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Abstract

One of the main bottlenecks in developing dis-
course dependency parsers is the lack of an-
notated training data. A potential solution is
to utilize abundant unlabeled data by using
unsupervised techniques, but there is so far
little research in unsupervised discourse de-
pendency parsing. Fortunately, unsupervised
syntactic dependency parsing has been stud-
ied for decades, which could potentially be
adapted for discourse parsing. In this paper,
we propose a simple yet effective method to
adapt unsupervised syntactic dependency pars-
ing methodology for unsupervised discourse
dependency parsing. We apply the method
to adapt two state-of-the-art unsupervised syn-
tactic dependency parsing methods. Exper-
imental results demonstrate that our adapta-
tion is effective. Moreover, we extend the
adapted methods to the semi-supervised and
supervised setting and surprisingly, we find
that they outperform previous methods spe-
cially designed for supervised discourse pars-
ing. Further analysis shows our adaptations re-
sult in superiority not only in parsing accuracy
but also in time and space efficiency.

1 Introduction

Discourse parsing, aiming to find how the text
spans in a document relate to each other, benefits
various down-stream tasks, such as machine trans-
lation evaluation (Guzmán et al., 2014; Joty et al.,
2014), summarization (Marcu, 2000; Hirao et al.,
2013), sentiment analysis (Bhatia et al., 2015; Hu-
ber and Carenini, 2020) and automated essay scor-
ing (Miltsakaki and Kukich, 2004; Burstein et al.,
2013). Researchers have made impressive progress
on discourse parsing from the constituency per-
spective, which presents discourse structures as
constituency trees (Ji and Eisenstein, 2014; Feng
and Hirst, 2014; Joty et al., 2015; Nishida and
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Nakayama, 2020). However, as demonstrated by
Morey et al. (2018), discourse structure can also be
formulated as a dependency structure. Besides that,
there might exist ambiguous parsing in terms of the
constituency perspective (Morey et al., 2018). All
of these suggest that dependency discourse pars-
ing is a different promising approach for discourse
parsing.

One of the main bottlenecks in developing dis-
course dependency parsing methods is the lack
of annotated training data since the labeling ef-
fort is labor-intensive and time-consuming, and
needs well-trained experts with linguistic knowl-
edge (Marcu et al., 1999). This problem can
be tackled by employing unsupervised and semi-
supervised methods that can utilize unlabeled data.
However, while unsupervised methodology has
been studied for decades in syntactic dependency
parsing, there is little attention paid to the counter-
part in discourse dependency parsing. Consider-
ing the similarity between syntactic and discourse
dependency parsing, it is natural to suggest such
methodology can be adapted from the former to the
latter.

In this paper, we propose a simple yet effective
adaptation method that can be readily applied to dif-
ferent unsupervised syntactic dependency parsing
approaches. Adaptation from syntactic dependency
parsing to discourse dependency parsing has two
challenges. First, unlike syntactic parsing which
has a finite vocabulary, in discourse parsing, the
number of elementary discourse units (EDUs) is
unlimited. This makes it difficult if not impossi-
ble to directly apply syntactic approaches requiring
enumeration of words or word categories to dis-
course parsing. Second, in a discourse dependency
parse tree, the dependencies within a sentence or
a paragraph often form a complete subtree. There
is no correspondence to this constraint in syntactic
parsing approaches. To address these two chal-
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lenges, we cluster the EDUs to produce clusters
resembling Part-Of-Speech (POS) tags in syntactic
parsing and we introduce the Hierarchical Eisner
algorithm that finds the optimal parse tree conform-
ing to the constraint.

We applied our adaptation method to two state-
of-the-art unsupervised syntactic dependency pars-
ing models: Neural Conditional Random Field Au-
toencoder (NCRFAE, Li and Tu (2020)) and Vari-
ational Variant of Discriminative Neural Depen-
dency Model with Valences (V-DNDMV, Han et al.
(2019)). In our experiments, the adapted models
performs better than the baseline on both RST Dis-
course Treebank (RST-DT, Carlson et al. (2001))
and SciDTB (Yang and Li, 2018) in the unsuper-
vised setting. When we extend the two models to
the semi-supervised and supervised setting, we find
they can outperform previous methods specially de-
signed for supervised discourse parsing.

Further analysis indicates that the Hierarchical
Eisner algorithm shows superiority not only in pars-
ing accuracy but also in time and space efficiency.
Its empirical time and space complexity is close to
O(n2) with n being the number of EDUs, while the
unconstrained algorithm adopted by most previous
work has a complexity of O(n3). The code and
trained models can be found at: https://github.
com/Ehaschia/DiscourseDependencyParsing.

