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Abstract

Conditional Variational AutoEncoder (CVAE)
effectively increases the diversity and informa-
tiveness of responses in open-ended dialogue
generation tasks through enriching the context
vector with sampled latent variables. However,
due to the inherent one-to-many and many-to-
one phenomena in human dialogues, the sam-
pled latent variables may not correctly reflect
the contexts’ semantics, leading to irrelevant
and incoherent generated responses. To re-
solve this problem, we propose Self-separated
Conditional Variational AutoEncoder (abbre-
viated as SepaCVAE) that introduces group
information to regularize the latent variables,
which enhances CVAE by improving the re-
sponses’ relevance and coherence while main-
taining their diversity and informativeness.
SepaCVAE actively divides the input data
into groups, and then widens the absolute
difference between data pairs from distinct
groups, while narrowing the relative distance
between data pairs in the same group. Em-
pirical results from automatic evaluation and
detailed analysis demonstrate that SepaC-
VAE can significantly boost responses in well-
established open-domain dialogue datasets.

1 Introduction

When conversing with a human user, an open-
domain dialogue system is expected to generate
human-like responses – responses that not only are
diverse and informative, but also contain relevant
and cohesive information that correctly addresses
the context dialogue. Through using sampled latent
variables, Conditional Variational AutoEncoders
(CVAE) are powerful tools to ensure diversity and
informativeness of the generated responses (Bow-
man et al., 2016; Serban et al., 2017; Shen et al.,
2017; Zhao et al., 2017; Chen et al., 2018). Yet,
it is challenging for a CVAE-based dialogue gen-
eration model to keep the responses relevant and
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Figure 1: In this example, the latent variables
(z1, z2, z3) sampled by a general CVAE model don’t
inherit the semantic relationship of the contexts
(c1, c2, c3). Although c1 and c2 have a high similarity,
the similarity between z1 and z2 is low. c2 and c3 have
a low similarity, but z2 and z3 have a high similarity.

coherent. The challenge arises as human dialogues
inherently exhibit the one-to-many and many-to-
one phenomena (Csaky et al., 2019), meaning that
the same context could lead to very different re-
sponses, and different contexts could lead to the
same response, respectively. As a result, the la-
tent variables sampled by CVAE often fail to cap-
ture the correct contextual semantics, as shown in
Fig. 1, leaving open the possibility that similar con-
texts producing drastically different latent variables.
This has two particular drawbacks:

First, the discrepancy between latent variables
could lead to irrelevant and incoherent generated
responses. Different latent variables in a continu-
ous latent space correspond to different responses
(Bowman et al., 2016). As dissimilar latent vari-
ables may be sampled for similar contexts, the gen-
erated responses for contexts in the test set could
be drastically different from responses to similar
contexts in the training set. For instance, given a
context “Everything about this movie is awesome!”,
a standard CVAE may generate response as dis-
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similar as“Smartphones of the best games!.” and
“Caves would never say yes, but I’d love to know.”
(Gao et al., 2019). Thus this approach sacrifices
too much relevance and coherence for diversity and
informativeness.

Second, the disparity between contexts and la-
tent variables hurts model generalizability. Model
generalizability is often evaluated using a separate
dataset taken from a similar distribution as the train-
ing set (e.g., a validation or a noisy version of the
training set). High generalizability is indicated if
the model can transfer favourable abilities from the
training set to this second dataset, in the sense that
it produces consistent responses between similar
contexts across the two datasets. This suggests that
the model has acquired certain semantic relations
between sentences from the training set. However,
if the sampled latent variable departs significantly
from the contextual semantics, the model may per-
form quite differently on the second dataset from
the training set.

To address these drawbacks, we propose a novel
model, namely Self-Separated Conditional Vari-
ational Autoencoder (SepaCVAE). SepaCVAE
proactively partitions the input data into a number
of groups, and then widens the absolute differences
between data pairs across different groups while
narrowing the relative distance between data pairs
within the same group. In this way, SepaCVAE
aims to put the contexts that sample similar latent
variables into the same groups, thereby regular-
izing the latent variables. The design of SepaC-
VAEinvolves three components that are built on top
of standard CVAE. First, inspired from image aug-
mentation, we propose a dialogue augmentation
method to partition data without any prior knowl-
edge. For this, we construct N orthogonal vectors
to classify data into N groups, which retain the
original semantic relationships of data within a
group. We directly enlarge the semantic distance of
the data across different groups. Then, we propose
a gradient blocking algorithm to select the most
suitable group for each data according to gains ob-
tained from different groups. Here, the gains are
evaluated using reconstruction loss. Finally, in-
spired from the contrastive learning paradigm (Cai
et al., 2020; Chen et al., 2020a,b; Mitrovic et al.,
2020), we propose relationship enhancement to
increase similarity between the representations of
data within the same group, and differentiate the
representations of data between different groups.

Contributions: Our first contribution is a theoret-
ical analysis on why sampled latent variables fail
to reflect the contexts’ semantics. The next contri-
bution lies in the proposal of SepaCVAE to over-
come issues of irrelevant and incoherent responses
caused by standard CVAE. Our third contribution
involves a series of experiments. The results show
that our SepaCVAE can generate more relevant
and coherent responses compared to existing meth-
ods.

