βemeim =
exp

(
β′
emeim

)
∑

eim∈Nem exp
(
β′
emeim

) (5)

where Wq ∈ Rd2×d2 and Wk ∈ Rd2×d2 are the
attention weight matrices.

The representations of all neighboring entities in
Nem are aggregated to h̄′em ∈ Rd2 :

ĥ′em =
∑

eim∈Nem

βemeim
(
heimWv + bv

)
(6)

h̄′em = LN
(
ĥ′em +

(
σ
(
ĥ′emWl1 + bl1

)
Wl2

))
(7)

where Wv ∈ Rd2×d2 , Wl1 ∈ Rd2×4d2 , Wl2 ∈
R4d2×d2 . bv ∈ Rd2 and bl1 ∈ R4d2 are the bias
vectors. h̄′em is the mention-neighbor representa-
tion from hybrid attention module.

3.3.3 Gated Position Infusion
Knowledge-injected representations may divert the
texts from its original meanings. We further reduce
knowledge noises via gated position infusion:

h′emf = σ
([
h̄′em ‖ h

′
em

]
Wmf + bmf

)
(8)

h̃′emf = LN (h′emfWbp + bbp) (9)

where Wmf ∈ R2d2×2d2 , Wbp ∈ R2d2×d1 , bmf ∈
R2d2 , bbp ∈ Rd1 . h′emf ∈ R2d2 is the span-level
infusion representation. “‖” means concatenation
operation. h̃′emf ∈ Rd1 is the final knowledge-
injected representation for mention em. We gener-
ate the output token representation hif by 4:

gi = tanh
(([

hi ‖ h̃′emf
])
Wug + bug

)
(10)

hif = σ
(([

hi ‖ gi ∗ h̃′emf
])
Wex + bex

)
+ hi

(11)

where Wug, Wex ∈ R2d1×d1 . bug, bex ∈ Rd1 . “∗”
means element-wise multiplication.

4We find that restricting the knowledge infusion position
to tokens is helpful to improve performance.
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3.4 Mention-neighbor Context Modeling
To fully exploit the structured semantics knowl-
edge in KG, we further introduce two novel self-
supervised pre-training tasks, namely Masked
Neighbor Modeling (MNeM) and Masked Men-
tion Modeling (MMeM).

3.4.1 Masked Neighbor Modeling
Formally, let r be the relation between the mention-
span em and a neighboring entity eim:

hmf = LN (σ (fsp (hif , . . . , hjf )Wsa)) (12)

where hmf is the mention-span hidden fea-
tures based on the tokens hidden representation(
hif , h(i+1)f , . . . , hjf

)
. hr = Γrel (r) ∈ Rd2 is

the relation r representation and Wsa ∈ Rd1×d2 is
a learnable projection matrix. The goal of MNeM
is leveraging the structured semantics in surround-
ing entities while reserving the knowledge of re-
lations between entities. Considering the object
functions of skip-gram with negative sampling
(SGNS) (Mikolov et al., 2013a) and score func-
tion of TransR (Lin et al., 2015):

LS = log fs(w, c) + k · Ecn∼PD [log fs(w,−cn)]
(13)

ftr(h, r, t) =‖ hMr + r − tMr ‖ (14)

where thew inLS is the target word of context c. fs
is the compatibility function measuring how well
the target word is fitted into the context. Inspired by
SGNS, following the general energy-based frame-
work (LeCun et al., 2006), we treat mention-spans
in corpora as “target words”, and neighbors of cor-
responding entities in KG as “contexts” to pro-
vide additional global contexts. We employ the
Sampled-Softmax (Jean et al., 2015) as the crite-
rion LMNeM for the mention-span em:∑
Nem

log
exp(fs(θ))

exp(fs(θ)) +K · Een∼Q(en)[exp(fs(θ′))]

(15)

where θ denotes the triplet (em, r, e
i
m), eim ∈ Nem .