2 Related Work

Unsupervised syntactic dependency parsing
Unsupervised syntactic dependency parsing is the
task to find syntactic dependency relations between
words in sentences without guidance from annota-
tions. The most popular approaches to this task are
Dependency Model with Valences (DMV, Klein
and Manning (2004)), a generative model learn-
ing the grammar from POS tags for dependency
predictions, and its extensions. Jiang et al. (2016)
employ neural networks to capture the similarities
between POS tags ignored by vanilla DMV and
Han et al. (2019) further amend the former with
discriminative information obtained from an addi-
tional encoding network. Besides, there are also
some discriminative approaches modeling the con-
ditional probability or score of the dependency tree
given the sentence, such as the CRF autoencoder
method proposed by Cai et al. (2017).

Discourse dependency parsing There is limited
work focusing on discourse dependency parsing.
Li et al. (2014) proposes an algorithm to convert

constituency RST tree to dependency structure. In
their algorithm, each non-terminal is assigned with
a head EDU, which is the head EDU of its left-
most nucleus child. Then, a dependency relation is
created for each non-terminal from its head to its
dependent, in a procedure similar to those designed
for syntactic parsing. Hirao et al. (2013) proposes
another method that differs from the previous one
in the processing of multinuclear relations. Yoshida
et al. (2014) proposes a dependency parser built
around a Maximum Spanning Tree decoder and
trains on dependency trees converted from RST-
DT. Their parser achieved better performance on
the summarization task than a similar constituency-
based parser. Morey et al. (2018) reviews the RST
discourse parsing from the dependency perspec-
tive. They adapt the the best discourse constituency
parsing models until 2018 to the dependency task.
Yang and Li (2018) constructs a discourse depen-
dency treebank SciDTB for scientific abstracts. To
the best of our knowledge, we are the first to inves-
tigate unsupervised and semi-supervised discourse
dependency parsing.

Unsupervised Constituent Discourse Parsing
Kobayashi et al. (2019) propose two unsupervised
methods that build unlabeled constituent discourse
trees by using the CKY dynamic programming al-
gorithm. Their methods build the optimal tree in
terms of a similarity (dissimilarity) score function
that is defined for merging (splitting) text spans
into larger (smaller) ones. Nishida et al. (2020) use
Viterbi EM with a margin-based criterion to train a
span-based neural unsupervised constituency dis-
course parser. The performance of these unsuper-
vised methods is close to that of previous super-
vised parsers.

3 Adaptation

We propose an adaptation method that can be read-
ily integrated with different unsupervised syntactic
dependency parsing approaches. First, we clus-
ter the element discourse units (EDU) to produce
clusters resembling POS tags or words used in syn-
tactic parsing. This is necessary because many
unsupervised syntactic parsers require enumeration
of words or word categories, typically in model-
ing multinomial distributions as we shall see in
Section 4. While EDUs, which are sequences
of words, cannot be enumerated, its clusters can.
During parsing, we apply the Hierarchical Eisner
algorithm used for parse tree, a novel modified ver-

https://github.com/Ehaschia/DiscourseDependencyParsing
https://github.com/Ehaschia/DiscourseDependencyParsing
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Figure 1: [THE FINANCIAL ACCOUNT-
ING STANDARDS BOARD’S coming rule on
disclosure]e1 [involving financial instruments]e2 [will
be effective for financial statements with fiscal
years]e3 [ending after June 15, 1990.]e4 [The date was
misstated in Friday’s edition .]e5 [(See: ”FASB Plans
Rule on Financial Risk of Instruments”]e6 [–WSJ Oct.
27, 1989)]e7

sion of the classic Eisner algorithm, used for parse
tree to produce discourse dependency parse trees
that conform to the constraint that every sentence or
paragraph should correspond to a complete subtree.

3.1 Clustering

Given an input document represented as an EDU
sequence x1, x2, . . . , xn, we can use word embed-
ding or context sensitive word embedding to get
the vector representation xi of the i-th EDU xi.
Specifically, we use BERT (Devlin et al., 2019)
to encode each word. Let wi be the encoding of
the i-th word in the document. For an EDU xi
spanning from word position b to e, we follow
Toshniwal et al. (2020) and concatenate the en-
coding of the endpoints to form its representation:
xi = [wb; we]. With the representations of all
EDUs from the whole training corpus obtained, we
use K-Means (Lloyd, 1982) to cluster them. Let ci
be the cluster label of xi.