2 Related work

2.1 Dialogue models

Open-domain dialogue generation is a challenging
task in natural language processing. Early dialogue
models (Shang et al., 2015; Sordoni et al., 2015b)
often tend to generate dull responses. To improve
the quality of these responses, two pathways have
been adopted: one is to introduce external seman-
tic information, such as dialogue history (Sordoni
et al., 2015a; Serban et al., 2016), topic (Xing et al.,
2017), sentiment (Huber et al., 2018), knowledge
(Ghazvininejad et al., 2018), persona-style (Li et al.,
2016c), and other information (Li et al., 2016a;
Wang et al., 2017; Baheti et al., 2018; Feng et al.,
2020b). The other is through more complex mod-
els or frameworks, such as attention mechanisms
(Bahdanau et al., 2015; Luong et al., 2015), rein-
forcement learning (RL) (Li et al., 2016d; Zhang
et al., 2018a; Liu et al., 2020), generative adver-
sarial network (GAN) (Yu et al., 2017; Li et al.,
2017a; Zhang et al., 2018b; Feng et al., 2020a),
and variational reasoning (Bowman et al., 2016;
Serban et al., 2017; Shen et al., 2017; Zhao et al.,
2017; Chen et al., 2018).

CVAE models are conversational models that
are based on variational reasoning. Many existing
CVAE models have achieved state-of-the-art per-
formance by generating diverse and informative
responses. Moreover, as opposed to methods that
introduce external semantic information, CVAE
models use latent variables to represent such in-
formation. Hence they can be applied when exter-
nal information is not available. Comparing with
the models based on RL or GAN, CVAE models
are simpler and can be easily trained. In addition,
CVAE models can be enhanced by methods that
use RL or GAN as generators to further improve
their performances.

However, empirical evidences (Gao et al., 2019;
Gu et al., 2019) have indicated that while the use of
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latent variables may make the generated responses
more diverse and informative, it could also reduce
relevance and coherence. To alleviate this apparent
issue, CVAE models have been used in combina-
tion with external information such as persona in-
formation, dialogue history and dialogue act (Shen
et al., 2017; Serban et al., 2017; Zhao et al., 2017).
However, simply borrowing external information
is not sufficient to resolve the one-to-many issue,
especially when the amount of data is very large.
No existing model resolves the core issue of the
problem, that is, the latent variable inherits little
semantic information from the context sentence,
a consequence of the inherent one-to-many and
many-to-one phenomena of human conversations.
To address this issue, we propose the SepaCVAE
model which trains latent variables that inherit con-
textual semantics.

2.2 Self-supervised method used in dialogue
generation task

Recently, self-supervised methods such as con-
trastive learning – popularized in computer vision
(Chen et al., 2020a,b) – are drawing increasing at-
tention in NLP (Wu et al., 2019; Clark et al., 2020;
Cai et al., 2020). Generally speaking, the major
issue with applying contrastive learning is how pos-
itive and negative examples are constructed. Many
existing work explore ways to design reasonable
pairs of positive and negative examples to accu-
rately capture the semantic relations of these pairs,
so that the obtained representation can be better-
used on downstream tasks.

3 Problem formulation

The problem with the standard CVAE model lies in
that the sampled latent variables may not accurately
reflect the contextual semantics due to the apparent
one-to-many (one context may correspond to many
responses) and many-to-one (many contexts may
also correspond to one response) phenomena. This
leads to irrelevant and incoherent responses, and
harms model generalizability. Our aim is to adapt
sampled latent variables to capture the contextual
semantics, so that the effects of these phenomena
are neutralized. This will in turn be helpful to gener-
ate relevant and coherent responses. With this goal,
we focus on single-turn dialogue datasets where
the one-to-many situations appear more frequently
than multi-turn dialogue datasets.

3.1 Preconditions
This section formally analyzes the many-to-one and
one-to-many phenomena and we present several
important assumptions and contextual information
(i.e., preconditions) for the CVAE model.
Notations: θ and φ are parameters of CVAE’s
recognition network and prior network, respec-
tively; c represents the condition information, x
and r represent the generation target, and z repre-
sents the latent variable.
Precondition 1: Bowman et al. (2016) confirmed
that the latent space is continuous; the latent vari-
able z is highly correlated with the target data x,
meaning that different z will reconstruct different
x.
Precondition 2: CVAE has a recognition network
qφ(z|c, x) and a prior network pθ(z|c) to approx-
imate the true posterior distribution p(z|c, x) and
prior distribution p(z|c), respectively. These distri-
butions are assumed to follow the Gaussian distri-
bution, e.g., qφ(z|c, x) ∼ N(µ, σ2).
Precondition 3: To efficiently train a CVAE
model, the Stochastic Gradient Variational Bayes
(SGVB) framework (Sohn et al., 2015; Yan et al.,
2016; Kingma and Welling, 2014) is adopted which
aims to maximize the variational lower bound of
the conditional log likelihood:

L(θ, φ; c, x) = −KL(qφ(z|c, x)||pθ(z|c))
+Eqφ(z|c,x) [log p(x|z, c)] (1)

where KL represents Kullback–Leibler divergence.
During training, the σ of q(z|x, c) will get smaller
and smaller, and the µ of q(z|x, c) will get closer
and closer to z that corresponding to x, which aims
to stabilize the Eqφ(z|x,c) [log p(x|z, c)] and make
it converge.