θ′ is the negative triplets (em, r, en), and en is neg-
ative entity sampled with Q(eim) detailed in Ap-
pendix B. To keep the knowledge of relations be-
tween entities, we define the compatibility function
as:

fs
(
em, r, e

i
m

)
=

hmfMr + hr
||hmfMr + hr||

·
(heimMr)

T

||heimMr||
µ

(16)

where µ is a scale factor. Assuming the norms of
both hmfMr + hr and heimMr are 1,we have:

fs
(
em, r, e

i
m

)
= µ ⇐⇒ ftr(hmf , hr, heim) = 0

(17)
which indicates the proposed fs is equivalence with
ftr. Because | henMr | needs to be calculated for
each en, the computation of the score function fs
is costly. Hence, we transform part of the formula
fs as follows:

(hmfMr + hr) · (henMr)
T =[

hmf 1
] [ Mr

hr

] [
Mr

hr

]T [
hen 0

]T
=
[
hmf 1

]
MPr

[
hen 0

]T
(18)

In this way, we eliminate computation of transform-
ing each hen . Finally, to compensate the offset in-
troduced by the negative sampling function Q(eim)
(Jean et al., 2015), we complement fs(em, r, eim)
as:[

hmf 1
]
MPr

‖
[
hmf 1

]
MPr ‖

·
[
heim 0

]
‖ heim ‖

µ−µ logQ(eim)

(19)

3.4.2 Masked Mention Modeling
In contrast to MNeM, MMeM transfers the seman-
tic information in neighboring entities back to the
masked mention em.

Ym = LN (σ (fsp (hip, . . . , hjp)Wsa)) (20)

where Ym is the ground-truth representation of em
and hip = Γp(wi) ∈ Rd2 . Γp is the pre-trained
embedding of BERT in our medical corpora. The
mention-span representation obtained by our model
is hmf . For a sample s, the loss of MMeM LMMeM

is calculated via Mean-Squared Error:

LMMeM =

Ms∑
mi

‖ hmif − Ymi ‖
2 (21)

whereMs is the set of mentions of sample s.

3.5 Training Objective

In SMedBERT, the training objectives mainly con-
sist of three parts, including the self-supervised
loss proposed in previous works and the mention-
neighbor context modeling loss proposed in our
work. Our model can be applied to medical text
pre-training directly in different languages as long
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as high-quality medical KGs can be obtained. The
total loss is as follows:

Ltotal = LEX + λ1LMNeM + λ2LMMeM (22)

where LEX is the sum of sentence-order predic-
tion (SOP) (Lan et al., 2020) and masked language
modeling. λ1 and λ2 are the hyperparameters.

4 Experiments

4.1 Data Source

Pre-training Data. The pre-training corpora after
pre-processing contains 5,937,695 text segments
with 3,028,224,412 tokens (4.9 GB). The KGs em-
bedding trained by TransR (Lin et al., 2015) on
two trusted data sources, including the Symptom-
In-Chinese from OpenKG5 and DXY-KG 6 contain-
ing 139,572 and 152,508 entities, respectively. The
number of triplets in the two KGs are 1,007,818
and 3,764,711. The pre-training corpora and the
KGs are further described in Appendix A.1.
Task Data. We use four large-scale datasets in
ChineseBLUE (Zhang et al., 2020b) to evaluate
our model, which are benchmark of Chinese med-
ical NLP tasks. Additionally, we test models on
four datasets from real application scenarios pro-
vided by DXY company 7 and CHIP 8, i.e., Named
Entity Recognition (DXY-NER), Relation Extrac-
tion (DXY-RE, CHIP-RE) and Question Answer
(WebMedQA (He et al., 2019)). For other informa-
tion of the downstream datasets, we refer readers
to Appendix A.2.

4.2 Baselines

In this work, we compare SMedBERT with general
PLMs, domain-specific PLMs and KEPLMs with
knowledge embedding injected, pre-trained on our
Chinese medical corpora:
General PLMs: We use three Chinese BERT-style
models, namely BERT-base (Devlin et al., 2019),
BERT-wwm (Cui et al., 2019) and RoBERTa (Liu
et al., 2019b). All the weights are initialized from
(Cui et al., 2020).
Domain-specific PLMs: As very few PLMs in the
Chinese medical domain are available, we consider
the following models. MC-BERT (Zhang et al.,

5http://www.openkg.cn/dataset/
symptom-in-chinese

6https://portal.dxy.cn/
7https://auth.dxy.cn/accounts/login
8http://www.cips-chip.org.cn:8088/home

Model D1 D2 D3

SGNS-char-med 27.21% 27.16% 21.72%
SGNS-word-med 24.64% 24.95% 20.37%
GLOVE-char-med 27.24% 27.12% 21.91%
GLOVE-word-med 24.41% 23.89% 20.56%

BERT-open 29.79% 29.41% 21.83%
BERT-wwm-open 29.75% 29.55% 21.97%
RoBERTa-open 30.84% 30.56% 21.98%

MC-BERT 30.63% 30.34% 22.65%
BioBERT-zh 30.84% 30.69% 22.71%
ERNIE-med 30.97% 30.78% 22.99%

KnowBERT-med 30.95% 30.77% 23.07%

SMedBERT 31.81% 32.14% 24.08%

Table 1: Results of unsupervised semantic similarity
task. “med” refers to models continually pre-trained on
medical corpora, and “open” means open-domain cor-
pora. “char’ and “word” refer to the token granularity
of input samples.