3.2 Hierarchical Eisner Algorithm

The Eisner algorithm (Eisner, 1996) is a dynamic
programming algorithm widely used to find the
optimal syntactic dependency parse tree. The basic
idea of it is to parse the left and right dependents
of an token independently and combine them at a
later stage. Algorithm 1 shows the pseudo-code
of the Eisner algorithm. Here Ci→j represents a
complete span, which consists of a head token i
and all of its descendants on one side, and Ii→j

represent an incomplete span, which consists of a
head i and its partial descendants on one side and
can be extended by adding more descendants to
that side.

Discourse dependency parse trees, however,

Algorithm 1 Eisner Algorithm
1: Inputs:

score matrix s ∈ Rn×n

2: Initialize:
C = {}, I = {},
Ci→i = 0, i = 1, . . . , n

3: for l = 1, ..., n do . span length
4: for i = 1, ...n− l do . span start index
5: j = i+ l . span end index
6: Ii→j = max

i≤k≤j
(sij + Ci→k + Ck+1←j)

7: Ii←j = max
i≤k≤j

(sji + Ci→k + Ck+1←j)

8: Ci→j = max
i≤k≤j

(Ii→k + Ck→j)

9: Ci←j = max
i≤k≤j

(Ck→i + Ij→k)

10: end for
11: end for

Ratio Train Dev. Test
RST-DT 2.6 - 3.0
SciDTB 0.12 0.14 0.14

Table 1: The percentage of dependencies violating the
constraint that each sentence or paragraph corresponds
to a subtree.

demonstrate structural characteristics not taken into
account by the Eisner algorithm. Specifically, a
document has a hierarchical structure which divides
the document into paragraphs, each paragraph into
sentences, and finally each sentence into EDUs,
and the discourse parse tree should be consistent
with this hierarchical structure. Equivalently, in a
discourse parse tree, every sentence or paragraph
should be exactly covered by a complete subtree,
like Figure 1. We empirically find that this con-
straint is satisfied by most of the gold discourse
parses in the RST Discourse Treebank (RST-DT,
Carlson et al. (2001)) and SciDTB (Yang and Li,
2018) datasets (Table 1).

We therefore propose the Hierarchical Eisner
algorithm, a novel modification to the Eisner algo-
rithm that incorporates the constraint. Our new al-
gorithm has almost the same state transition formu-
las as the Eisner algorithm except for a few changes
brought by the hierarchical constraint. Concretely,
our algorithm finds the optimal parse tree in a
bottom-up way and divides the process into 3 steps:
intra-sentence parsing, intra-paragraph parsing, and
intra-document parsing. In the intra-sentence pars-
ing step, we run the original Eisner algorithm, ex-
cept that we need not to form a tree. Then in the
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Algorithm 2 Modification to Algorithm 1

6: Ii→j = max
i≤k≤j

(sij + Ci→k + Ck+1←j)

7: Ii←j = max
i≤k≤j

(sji + Ci→k + Ck+1←j)

8: Ci→j = max
i≤k≤j
j∈E

(Ii→k + Ck→j) . Here

E is a set of the index of the end boundary of
sentences.

9: Ci←j = max
i≤k≤j
i∈B

(Ci←k + Ik←j) . Here B

is a set of the index of the begin boundary of
sentences.

intra-paragraph step, we combine all intra-sentence
spans in the paragraph. Under the constraint that
there can only be one EDU in every sentence whose
head is not belong to this sentence. To achieve that,
we modify the state transition equations (step 6-9
in Algorithm 1) to prune invalid arcs. Figure 2
shows some cases during merge across sentence
spans. Case 1 are valid because the constraint is
satisfied. Case 2 is invalid because the head of
EDU e6 can not be e4 or e5 hence the constraint
is violated. From these cases, we can find that
for incomplete span Ii→k and complete span Ck→j

across sentences, we only merge them when j is
at the end boundary of a sentence as Algorithm 2
shows. After the intra-paragraph step, we move to
the intra-document step to combine paragraph-level
spans following the same procedure as in the intra-
paragraph step and form the final document-level
tree.

Our method has lower time complexity than the
original Eisner algorithm. Suppose a document has
kp paragraphs, each paragraph has ks sentences
and each sentence has ke EDUs. The time complex-
ity of the original Eisner algorithm is O(k3

pk
3
sk

3
e)

while the time complexity of our Hierarchical Eis-
ner algorithm is O(k2

pk
3
sk

3
e).