3.2 Demonstrating the existence of the
problem

We use Fig. 2 to illustrate the impact of one-to-
many phenomenon and many-to-one phenomenon
on a trained standard CVAE model. Consider the
situation in Fig. 2(a) where the context c1 has two
different responses r1 and r2. By Precondition 2,
we assume two approximate posterior distributions
p(z|c1, r1) ∼ N(µ1, σ

2
1), p(z|c1, r2) ∼ N(µ2, σ

2
2)

and one approximate prior distribution p(z|c1) ∼
N(µ, σ2). By Precondition 3, during training,
µ1 and µ2 will get closer to the latent variables
that could be reconstructed to r1 and r2, respec-
tively. By Precondition 1, as r1 is different from
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Figure 2: The change to the probability distributions of
the latent variables of a standard CVAE during train-
ing. (a) one-to-many phenomenon: Since a context
may correspond to two different possible responses
r1 and r2, the posterior distributions p(z|c1, r1) and
p(z|c1, r2) are also different. This jeopardizes the re-
quirement of the standard CVAE that these posterior
distributions should be similar to the prior distribution
p(z|c1). Therefore, the sampled latent variables from
p(z|c1) may lead to irrelevant and incoherent responses
and harm the generalization performance. (b) many-
to-one phenomenon: Since two different contexts c1
and c2 may have the same response r1, the two prior
distributions p(z|c1) and p(z|c2) have two correspond-
ing posterior distributions p(z|c1, r1) and p(z|c2, r1).
Since the latent variable z is mainly corresponding to
response r, p(z|c1, r1) and p(z|c2, r1) can be assumed
as the same, i.e., p(z|∗, r1). Therefore, the prior distri-
butions p(z|c1) and p(z|c2) also tend to be the same.

r2, µ1 should also be different from µ2. Otherwise,
the latent variables sampled from p(z|c1, r1) and
p(z|c1, r2) tend to be the same, making these latent
variables irrelevant to the responses. This leads
to the vanishing latent variable problem (Bowman
et al., 2016). Therefore, µ1 and µ2 cannot be the
same, and their discrepancy can be considered sta-
ble; only in this way we can ensure one-to-one
correspondence between latent variables and re-
sponses. From Precondition 3, it is easy to see that
p(z|c) is only affected by p(z|c, r). Hence, we ig-
nore E∗ [·] in Eq. (1) and use KL(p(z|c, r)||p(z|c))
to analyze the trend of p(z|c) during training.
Considering Fig. 2(a) where KL(·) of (c1, r1)
and (c1, r2) equals to KL(p(z|c1, r1)||p(z|c1)) +
KL(p(z|c1, r2)||p(z|c1)). We provide details of
the computation in Appendix A. The formula-
tion can then be simplified as: log

(
σ2

σ1σ2

)
+

σ2
1+σ

2
2+(µ1−µ)2+(µ2−µ)2

2σ2 − 1.
Hence, we can compute µ∗ and σ∗ that mini-

mizes the above using Lagrange multiplier:

µ∗ = (µ1 + µ2)/2

σ∗ =
√

(σ21 + σ22)/2 + (µ1 − µ2)2/4.

The derivation above provides insights on the

problem caused by the one-to-many phenomena
in Fig. 2(a): After training, the prior conditional
probability p(z|c1) ∼ N(µ∗, σ∗2), which will be
used in inference. If the difference between r1
and r2 widens, the difference between µ1 and µ2
will also widen and µ∗ will become further away
from µ1 and µ2. During inference, the latent vari-
ables sampled from p(z|c1) have a high probability
to differ from those sampled from p(z|c1, r1) and
p(z|c1, r2). These latent variables will introduce
irrelevant information and contribute to the gener-
ation of irrelevant responses. In addition, as one
response r1 may correspond to different contexts c1
and c2, as shown in Fig. 2(b), p(z|c1) and p(z|c2)
tend to be the same, which contributes to the phe-
nomenon that different context could sample sim-
ilar latent variables. In a word, similar contexts
could correspond to different latent variables and
different contexts could correspond to similar latent
variables, which explains why the latent variables
can not accurately reflect the contexts’ semantics.

4 Method

In this section, we introduce in detail the proposed
SepaCVAE model and its three key components,
dialogue augmentation, gradient blocking, and re-
lationship enhancement.

4.1 Self-Separated CVAE
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Figure 3: Trend of the change of the probability distri-
butions of latent variables of SepaCVAE during train-
ing.

As shown in Fig. 3, SepaCVAE uses G(·) to
separate the contexts into different groups. For
the one-to-many phenomenon, the contexts in dif-
ferent groups will have different prior distributions
p(z|G∗(·)), which is easily affected by the different
posterior distributions. As for the many-to-one phe-
nomenon, SepaCVAE makes the contexts (c1, c2)
generate latent variables related to the response
r1 only when it contains group information G1(·).
The other group would help the contexts to align
with the other latent variables.
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4.2 Dialogue augmentation
In SepaCVAE, we first propose dialogue augmen-
tation (see Algorithm 1), which designs a group
of orthogonal vectors (y1, y2, . . . , yN ) to separate
the contexts into different groups. These vectors
(y1, y2, . . . , yN ) are called group information.