2020b) is pre-trained over a Chinese medical cor-
pora via masking different granularity tokens. We
also pre-train BERT using our corpora, denoted as
BioBERT-zh.
KEPLMs: We employ two SOTA KEPLMs con-
tinually pre-trained on our medical corpora as our
baseline models, including ERNIE-THU (Zhang
et al., 2019) and KnowBERT (Peters et al., 2019).
For a fair comparison, KEPLMs use other addi-
tional resources rather than the KG embedding are
excluded (See Section 2), and all the baseline KE-
PLMs are injected by the same KG embedding.

The detailed parameter settings and training pro-
cedure are in Appendix B.

4.3 Intrinsic Evaluation

To evaluate the semantic representation ability of
SMedBERT, we design an unsupervised semantic
similarity task. Specifically, we extract all entities
pairs with equivalence relations in KGs as positive
pairs. For each positive pair, we use one of the
entity as query entity while the other as positive
candidate, which is used to sample other entities
as negative candidates. We denote this dataset as
D1. Besides, the entities in the same positive pair
often have many neighbours in common. We select
positive pairs with large proportions of common
neighbours as D2. Additionally, to verify the abil-
ity of SMedBERT of enhancing the low-frequency
mention representation, we extract all positive pairs
that with at least one low-frequency mention as D3.
There are totally 359,358, 272,320 and 41,583 sam-
ples for D1, D2, D3 respectively. We describe the

http://www.openkg.cn/dataset/symptom-in-chinese
http://www.openkg.cn/dataset/symptom-in-chinese
https://portal.dxy.cn/
https://auth.dxy.cn/accounts/login
http://www.cips-chip.org.cn:8088/home
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Named Entity Recognition Relation Extraction

Model cMedQANER DXY-NER Average CHIP-RE DXY-RE Average

Dev Test Dev Test Test Test Dev Test Test

BERT-open 80.69% 83.12% 79.12% 79.03% 81.08% 85.86% 94.18% 94.13% 90.00%
BERT-wwm-open 80.52% 83.07% 79.48% 79.29% 81.18% 86.01% 94.35% 94.38% 90.20%

RoBERT-open 80.92% 83.29% 79.27% 79.33% 81.31% 86.19% 94.64% 94.66% 90.43%

BioBERT-zh 80.72% 83.38% 79.52% 79.45% 81.42% 86.12% 94.54% 94.64% 90.38%
MC-BERT 81.02% 83.46% 79.79% 79.59% 81.53% 86.09% 94.74% 94.73% 90.41%

KnowBERT-med 81.29% 83.75% 80.86% 80.44% 82.10% 86.27% 95.05% 94.97% 90.62%
ERNIE-med 81.22% 83.87% 80.82% 80.87% 82.37% 86.25% 94.98% 94.91% 90.58%

SMedBERT 82.23% 84.75% 83.06% 82.94% 83.85% 86.95% 95.73% 95.89% 91.42%

Table 2: Performance of Named Entity Recognition (NER) and Relation Extraction (RE) tasks in terms of F1. The
Development data of CHIP-RE is unreleased in public dataset.

Question Answering Question Matching Natural Lang. Infer.

Model cMedQA WebMedQA Average cMedQQ cMedNLI

Dev Test Dev Test Test Dev Test Dev Test

BERT-open 72.99% 73.82% 77.20% 79.72% 76.77% 86.74% 86.72% 95.52% 95.66%
BERT-wwm-open 72.03% 72.96% 77.06% 79.68% 76.32% 86.98% 86.82% 95.53% 95.78%

RoBERT-open 72.22% 73.18% 77.18% 79.57% 76.38% 87.24% 86.97% 95.87% 96.11%

BioBERT-zh 74.32% 75.12% 78.04% 80.45% 77.79% 87.30% 87.06% 95.89% 96.04%
MC-BERT 74.40% 74.46% 77.85% 80.54% 77.50% 87.17% 87.01% 95.81% 96.06%

KnowBERT-med 74.38% 75.25% 78.20% 80.67% 77.96% 87.25% 87.14% 95.96% 96.03%
ERNIE-med 74.37% 75.22% 77.93% 80.56% 77.89% 87.34% 87.20% 96.02% 96.25%