4 Model

We adapt two current state-of-the-art models in
unsupervised syntactic dependency parsing for dis-
course parsing. One is Neural CRF Autoencoder
(NCRFAE, Li and Tu (2020); Cai et al. (2017)),
a discriminative model, and the other is : Varia-
tional Variant of DNDMV (V-DNDMV, Han et al.
(2019)), a generative model.

e1 e4e2 e3 e5 e6

e1 e4e2 e3 e5 e6

Figure 2: Cases of span merging in discourse parsing.
e1-e6 are EDUs. red e1-e3 make up a sentence and e4-
e6 make up another sentence. Complete spans are de-
picted as triangles and incomplete spans as trapezoids.

4.1 Neural CRF Autoencoder

A CRF autoencoder (Ammar et al., 2014) consists
of an encoder and a decoder. The encoder predicts
a hidden structure, such as a discourse dependency
tree in our task, from the input and the decoder
tries to reconstruct the input from the hidden struc-
ture. In a neuralized CRF autoencoder, we employ
neural networks as the encoder and/or decoder.

We use the widely used biaffine dependency
parser (Dozat and Manning, 2017) as the encoder to
compute the hidden structure distribution PΦ(y|x),
parameterized with Φ. Here y represents the hid-
den structure and x is input document. We feed
the input document x into a Bi-LSTM network to
produce the contextual representation of each EDU
segmentation ri, and then feed ri to two MLP net-
works to produce two continuous vectors v(head)

i

and v(dep)
i , representing i-th EDU segmentation

being used as dependency head and dependent re-
spectively.

A biaffine function is used to compute the score
matrix s. Each matrix element sij , the score for a
dependency arc pointing from xi to xj , is computed
as follows:

sij = v
(head)>
i Wv

(dep)
i + b (1)

where W is the parameter matrix and b is the
bias.

Following Dozat and Manning (2017) we formu-
late PΦ(y|x) as a head selection problem process
that selects the dependency head of each EDU in-
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dependently:

PΦ(y|x) =
∏
i

P (hi|x) (2)

where hi is the index of the head of EDU xi and
P (hi|x) is computed by softmax function with
score sij :

P (hi = j|x) =
esji∑n
k=1 e

ski
(3)

The decoder parameterized with Λ computes
PΛ(x̂|y), the probability of the reconstructed docu-
ment x̂ given the parse tree y. Following Cai et al.
(2017) and Li and Tu (2020), we independently
predict each EDU x̂i from its head specified by y.
Since EDUs cannot be enumerated, we reformu-
late the process as predicting the EDU cluster ĉi
given its dependency head cluster chi

. Our decoder
simply specifies a categorical distribution P (ĉi|chi

)
for each possible EDU cluster and compute the re-
construction probability as follows:

PΛ(x̂|y) =
∏
i

P (ĉi|chi
) (4)

We achieve the final reconstruction distribution
by cascading the encoder and decoder distribution:

PΦ,Λ(x̂,y|x) = PΛ(x̂|y)PΦ(y|x) (5)

The best parsing is obtained by maximizing
PΦ,Λ(x̂,y|x):

y∗ = arg max
y

PΦ,Λ(x̂,y|x) (6)

We consider the general case of training the
CRF autoencoder with dataset D containing both
labelled data L and unlabelled data U. Purely su-
pervised or unsupervised learning can be seen as
special cases of this setting. The loss functionL(D)
consists of a labelled loss Ll(L) and an unlabelled
loss Lu(U):

L(D) = αLl(L) + (1− α)Lu(U) (7)

where α is the hyperparameter weighting the im-
portance of the two parts.

For the labelled data, where the gold parse trees
y∗ are known, labelled loss is:

Ll(L) = −
∑
x∈L

logPΦ,Λ(x̂,y∗|x) (8)

For the unlabelled data where the gold parses are
unknown, the unlabelled loss is:

Lu(U) = −
∑
x∈U

max
y∈Y(x)

logPΦ,Λ(x̂,y|x) (9)

We optimize the encoder parameter Φ and de-
coder parameter Λ together with gradient descent
methods.

4.2 Variational Variant of DNDMV
V-DNDMV is a variational autoencoder model
composed of both an encoder and a decoder. The
encoder is a Bi-LSTM that takes the input docu-
ment and produces parameters of a Gaussian distri-
bution from which a continuous vector s summa-
rizing the document sampled.