Algorithm 1 Dialogue augmentation

Input: Cori1×m : the vector representation of orig-
inal context sentence after word embedding
process;
N : the hyper-parameter;
m : the dimension of word embedding;

Output: CextN×m : vector representations of con-
text sentences after augmentation;
Y ext
N×1 : the labels of the augmented contexts;

1: Initialize CextN×m and Y ext
N×1;

2: Set d← the integer of m/N ;
3: for i = 1 to N do
4: Initialize augment vector yi ←

(0, 0, . . . , 0)1×m;
5: Set yi((i − 1) × d + 1 : i × d) ←

(1, 1, . . . , 1)1×d;
6: CextN×m(i, :)← Cori1×m + yi;
7: Y ext

N×1(i)← i;
8: end for
9: return CextN×m, Y ext

N×1

In SepaCVAE, we apply Algorithm 1 to extend
each dialogue pair (ci, ri) to [(ci + y1, ri), (ci +
y2, ri), . . . , (ci + yN , ri)] before feeding them to
start training. If different contexts ci, cj , . . . have
the same yi added, then these contexts belong to
the same group. In this way, all contexts will keep
a certain relationship within the same group. In
this work, the value N is set to 8. Since we use
c+ y to replace the original c, the variational lower
bound of SepaCVAE is re-written as:

L(θ, φ;r, c, y) = Eqφ(z|r,c+y)[log p(r|z, c+ y)]

−KL(qφ(z|r, c+ y)||Pθ(z|c+ y)) (2)

4.3 Gradient blocking
Before the gradient back-propagation, we pro-
pose gradient blocking (see Algorithm 2 in Ap-
pendix B for implementation details) to filter the
gradients. Since we extend the dialogue pair (c, r)
to [(c+ y1, r), (c+ y2, r), . . . , (c+ yN , r)], if we
optimize the model through all calculated gradients,
y1, y2, . . . , yN would be regarded as noise. There-
fore, We choose the largest variational lower bound

that is calculated through the dialogue pair (c, r)
with the positive group information y+, which can
be represented as (3):

L(θ, φ; r, c, y+) = max
θ,φ,yi∈Y

L(θ, φ; r, c, yi) (3)

For each [(c+ y1, r), (c+ y2, r), . . . , (c+ yN , r)],
we only pass L(·, y+) to optimize the model.

4.4 Relationship enhancement
Through dialogue augmentation and gradient
blocking, the positive y+ for each dialogue pair
(c, r) is captured. We then propose relationship
enhancement, which is inspired from contrastive
learning, to adjust the separated results. Those re-
sponses under the same y+ are considered to be in
the same group, and thus can be seen as positive
samples; similarly, those responses under differ-
ent y+ are seen as negative samples. From the
perspective of contrastive learning, we design a
relationship-enhancement-loss named Lre to help
our model achieve the representation learning:

Lre = (4)

− log
e
∑Pos
j=1 f(x

′
i)
T f(x

′+
j )

e
∑Pos
j=1 f(x

′
i)
T f(x

′+
j ) + e

∑Neg
m=1 f(x

′
i
)T f(x

′−
m )

N−1

,

where x
′

represents the embedded generated re-
sponse, f(·) represents our model’ encoder, Pos
means the number of positive samples, and Neg
means the number of negative samples.

In addition, we introduce an MLP to predict y+

based on vector representation of the generated
response f(x

′
). We therefore define LY :

LY = Epψ(x|z,c+y+)

[
log(p(y+|x′))

]
(5)

Overall, SepaCVAE is trained by maximizing:

Lall = L(θ, φ; r, c, y+)− α ∗ Lre − LY (6)

Quoting the KL annealing trick (Bowman et al.,
2016), α increases linearly from 0 to 1 in the first
10,000 batches.

5 Experiments

5.1 Dataset
We use two public dialogue datasets in our experi-
ments, and change them as single-turn dialog data.
The first dataset, named DailyDialog (Li et al.,
2017b), consists of dialogues that resemble human
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dataset name vocab train valid test
DailyDialog 10,064 18,406 2,008 988
OpenSubtitles 87,840 5M 100K 50K

Table 1: Statistics for DailyDialog and OpenSubtitles
datasets.

daily communication. The second dataset, named
OpenSubtitles (Tiedemann, 2009), includes a large
collection of conversations converted from movie
transcripts in English.

5.2 Data pre-processing

In this work, we extract single-turn dialogues from
two dialogue datasets, DailyDialog and OpenSub-
titles. From a multi-turn dialogue (u1, u2, ..., uT ),
we can extract T − 1 single-turn dialogues
[(u1, u2), (u2, u3), ..., (uT−1, uT )], where u repre-
sents an utterance. As discussed above, compared
with multi-turn dialogue dataset the single-turn dia-
logue dataset contains a more serious one-to-many
problem. Therefore, using the single-turn dialogue
dataset for experimentations can highlight the prob-
lem of general CVAE model and reflect the effect
of our method.

We utilize 300-dimensional GloVe embeddings
(Pennington et al., 2014) to represent these dia-
logues in vectors. Since the tokens in GloVe do
not cover all tokens in DailyDialog and OpenSub-
titles datasets, we extract the token-list of GloVe
to filter these datasets. Table 1 lists key statistics
of the dataset after processing. In addition, we
count the one-to-many samples of both datasets
and found that 408 contexts in DailyDialog and
90,149 contexts in OpenSubtitles have multiple re-
sponses. In particular, a context in OpenSubtitles
has a maximum of 623 responses, while a context
in DailyDialog has a maximum of 29 responses,
which shows that the one-to-many phenomenon is
more prevalent in OpenSubtitles dataset.