SMedBERT 75.06% 76.04% 79.26% 81.68% 78.86% 88.13% 88.09% 96.64% 96.88%

Table 3: Performance of Question Answering (QA), Question Matching (QM) and Natural Language Inference
(NLI) tasks. The metric of the QA task is Acc@1 and those of QM and NLI are F1.

details of collecting data and embedding words
in Appendix C. In this experiments, we compare
SMedBERT with three types of models: classical
word embedding methods (SGNS (Mikolov et al.,
2013a), GLOVE (Pennington et al., 2014)), PLMs
and KEPLMs. We compute the similarity between
the representation of query entities and all the other
entities, retrieving the most similar one. The evalu-
ation metric is top-1 accuracy (Acc@1).

Experiment results are shown in Table 1. From
the results, we observe that: (1) SMedBERT greatly
outperforms all baselines especially on the dataset
D2 (+1.36%), where most positive pairs have
many shared neighbours, demonstrating that ability
of SMedBERT to utilize semantic information from
the global context. (2) In dataset D3, SMedBERT
improve the performance significantly (+1.01%),
indicating our model is effective to enhance the
representation of low-frequency mentions.

4.4 Results of Downstream Tasks

We first evaluate our model in NER and RE tasks
that are closely related to entities in the input texts.

Table 2 shows the performances on medical NER
and RE tasks. In NER and RE tasks, we can ob-
serve from the results: (1) Compared with PLMs
trained in open-domain corpora, KEPLMs with
medical corpora and knowledge facts achieve bet-
ter results. (2) The performance of SMedBERT is
greatly improved compared with the strongest base-
line in two NER datasets (+0.88%, +2.07%), and
(+0.68%, +0.92%) on RE tasks. We also evaluate
SMedBERT on QA, QM and NLI tasks and the
performance is shown in Table 3. We can observe
that SMedBERT improve the performance consis-
tently on these datasets (+0.90% on QA, +0.89%
on QM and +0.63% on NLI). In general, it can
be seen from Table 2 and Table 3 that injecting the
domain knowledge especially the structured seman-
tics knowledge can improve the result greatly.

4.5 Influence of Entity Hit Ratio

In this experiment, we explore the model perfor-
mance in NER and RE tasks with different entity hit
ratios, which control the proportions of knowledge-
enhanced mention-spans in the samples. The aver-
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Figure 3: Entity hit ratio results of SMedBERT and
ERNIE in NER and RE tasks.

Figure 4: The influence of different K values in results.

age number of mention-spans in samples is about
40. Figure 3 illustrates the performance of SMed-
BERT and ERNIE-med (Zhang et al., 2019). From
the result, we can observe that: (1) The perfor-
mance improves significantly at the beginning and
then keeps stable as the hit ratio increases, prov-
ing the heterogeneous knowledge is beneficial to
improve the ability of language understanding and
indicating too much knowledge facts are unhelpful
to further improve model performance due to the
knowledge noise (Liu et al., 2020b). (2) Compared
with previous approaches, our SMedBERT model
improves performance greatly and more stable.

4.6 Influence of Neighboring Entity Number

We further evaluate the model performance under
different K over the test set of DXY-NER and
DXY-RE. Figure 4 shows the the model result with
K = {5, 10, 20, 30}. In our settings, the SMed-
BERT can achieve the best performance in differ-
ent tasks around K = 10. The results of SMed-
BERT show that the model performance increasing
first and then decreasing with the increasing of
K. This phenomenon also indicates the knowledge
noise problem that injecting too much knowledge
of neighboring entities may hurt the performance.

4.7 Ablation Study

In Table 4, we choose three important model com-
ponents for our ablation study and report the test

Model D5 D6 D7 D8

SMedBERT 84.75% 82.94% 86.95% 95.89%
ERNIE-med 83.87% 80.87% 86.25% 94.91%

- Type Att. 84.25% 81.99% 86.61% 95.29%
- Hybrid Att. 83.71% 80.85% 86.46% 95.20%
- Know. Loss 84.31% 82.12% 86.50% 95.43%

Table 4: Ablation study of SMedBERT on four datasets
(testing set). Due to the space limitation, we use the ab-
breviations “D5”, “D6”, “D7”, and “D8” to represent
the cMedQANER, DXY-NER, CHIP-RE, and DXY-
RE datasets respectively.

set performance on four datasets of NER and RE
tasks that are closely related to entities. Specifi-
cally, the three model components are neighboring
entity type attention, the whole hybrid attention
module, and mention-neighbor context modeling
respectively, which includes two masked language
model loss LMNeM and LMMeM.