The decoder models the joint probability of the
document and its discourse dependency tree condi-
tion on s with a generative grammar. The grammar
is defined on a finite set of discrete symbols, so
in our adapted model, input documents are rep-
resented by EDU clusters instead of EDUs that
are infinite in number. There are three types of
grammar rules, each associated with a set of proba-
bilistic distributions: ROOT,CHILD and DECISION.
To generate a document, we firstly sample from the
ROOT distribution PROOT(chd|s) to determine the
cluster label of the head EDU of the document and
then recursively decide whether to generate a new
child EDU cluster and what child EDU cluster to
generate by sampling from the DECISION distribu-
tion PDECISION(dec|h, dir, val, s) and CHILD distri-
bution PCHILD(chd|h, dir, val, s). dir denotes the
generation direction (i.e, left or right), val is a bi-
nary variable denoting whether the current EDU
already has a child in the direction dir or not. dec
is a binary variable indicating whether to continue
generating a child EDU, and h and chd denote
the parent and child EDU cluster respectively. We
use neural networks to calculate these distributions.
The input of the networks is the continuous vector
or matrix representations of grammar rule compo-
nents such as h, chd, val and dir as well as docu-
ment vector s produced by the encoder.

The training objective for learning the model is
the probability of the training data. The interme-
diate continuous vector s and the hidden variable
representing the dependency tree are both marginal-
ized. Since the marginalized probability cannot be
calculated exactly, V-DNDMV maximizes the Ev-
idence Lower Bound (ELBO), a lower bound of
the marginalized probability. ELBO consists of
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the conditional likelihood of the training data and
an regularisation term given by the KL divergence
between PΘ(s|x) and P (s) (which is a standard
Gaussian). The conditional likelihood is shown as
follows:

L(Θ) =
1

N

N∑
i=1

∑
y(i)∈Y(x(i))

logPΘ(x(i),y(i)|s(i))

(10)

Here N is the number of training samples, y is
the dependency tree and Y(x) is the set of all pos-
sible dependency tree in x. Θ is the parameters of
the neural networks. We can rewrite the conditional
probability as following:

PΘ(x,y|s) =
∏

r∈(x,y)

P (r|s) (11)

where r is the grammar rule involved in generating
x along with y.

We optimize ELBO using the expectation-
maximization (EM) algorithm, alternating the E-
step and the M-step. In the E-step, we fix rule pa-
rameters and use our Hierarchical Eisner algorithm
to compute the expectation of possible dependency
tree y, which gives the expected count of rules used
in the training samples. In the M-step, expected
count of rules computed in the E-step is used to
train the prediction neural networks with gradient
descent methods. The regularisation term is also
optimized using gradient descent methods in the
M-step. After training, the parsing result y∗of a
new test case x is obtained as:

y∗ = arg max
y∈Y(x)

PΘ(x,y|s) (12)

5 Experiment

5.1 Setting
Data We evaluate the performance of our models
on the RST Discourse Treebank* (RST-DT, Carlson
et al. (2001)) and SciDTB† (Yang and Li, 2018).
RST-DT consists of Wall Street Journal articles
manually annotated with RST structures (Mann and
Thompson, 1988). We use the method proposed
by Li et al. (2014) to convert the RST structure
samples into dependency structures. SciDTB con-
sists of scientific abstracts from ACL Anthology
annotated with dependency structures.

*https://catalog.ldc.upenn.edu/
LDC2002T07

†https://github.com/PKU-TANGENT/SciDTB

Hyper-parameter For our NCRFAE model, we
adopt the hyper-parameters of Li and Tu (2020).
For our V-NDNMV model we adopt the hyper-
parameters of Han et al. (2019). We use Adam
(Kingma and Ba, 2015) to optimize our objective
functions. Experimental details are provided in
Appendix A.

5.2 Main Result

We compared our methods with the following base-
lines:

Right Branching (RB) is a rule based method.
Given a sequence of elements (i.e., EDUs or sub-
trees), RB generates a left to right chain struc-
ture, like x1 → x2, x2 → x3 · · · . In order to
develop a strong baseline, we include the hierar-
chical constraint introduced in Section 3.2 in this
procedure. That is, we first build sentence-level
discourse trees using the right branching method
based on sentence segmentation. Then we build
paragraph-level trees using the right branching
method to form a left to right chain of sentence-
level subtrees. Finally we obtain document-level
trees in the same way. Since this method has three
stages, we call it “RB RB RB”. This simple pro-
cedure forms a strong baseline in terms of perfor-
mance. As Nishida and Nakayama (2020) reports,
the unlabeled F1 score of constituent structures of
RB RB RB reaches 79.9 on RST-DT. Correspond-
ingly, the performance of the supervised method
proposed by (Joty et al., 2015) is 82.5.