5.3 Automatic evaluation metrics

We use ppl (Neubig, 2017), response length and
distinct-n (Li et al., 2016b) to evaluate the diver-
sity of generated responses. We also use BLEU
(Papineni et al., 2002) to evaluate the degree of
the word-overlap between generated responses and
ground truth. Moreover, we use Embedding Av-
erage (Average) (Liu et al., 2016)) to evaluate the
semantic relationship of generated responses and
ground-truth responses. Finally, we introduce the

coherence (Xu et al., 2018b) to assess the coher-
ence between contexts and generated responses.

5.4 Human evaluation

We conduct human evaluation to further evaluate
our model and baseline models. Following the
work of Li et al. (2017a); Xu et al. (2018a), we ran-
domly extract 200 samples from the test sets of the
two dialogue datasets, respectively. Each sample
contains one context and the response generated by
different models. Three annotators are invited to
rank the generated responses with respect to three
aspects: diversity, relevance and fluency. Ties are
allowed. Diversity indicates how much the gener-
ated response provides specific information, rather
than generic and repeated information. Relevance
means how likely the generated response is rele-
vant to the context. Fluency specifies how likely
the generated response is produced by human.

5.5 Baseline models

Our baseline models include sequence-to-sequence
(Seq2Seq) model, CVAE model, and cluster-CVAE
model. They are all implemented based on a 2-
layer GRU kgCVAE model (Zhao et al., 2017).
The cluster-CVAE model represents that kgCVAE
utilize the cluster results as the knowledge. We
employ three cluster methods, i.e. K-means(K),
Spectral(S), Agglomerative(A).

5.6 Training details

For a fair comparison among all models, we uti-
lized 300-dimensional GloVe embeddings as the
word embedding matrix. The numbers of hidden
nodes are all set to 300. The parameter max len
is set to 25. We set the batch sizes to 64 and 32 for
DailyDialog and OpenSubtitles datasets, respec-
tively. Adam is utilized for optimization. The
parameter init lr is set to 0.001. We train all mod-
els in 50 epochs on a RTX 2080Ti GPU card with
Tensorflow, and save the generated responses when
the ppl reaching minimum. Greedy search is used
to generate responses for evaluation.

6 Results and Discussion

6.1 Automatic evaluation results

Table 2 and Table 3 report the automatic evalua-
tion results of SepaCVAE and baseline models
on validation and test data of both two datasets,
respectively. For the validation stage, we first se-
lect and save the positive group information (y+)



5630

mode ppl distinct-1 distinct-2 length BLEU-1 Average coherence
Seq2Seq 42.9±.18 0.033±.01 0.119±.02 9.1±.22 0.386±.00 0.858±.00 0.763±.00
CVAE 13.3±.09 0.074±.00 0.407±.01 11.3±.33 0.405±.01 0.853±.00 0.763±.00
CVAE+BOW 13.0±.30 0.078±.00 0.415±.01 11.4±.21 0.402±.01 0.855±.00 0.762±.00
K-CVAE+BOW 13.1±.11 0.074±.00 0.406±.01 11.5±.14 0.424±.00 0.868±.00 0.766±.00
S-CVAE+BOW 12.9±.12 0.075±.00 0.414±.01 11.5±.17 0.426±.01 0.867±.00 0.765±.00
A-CVAE+BOW 13.0±.22 0.076±.00 0.418±.02 11.6±.11 0.418±.00 0.863±.00 0.765±.00
SepaCVAE 9.8±.17 0.078±.00 0.504±.01 11.5±.10 0.461±.00 0.862±.00 0.767±.00
Seq2Seq 45.9±.13 0.002±.00 0.010±.00 11.8±.81 0.236±.04 0.465±.08 0.281±.05
CVAE+BOW 12.2±.17 0.005±.00 0.095±.00 13.1±.26 0.172±.02 0.285±.04 0.195±.03
K-CVAE+BOW 12.1±.20 0.006±.00 0.098±.00 13.1±.10 0.203±.02 0.311±.06 0.200±.05
SepaCVAE 2.0±.06 0.016±.00 0.282±.01 12.6±.11 0.417±.00 0.836±.01 0.707±.01

Table 2: Metrics results on validation data of DailyDialog (up) and OpenSubtitles (down). The best score in each
column is in bold. Note that our BLEU-1 scores are normalized to [0, 1].

mode distinct-1 distinct-2 length BLEU-2 BLEU-3 Average coherence
Seq2Seq 0.054±.01 0.180±.03 9.0±.32 0.300±.01 0.247±.00 0.856±.00 0.756±.01
CVAE 0.106±.00 0.499±.01 11.3±.25 0.324±.01 0.272±.01 0.854±.00 0.756±.00
CVAE+BOW 0.114±.00 0.514±.01 11.2±.13 0.326±.01 0.274±.01 0.856±.00 0.755±.00
K-CVAE+BOW 0.108±.00 0.501±.02 11.6±.16 0.342±.01 0.287±.00 0.869±.00 0.759±.00
S-CVAE+BOW 0.110±.00 0.511±.01 11.4±.19 0.339±.00 0.284±.00 0.867±.00 0.758±.00
A-CVAE+BOW 0.111±.01 0.509±.02 11.5±.16 0.331±.00 0.278±.00 0.862±.00 0.757±.00
SepaCVAE 0.082±.00 0.471±.01 17.9±.57 0.409±.01 0.350±.01 0.877±.00 0.809±.00
Seq2Seq 0.003±.00 0.015±.00 11.8±.82 0.193±.03 0.163±.03 0.465±.08 0.281±.05
CVAE+BOW 0.009±.00 0.131±.00 13.1±.24 0.144±.02 0.123±.02 0.285±.04 0.195±.03
K-CVAE+BOW 0.010±.00 0.135±.00 13.1±.10 0.169±.02 0.144±.01 0.308±.06 0.198±.05
SepaCVAE 0.025±.00 0.330±.03 13.5±.58 0.326±.01 0.276±.01 0.807±.02 0.677±.01