From the result, we can observe that: (1) With-
out any of the three mechanisms, our model per-
formance can also perform competitively with the
strong baseline ERNIE-med (Zhang et al., 2019).
(2) Note that after removing the hybrid attention
module, the performance of our model has the
greatest decline, which indicates that injecting rich
heterogeneous knowledge of neighboring entities
is effective.

5 Conclusion

In this work, we address medical text mining tasks
with the structured semantics KEPLM proposed
named SMedBERT. Accordingly, we inject entity
type semantic information of neighboring entities
into node attention mechanism via heterogeneous
feature learning process. Moreover, we treat the
neighboring entity structures as additional global
contexts to predict the masked candidate entities
based on mention-spans and vice versa. The exper-
imental results show the significant improvement
of our model on various medical NLP tasks and
the intrinsic evaluation. There are two research di-
rections that can be further explored: (1) Injecting
deeper knowledge by using “farther neighboring”
entities as contexts; (2) Further enhancing Chinese
medical long-tail entity semantic representation.
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A Data Source

A.1 Pre-training Data

A.1.1 Training Corpora
The pre-training corpora is crawled from DXY
BBS (Bulletin Board System) 9, which is a very
popular Chinese social network for doctors, med-
ical institutions, life scientists, and medical prac-
titioners. The BBS has more than 30 channels,
which contains 18 forums and 130 fine-grained
groups, covering most of the medical domains. For
our pre-training purpose, we crawl texts from chan-
nels about clinical medicine, pharmacology, public
health and consulting. For text pre-processing, we
mainly follow the methods of (Xu et al., 2020). Ad-
ditionally, (1) we remove all URLs, HTML tags,
e-mail addresses, and all tokens except characters,
digits, and punctuation (2) all documents shorter
than 256 are discard, while documents longer than
512 are cut into shorter text segments.

A.1.2 Knowledge Graph
The DXY knowledge graph is construed by ex-
tracting structured text from DXY website10,
which includes information of diseases, drugs
and hospitals edited by certified medical experts,
thus the quality of the KG is guaranteed. The
KG is mainly disease-centered, including totally
3,764,711 triples, 152.508 unique entities, and 44
types of relations. The details of Symptom-In-
Chinese from OpenKG is available 11. We finally
get 26 types of entities, 274,163 unique entities, 56
types of relations, and 4,390,726 triples after the
fusion of the two KGs.

A.2 Task Data

We choose the four large-scale datasets in Chine-
seBlue tasks (Zhang et al., 2020b) while others
are ignored due to the limitation of datasets size,
which are cMedQANER, cMedQQ, cMedQNLI
and cMedQA. WebMedQA (He et al., 2019) is
a real-world Chinese medical question answering
dataset and CHIP-RE dataset are collected from
online health consultancy websites. Note that since
both the WebMedQA and cMedQA datasets are
very large while we have many baselines to be
compared, we randomly sample the official train-
ing set, development set and test set respectively

9https://www.dxy.cn/bbs/newweb/pc/home
10https://portal.dxy.cn/
11http://openkg.cn/dataset/

symptom-in-chinese

to form their corresponding smaller version for ex-
periments. DXY-NER and DXY-RE are datasets
from real medical application scenarios provided
by a prestigious Chinese medical company. The
DXY-NER contains 22 unique entity types and 56
relation types in the DXY-RE. These two datasets
are collected from the medical forum of DXY and
books in the medical domain. Annotators are se-
lected from junior and senior students with clinical
medical background. In the process of quality con-
trol, the two datasets are annotated twice by differ-
ent groups of annotators. An expert with medical
background performs quality check manually again
when annotated results are inconsistent, whereas
perform sampling quality check when results are
consistent. Table 5 shows the datasets size of our
experiments.

B Model Settings and Training Details

Hyper-parameters. d1=768, d2=200, K=10, µ
=10, λ1=2, λ2=4.

Model Details. We align the all mention-spans
to the entity in KG by exact match for compar-
ison purpose with ENIRE-THU (Zhang et al.,
2019). The negative sampling function is defined

as Q(eim) =
t
eim
C
eim

, where Ceim is the sum of fre-

quency of all mentions with the same type of eim.
The Mention-neighbor Hybrid Attention module is
inserted after the tenth transformer encoder layer
to compare with KnowBERT (Peters et al., 2019),
while we perform the Mention-neighbor Context
Modeling based on the output of BERT encoder.
We use all the base-version PLMs in the experi-
ments. The size of SMedBERT is 474MB while
393MB of that are components of BERT, and the
added 81MB is mostly of the KG embedding. Re-
sults are presented in average with 5 random runs
with different random seeds and the same hyper-
parameters.