NISHIDA20 is a neural model for unsuper-
vised discourse constituency parsing proposed by
Nishida and Nakayama (2020). This model runs a
CKY parser that uses a Bi-LSTM model to learn
representations of text spans, complemented with
lexical, syntactic and structural features. We con-
vert its result to dependency structure using the
same conversation method of Li et al. (2014). To
make a fair comparison, we use RB RB RB to ini-
tialize their model instead of RB∗ RB RB as in
their paper, where RB∗ means using predicted syn-
tactic structures for initialization at the sentence
level.

Compared with baselines , our two adapted mod-
els NCRFAE and V-DNDMV both achieve better
performance on the two datasets. Results also show
that the generative model V-DNDMV is better than
the discriminatve model NCRFAE in the unsuper-
vised setting.

We also investigate the semi-supervised setting

https://catalog.ldc.upenn.edu/LDC2002T07
https://catalog.ldc.upenn.edu/LDC2002T07
https://github.com/PKU-TANGENT/SciDTB
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SciDTB RST-DT
RB RB RB 52.5 43.9
NISHIDA20 - 41.9
Adapted V-DNDMV 54.4 44.2
Adapted NCRFAE 53.3 44.0

Table 2: Unsupervised discourse dependency parsing
results on RST-DT and SciDTB. The evaluation metric
is the Unlabeled Attachment Score (UAS).

Figure 3: Semi-supervised discourse dependency
parsing results on SciDTB. The V-DNDMV-S and
NCRFAE-S mean these two model are trained on la-
beled data only. The x-axis represents the ratio of la-
beled/unlabeled data used for training. The y-axis rep-
resents the UAS score.

on the SciDTB dataset of our adapted models with
varied ratios of labeled/unlabeled data. Experimen-
tal results are shown in Figure 3, which indicate
that NCRFAE outperforms V-DNDMV for all the
ratios. Even when trained with only a few labeled
data (0.01 of labeled data in SciDTB, only about 7
samples), the discriminative model already outper-
forms the generative model significantly. Besides
that, we also find our semi-supervised methods
reach higher UAS scores than their supervised ver-
sions (trained with labeled data only) for all the
labeled/unlabeled data ratios.

Inspired by the promising results in the semi-
supervised setting, we also investigate the perfor-
mance of our adapted NCRFAE and V-DNDMV in
the fully supervised setting. The results are shown
in Table 3. We evaluate our models on the RST-
DT and SciDTB datasets and compare them with
eight models. NIVRE04 (Nivre et al., 2004) and
WANG17 (Wang et al., 2017) are two transition-
based models for dependency parsing. Yang and
Li (2018) adapts them to discourse dependency
parsing. FENG14 (Feng and Hirst, 2014), JI14

‡We correct their evaluation metrics, so the result is differ-
ent from the original paper (Li et al., 2014).

RST-DT SciDTB
UAS LAS UAS LAS

NIVRE04 - - 70.2 53.5
LI14 48.7‡ - 57.6 42.5
FENG14 65.6 48.5 - -
JI14 66.9 51.7 - -
JOTY15 64.4 48.0 - -
BRAUD17 66.1 49.9 - -
WANG17 - - 70.2 54.5
MOREY18 66.4 48.7 - -
Adapted V-DNDMV 63.5 - 73.4 -
Adapted NCRFAE 70.2 51.8 79.1 65.0

Table 3: Supervised discourse dependency parsing re-
sults on RST-DT and SciDTB. The UAS is Unlabeled
Attachment Score and LAS is Labeled Attachment
Score.

(Ji and Eisenstein, 2014), JOTY15 (Joty et al.,
2015) and BRAUD17 (Braud et al., 2017) are
methods for discourse constituent parsing and they
are adapted for discourse dependency parsing by
Morey et al. (2018). LI14 (Li et al., 2014) and
MOREY18 (Morey et al., 2018) are graph-based
and transition-based methods specially designed
for discourse dependency parsing, respectively.
These models are statistical or simple neural mod-
els, and they do not use pretrained language models
(like BERT, ELMo (Peters et al., 2018)) to extract
features.