Table 3: Mterics results on test data of DailyDialog (up) and OpenSubtitles (down). The best score in each column
is in bold. Note that our BLEU-2,3 scores are normalized to [0, 1].

for each context, and then generate responses un-
der this y+. For the test data where no ground
truth response is available to select the positive
group information, we first generate N responses
for each context through N group information, and
then choose the most possible generated response
through calculating the cosine score between the
generated responses and context. Both generated
responses and contexts are input into SepaCVAE’s
encoder to obtain the vector representations.

Spectral and Agglomerative cluster methods
would not work well under the large-scale dataset
(i.e. OpenSubtitles), and the general CVAE
model suffers from the vanishing latent variable
problem while training on such dataset. There-
fore, we remove the results of S-CVAE+BOW, A-
CVAE+BOW and CVAE on Table 2 and Table 3.

As shown in Table 2 and Table 3, the results
on large-scale dataset (OpenSubtitles) are better

than that on small dataset (DailyDialog), that is,
the results on OpenSubtitles show an obvious pat-
tern that verifies our hypothesis. On both valida-
tion and test data of OpenSubtitles, CVAE and K-
CVAE achieve better performance on diversity met-
ric (distinct) but worse performance on relevant
metrics (i.e. BLEU, Average and coherence) than
Seq2Seq model. Moreover, our proposed SepaC-
VAE outperforms all baseline models in terms of all
metrics with statistical significance. However, the
results obtained on the DailyDialog dataset do not
show a clear pattern. For DailyDialog’s validation
data, SepaCVAE achieves good performance on
diversity but on relevance the results is unimpres-
sive. On the other hand, for test data, SepaCVAE
achieves good performance on relevance but gener-
ally poor results on diversity. We believe that the
reason for this phenomenon is related to the level of
prevalence of the one-to-many phenomenon in the
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model diversity relevance fluency
Seq2Seq 3.64 3.12 2.16
CVAE+BOW 3.16 3.58 3.42
K-CVAE+BOW 3.27 3.71 3.49
SepaCVAE 2.11 2.95 3.49
Ground-truth 1.88 1.02 1.00
Seq2Seq 3.12 3.11 3.24
CVAE+BOW 2.69 2.98 3.05
K-CVAE+BOW 2.59 3.53 3.72
SepaCVAE 2.57 2.36 2.25
Ground-truth 2.49 1.12 1.02

Table 4: Human evaluation results on test data of Daily-
Dialog (up) and OpenSubtitles (down). The best score
in each column is in bold. Note that “Ground-truth” is
the true response.

dataset. For instance, only 66,260 contexts have
multiple responses among the 90,149 contexts on
the OpenSubtitles that was added the cluster re-
sults. Moreover, one context has a maximum of
296 responses, which amounts to almost half of
623. Since the DailyDialog dataset is very small
and contains few samples that we focus on, which
cause the not specific tendency on its results. In
a word, the evaluation results illustrate the effec-
tiveness of SepaCVAE in terms of improving the
relevance and coherence of responses.

6.2 Human evaluation results

The results of the human evaluation are shown in
Table 4. To evaluate the consistency of the ranking
results assessed by three annotators, we use Pear-
son’s correlation coefficient. This coefficient is
0.22 on diversity, 0.63 on relevance, and 0.70 on
fluency, with p < 0.0001 and below 0.001, which
indicates high correlation and agreement. Similarly
with the automatic evaluation results in Table 3,
this result shows that our SepaCVAE significantly
outperforms baselines in term of relevance and di-
versity. Except the ground-truth responses, our
SepaCVAE achieve the best scores of relevance
and diversity metrics. The fluency result of Sepa-
CVAE on the DailyDialog dataset is slightly worse
than that of baselines, which is mainly due to the
length of responses generated by SepaCVAE is
almost two times than that of baselines (see Ta-
ble 3). When the response lengths are similar on
the Opensubtitles dataset, SepaCVAE could also
achieve the best fluency score.

6.3 Effectiveness analysis

We further analyze the effectiveness of SepaCVAE
on regularizing latent variables. For the contexts
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Figure 5: t-SNE visualization of the posterior z for
validation responses with 8 group information that ob-
tained though SepaCVAE or cluster methods.

in the validation data of DailyDialog dataset, we
collect their generated responses and the sampled
latent variables of both SepaCVAE and baseline
models on the first 2,500 batches. Then we cal-
culate the average inner-group distance and the
average inter-group distance for each context based
on jointly vector representations (concatenating
the context vector and the latent variable). All
distances are calculated by cosine scores, and the
higher the distance, the greater the similarity.