Training Procedure. We strictly follow the orig-
inally pre-training process and parameter setting
of other KEPLMs. We only adapt their publicly
available code from English to Chinese and use
the knowledge embedding trained on our medical
KG. To have a fair comparison, the pre-training
processing of SMedBERT is mostly set based on
ENIRE-THU (Zhang et al., 2019) without layer-
special learning rates in KnowBERT (Peters et al.,
2019). We only pre-train SMedBERT on the col-
lected medical data for 1 epoch. In pre-training

https://www.dxy.cn/bbs/newweb/pc/home
https://portal.dxy.cn/
http://openkg.cn/dataset/symptom-in-chinese
http://openkg.cn/dataset/symptom-in-chinese
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The Dataset Size in Our Experiments

Dataset Train Dev Test Task Metric

cMedQANER
(Zhang et al., 2020b)

1,673 175 215 NER F1

cMedQQ
(Zhang et al., 2020b)

16,071 1,793 1,935 QM F1

cMedQNLI
(Zhang et al., 2020b)

80,950 9,065 9,969 NLI F1

cMedQA
(Zhang et al., 2017)

186,771 46,600 46,600 QA Acc@1

WebMedQA
(He et al., 2019)

252,850 31,605 31,655 QA Acc@1

CHIP-RE ∗ 43,649 - 10,622 RE F1

DXY-NER 34,224 8,576 8,592 NER F1

DXY-RE 141,696 35,456 35,794 RE F1
∗ CHIP-RE dataset is released in CHIP 2020. (http://cips-chip.org.cn/2020/eval2)

Table 5: The statistical data and metric of eight datasets used in our SMedBERT model.

process, the learning rate is set to 5e−5 and batch
size is 512 with the max sequence length is 512.
For fine-tuning, we find the following ranges of
possible values work well, i.e., batch size is {8,16},
learning rate (AdamW) is {2e−5, 4e−5, 6e−5} and
the number of epochs is {2,3,4}. Pre-training
SMedBERT takes about 36 hours per epoch on
2 NVIDIA GeForce RTX 3090 GPUs.

C Data and Embedding of Unsupervised
Semantic Similarity

Since the KGs used in this paper is a directed
graph, we first transform the directed ”等价关系”
(equivalence relations) pairs to undirected pairs
and discard the duplicated pairs. For each posi-
tive pairs, we use head and tail as query respec-
tively and sample the negative candidates based
on the other. Specifically, we randomly select 19
negative entities with the same type and has a Jaro-
Winkle similarity (Winkler, 1990) bigger 0.6 with
the ground-truth entity. We select from all samples
in Dataset-1 with positive pairs that the neighbours
sets of head and tail entity have Jaccard Index (Jac-
card, 1912) no less than 0.75 and at least 3 common
element to construct the Dataset-2. For Dataset-3,
we count the frequency of all entity mentions in pre-
training corpora, and treat mentions with frequency
no more than 200 as low-frequency mentions.

Classic Word Representation Embedding:
We train the character-level and word-level em-
bedding using SGNS (Mikolov et al., 2013a) and
GLOVE (Pennington et al., 2014) model respec-
tively on our medical corpora with open-source
toolkits12. We average the character embedding for
all tokens in the mention to get the character-level
representation. However, since some mentions are
very rare in the corpora for word-level representa-
tion, we use the character-level representation as
their word-level representation.

BERT-like Representation Embedding: We
extract the token hidden features of the last layer
and average the representations of the input tokens
except [CLS] and [SEP] tag, to get a vector for
each entity.

Similarity Measure: We try using the inverse of
L2-distance and cosine similarity as measurement,
and we find that cosine similarity always perform
better. Hence, we report all experiment results
under the cosine similarity metric.

12SGNS: https://github.com/JuGyang/
word2vec-SGNS.
Glove: https://github.com/stanfordnlp/
GloVe

http://cips-chip.org.cn/2020/eval2
https://github.com/JuGyang/word2vec-SGNS
https://github.com/JuGyang/word2vec-SGNS
https://github.com/stanfordnlp/GloVe
https://github.com/stanfordnlp/GloVe