As Table 3 shows, the performance of our NCR-
FAE is significantly better than the baseline models.
Especially, the UAS and LAS of NCRFAE are 8.9
points and 11.5 points higher than the best baseline
models on the SciDTB dataset, respectively. Be-
sides that, we find that V-DNDMV also beats base-
lines on the SciDTB dataset and reaches compara-
ble results on RST-DT. We also test our approaches
without using BERT and find that they still outper-
form the baselines. For example, the performance
of NCRFAE with GloVe (Pennington et al., 2014)
on Scidtb averaged over 5 runs is: UAS: 73.9 LAS:
55.5. These results again give evidence for our
success in adapting unsupervised syntactic depen-
dency parsing methods for discourse dependency
parsing as the adapted methods not only work in the
unsupervised setting, but also reach state-of-the-art
in the supervised setting.

As for the performance gap between V-DNDMV
and NCRFAE, we believe that the main reason is
their different abilities to extract contextual features
from the input text for the parsing task. As a gen-
erative model, the decoder of V-DNDMV follows
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Figure 4: Analysis of time and space cost in running
our hierarchical Eisner and traditional Eisner algorithm
on RST-DT dataset against document length.Left: time
cost. Right: space cost.

a strong assumption that each token in the input
text is generated independently, which prevents
the contextual features from being directly used.
Instead, contextual features are mixed with other
information in the document representation which
acts as the condition of the generation process in
the model. NCRFAE, on the other hand, employs
a discriminative parser to leverage contextual fea-
tures for dependency structure prediction directly.
Thus, as long as there is sufficient labeled data,
NCRFAE can achieve much better results than V-
DNDMV. We have observed a similar phenomenon
in syntactic parsing.

Significance test We investigate the significance
of the performance improvement in every setting.
For unsupervised parsing, we perform a t-test be-
tween the strongest baseline RB RB RB and V-
DNDMV. The t-value and p-value calculated on
10 runs are 2.86 and 0.00104, which shows the
significance of the improvement. For the semi-
supervised results, we also perform significance
tests between the semi-supervised and supervised-
only results. The results show that our semi-
supervised method significantly outperforms the
supervised-only method. For example, on the
0.5:0.5 setting, the t-value is 2.13 and the p-value
is 0.04767. For the fully supervised setting, due to
a lack of code from previous work, it is currently
difficult for us to carry out a significance analysis.
Instead, we show that our models are very stable
and consistently outperform the baselines by run-
ning our models for 10-times. For example, our
NCRFAE UAS score is 78.95±0.29 on the Scidtb
dataset.

6 Analysis

6.1 Eisner vs. Hierarchical Eisner

In the left part of Figure 4 we show the curves of the
time cost of the hierarchical and traditional Eisner
algorithms against the RST-DT document length.

Clusters 10 30 50 100
UAS 52.7 53.9 54.6 53.5

Table 4: UAS with different cluster numbers on the de-
velopment set of Scidtb.

Mutual Information
Random 0.007§

K-means 0.106
NICE 0.096

Table 5: Mutual information

The experiments are run on servers equipped with
NVIDIA Titan V GPUs. We can observe clearly
that the curve of the Hierarchical Eisner algorithm
always stays far below that of the Eisner algorithm,
which verifies our theoretical analysis on the time
complexity of the hierarchical Eisner algorithm in
section 3.2.

The right part of Figure 4 demonstrates a similar
phenomenon where we illustrate the memory usage
of the hierarchical and traditional Eisner algorithms
against the training document length in the same
computing environment. From the curves of these
two figures we can conclude that our Hierarchical
Eisner algorithm has advantage over the traditional
one in both time and space efficiencies.

Besides the superiority in computational effi-
ciency, our experiments also indicate that our Hi-
erarchical Eisner algorithm can achieve better per-
formance than the traditional one. With other con-
ditions fixed, the UAS produced by Hierarchical
Eisner is 79.1 in the task of supervised discourse
parsing on the SciDTB dataset while the corre-
sponding result of the Eisner algorithm is 78.6.

6.2 Number of clusters
To explore the suitable number of clusters of EDUs,
we evaluate our NCRFAE model with different
cluster numbers from 10 to 100. As table 4 shows,
there is an upward trend while the number of clus-
ters increases from 10 to 50. After reaching the
peak, the UAS decreases as the number of cluster
continues to increase. We thus choose 50 for our
experiments.