For each context, SepaCVAE outputs a positive
group information y+, which is used to distinguish
whether other contexts are in the same group. As
for the standard CVAE, we set a threshold of the co-
sine score to replace the group information. In this
work, the threshold is set to 0.9. Finally, we take
the average of all contexts’ inner-group distance
results and inter-group distance results as inner-dis.
and inter-dis. of each batch, which are shown in
Fig. 4. SepaCVAE achieves significantly higher
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inner-dis. than baseline (standard CVAE) model,
while the inter-dis. are similar. Meanwhile, our
method also gets the similar average distance of all
jointly vectors with the standard CVAE.

In addition, past studies conjecture that the poste-
rior z sampled from the recognition network should
cluster the responses into meaningful groups that
correlate with the knowledge. Fig. 5 visualizes
the posterior z of responses in the validation data
of DailyDialog dataset in 2D space using t-SNE
(van der Maaten and Hinton, 2008). We found that
the learned latent space of our SepaCVAE is more
correlated with the group information. These re-
sults demonstrate that SepaCVAE can effectively
regularize latent variables.

6.4 Case study

We collected the generated responses of contexts
in validation and test set, which are similar to the
training set, and showed a sample in Table 4. The
context in training set has two contradictory re-
sponses. As we analyzed, the standard CVAE and
CVAE+BOW generated irrelevant and incoherent
response for the similar context in validation and
test set. In contrast, our SepaCVAE outputted sure,
it will be happy and sure. i go with my parents are
more relevant and coherent than the response gen-
erated by baselines, and it also similar with the true
response 1 (oh, that sounds great!), which means
the SepaCVAE is able to handle the one-to-many
situation.

7 Conclusion

In this paper, we theoretically prove that latent
variables hardly reflect the semantics of contexts
due to the one-to-many and many-to-one phenom-
ena of dialogues. For the standard CVAE model,
these issues lead to irrelevant and incoherent re-
sponses during the validation or test stage, and also
damaging the generalization performance. To ad-
dress these problems, we proposed the SepaCVAE
model. There are three main technical novelties
of SepaCVAE: dialogue augmentation, gradient
blocking, and relationship enhancement, which en-
able the latent variables to reflect semantic rela-
tionships between contexts. As demonstrated in
the experimental results, SepaCVAE could get the
best performance for large-scale dataset.

samples in training dataset
context would you like to have dinner

with me tonight?
true response 1 oh, that sounds great!
true response 2 sorry, i have to work over-

time.
sample in validation dataset

similar context i would always be ready to go
shopping with you! should
we talk about other basics?

Seq2Seq sure. we will go to the
movies.

CVAE i’m not interested in your are
not a good thing!

CVAE+BOW it will smell and better if
whatever, whatever.

SepaCVAE sure, it will be happy, mary,
most music is well.
sample in test dataset

similar context me, too. do you want to
go out to celebrate my good
news?

Seq2Seq yes, i’m going to go to the
beach.

CVAE it really really talking from
the street. mom.

CVAE+BOW there may live in the rocks,
please.

SepaCVAE sure. i go with my parents.
i am so excited about these
friends!

Table 5: Generated responses from the baselines and
SepaCVAE.
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A The computation of prior probability
distribution through KL-divergence
on the one-to-many situation

We assume that p(z|c1, r1) ∼ N(µ1, σ
2
1),

p(z|c1, r2) ∼ N(µ2, σ
2
2) and p(z|c1) ∼ N(µ, σ2).

Then, we have:

KL(p(z|c1, r1)||p(z|c1))

=

∫
p(z|c1, r1) log

p(z|c1, r1)
p(z|c1)

dz

=

∫
p(z|c1, r1)[log p(z|c1, r1)− log p(z|c1)]dz

=

∫
p(z|c1, r1)[log

e
− (z−µ1)

2

2σ21√
2πσ21

− log
e−

(z−µ)2

2σ2

√
2πσ2

]dz

=

∫
p(z|c1, r1)[−

1

2
log 2π − log σ1

− (z − µ1)2

2σ21
+

1

2
log 2π + log σ +

(z − µ)2

2σ2
]dz

=

∫
p(z|c1, r1)[log

σ

σ1

+ (
(z − µ)2

2σ2
− (z − µ1)2

2σ21
)]dz

=

∫
p(z|c1, r1) log

σ

σ1
dz

+

∫
p(z|c1, r1)

(z − µ)2

2σ2
dz

−
∫
p(z|c1, r1)

(z − µ1)2

2σ21
dz.

Since the log σ
σ1

is a constant, and the∫
p(z|c1, r1)dz = 1, we have:∫

p(z|c1, r1) log
σ

σ1
dz = log

σ

σ1
.

Since p(z|c1, r1) = 1√
2πσ1

e−
(z−µ1)

2

2σ2 , the∫
p(z|c1, r1) (z−µ1)

2

2σ2
1

dz can be calculated as follow:∫
p(z|c1, r1)

(z − µ1)2

2σ21
dz

=

∫
1√
2πσ1

e−
(z−µ1)

2

2σ2
(z − µ1)2

2σ21
dz

=

∫
1√
2πσ1

e−
(z−µ1)

2

2σ2
(z − µ1)2

2σ21

√
2σ1d

z − µ1√
2σ1

=

∫
1√
π
e−

(z−µ1)
2

2σ2
(z − µ1)2

2σ21
d
z − µ1√

2σ1
.

Let the x= z−µ1√
2σ1

, we have:∫
p(z|c1, r1)

(z − µ1)2

2σ21
dz

=
1√
π

∫
e−x

2
x2dx

= − 1

2
√
π

∫
xde−x

2

= − 1

2
√
π
(xe−x

2 |+∞−∞ −
∫
e−x

2
dx).