6.3 Label analysis
In order to inspect if there exist any coherent re-
lations between the clusters of EDUs obtained for

§This is the actual evaluation result and the theoretical
result should be 0.0
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Figure 5: Heat-maps of probabilities that relations use different label as dependency head (left) or child (right).

adaptation in discourse parsing and the labels of
dependency arcs, similar to that between POS tags
and syntactic dependency labels, we compute the
co-appearance distribution of cluster labels and de-
pendency arc labels. In Figure 5, we show the
probabilities of the clusters being used as heads
phead(ck|rm) and children pchild(ck|rm) given dif-
ferent dependency types respectively. Here ck and
rm represent different type of clusters and relations.
We cluster EDUs to 10 clusters and only show a
subset of them. Detailed heat-map can be found in
Appendix B.

By observing the two heat-maps, we notice ob-
vious trends that for each dependency arc label,
the co-appearance probabilities are concentrated
at certain cluster labels. For example, when the
cluster is used as dependency heads, more than
60% of the co-appearance probability for arc label
COMPARISON and SAME-UNIT is concentrated
at cluster type 9 and 6 respectively; when the clus-
ter is used as dependency children, cluster type
1 receives more than 40% of the co-appearance
probability for certain arc labels. The property dis-
played by the adaptation clusters is very similar
to that of POS tags, which justifies our clustering
strategy adopted for discourse parsing.

To further quantify the coherence between the
adaptation clusters and dependency arcs, we eval-
uate the mutual information between two discrete
random variables in the training set of SciDTB: one
is the tuple consists of two cluster labels for a pair
of EDUs in the training sample, representing de-
pendency head and child respectively; and the other
is the binary random variable indicating whether
there exists a dependency arc between a EDU pair

in the training data. Besides our adaptation clusters,
we also evaluate this metric for two other clustering
strategies, random clustering and NICE proposed
by He et al. (2018), for comparison and show the
results in Table 5. We see that measured by mutual
information, clusters produced by our clustering
strategy is much more coherent with dependencies
than the other strategies.

7 Conclusion

In this paper, we propose a method to adapt unsu-
pervised syntactic parsing methods for discourse
dependency parsing. First, we cluster the element
discourse units (EDU) to produce clusters resem-
bling POS tags. Second, we modify the Eisner
algorithm used for finding the optimal parse tree
with hierarchical constraint. We apply the adap-
tations to two unsupervised syntactic dependency
parsing methods. Experimental results show that
our method successfully adapts the two models for
discourse dependency parsing, which demonstrate
advantages in both parsing accuracy and running
efficiency.
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A Experimental Details for Our
NCRFAE and V-DNDMV

We implement our NCRFAE and V-DNDMV mod-
els by Pytorch 1.6 and Python 3.8.3. We run our
experiments on a server with Intel(R) Xeon(R)
Gold 5115 CPU and NVIDIA Titan V GPU. Based
on these software and hardware environments,
our NCRFAE and V-DNDMV models trained on
the SciDTB dataset use about 30 and 45 min-
utes, respectively. Moreover, our NCRFAE and
V-DNDMV models trained on the RST-DT dataset
use about 4 and 18 hours, respectively. The number
of parameters in NCRFAE is about 8.26 million,
and the number of parameters in V-DNDMV is
0.47 million. The hyperparameter configurations
of the result report in our paper are shown in table 6.
We choose the hyperparameter configurations by
manual tuning and the UAS score on the develop-
ment dataset is used to select among them. Due to
the lack of development set of RST-DT, we prepare
a development set with 20 instances randomly sam-
pled from the training set. The size of each dataset
is shown in Table 7.

NCRFAE V-DNDMV
Cluster
Cluster Number 50 50
Hidden Layer
EDU Embedding 1536 1536
Cluster Embedding - 20
Valence Embedding - 20
FNN(embedding) 1*200 1*200
Bi-LSTM 1*400 1*32
LSTM dropout 0.33 0.0
FNN(head) 1*500 -
FNN(dep) 1*200 -
FNN dropout 0.33 0.3
Optimizer & Loss
Learning Rate 2e-3 1e-3
Adam beta 1 0.9 0.9
Adam beta 2 0.9 0.999
l2reg 1e-4 0.0

Table 6: Hyper-parameters for our NCRFAE and V-
DNDMV.

Usage Doc. EDU
Relation

Type

RST-DT
Train 347 19443

19
Test 38 2346

SciDTB
Train 742 10467

17Dev. 152 2018
Test 151 2013

Table 7: Size of RST-DT and SciDTB. Here the relation
type is coarse-grained relation.

B Full Heat-maps
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(a) Head

(b) Child

Figure 8: Heat-maps of probabilities that relations use different label as dependency head (a) or child (b).