According to the L’Hospital’s rule, the
limx→−∞ xe

−x2=limx→+∞ xe
−x2 = 0.

To calculate the
∫
e−x

2
dx, we first compute the

(
∫ +∞
0 e−x

2
dx)2, so we have:

(

∫ +∞

0
e−x

2
dx)2 =

∫ +∞

0
e−x

2
dx

·
∫ +∞

0
e−y

2
dy

=

∫ +∞

0

∫ +∞

0
e−x

2−y2dxdy.

Let x = r sin θ and y = r cos θ, we have:∫ +∞

0

∫ +∞

0
e−x

2−y2dxdy

=

∫ π
2

0

∫ +∞

0
e−r

2
rdrdθ

=
π

2

∫ +∞

0
e−r

2
rdr =

π

4
.

Therefore, the
∫ +∞
0 e−x

2
dx =

√
π
2 . According

to the symmetry, the
∫ +∞
−∞ e−x

2
dx=
√
π. and the∫

p(z|c1, r1) (z−µ1)
2

2σ2
1

dz = 1
2 .

For the
∫
p(z|c1, r1) (z−µ)

2

2σ2 dz, we have:∫
p(z|c1, r1)

(z − µ)2

2σ2
dz

=

∫
p(z|c1, r1)

(z − µ1 + µ1 − µ)2

2σ2
dz

=
1

2σ2
[

∫
(z − µ1)2p(z|c1, r1)dz

+

∫
(µ1 − µ)2p(z|c1, r1)dz

+

∫
(z − µ1)(µ1 − µ2)p(z|c1, r1)dz]

=
2σ21

∫ (z−µ1)2
2σ2

1
p(z|c1, r1)dz + (µ1 − µ)2

2σ2

=
σ21 + (µ1 − µ)2

2σ2
.
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Therefore, we have:

KL(p(z|c1, r1)||p(z|c1))

= log
σ

σ1
+
σ21 + (µ1 − µ)2

2σ2
− 1

2
.

In the same way, the KL(p(z|c1, r2)||p(z|c1))
equals log σ

σ2
+

σ2
2+(µ2−µ)2

2σ2 − 1
2 . And then, we can

know:

KL(p(z|c1, r1)||p(z|c1))
+KL(p(z|c1, r2)||p(z|c1))

= log(
σ2

σ1σ2
)

+
σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2

2σ2
− 1.

Since the Latent Vanish problem is not expected
by the VAE and CVAE methods, the p(z|c1, r1)
should be different from p(z|c1, r2), which means
the N(µ1, σ1) is different from the N(µ2, σ2).

After that, we use the φ(µ, σ) rep-
resent the KL(p(z|c1, r1)||p(z|c1)) +
KL(p(z|c1, r2)||p(z|c2)), then we have:

φ(µ, σ) = log(
σ2

σ1σ2
)

+
σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2

2σ2
− 1.

According to the Lagrange Multiplier Method,
we can calculate the conditional extremum and the
extreme point (µ∗,σ∗) of φ(µ, σ).

To obtain the µ∗, we have to calculate the
∂φ(µ,σ)
∂µ :

∂φ(µ, σ)

∂µ
=
∂ (µ1−µ)2+(µ2−µ)2

2σ2

∂µ

=
2µ− µ1 − µ2

σ2
.

Let the ∂φ(µ,σ)
∂µ equals 0, we have the µ∗=µ1+µ22 .

In the same way, to obtain the σ∗, we have:

∂φ(µ, σ)

∂σ
=
∂ log( σ2

σ1σ2
)

∂σ

+ [σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2]
∂ 1
2σ2

∂σ

=
2

σ
− σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2

σ3

=
2σ2 − [σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2]

σ3
,

where a means the base of the logarithmic formula.
Let the ∂φ(µ,σ)

∂σ = 0, since the σ3 can not be 0,
we have:

2σ2 − [σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2] = 0.

Therefore, the σ∗ is:

σ∗ =

√
σ21 + σ22 + (µ1 − µ)2 + (µ2 − µ)2

2
.

Replace the µ with the µ∗, we have:

σ∗ =

√
σ21 + σ22 +

(µ1−µ2)2
2

2
.

We use a constant C to replace (µ1−µ2)2
4 , the σ∗

equals
√

σ2
1+σ

2
2

2 + C.
The µ∗=µ1+µ22 means the latent variables sam-

pled from this prior probability distribution easily
tend to be different from the latent variables sam-
pled form the posterior probability distributions.
Since the latent variables are highly correlated with
the generated responses, the responses generated
through prior probability distribution would be dif-
ferent from that generated from posterior probabil-
ity distributions. If the difference between µ1 and
µ2 is very large, the σ∗ would be large too, thus re-
sulting in high probability of more irrelevant latent
variables.

B The implementation of gradient
blocking

We present the implementation of gradient block-
ing method in Algorithm 2. In Algorithm 2, we
build a mask tensor Loss Mask to filter the loss
results form each batch data, which can same ob-
struct the gradient backpropagation. Since we used
gradient descent to optimize the neural model, the
smallest loss result equals the largest variational
lower bound. The elements in Loss Mask are 0
or 1, so Loss ∗ Loss Mask can be considered as
the selection of the existing Loss.
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Algorithm 2 Gradient blocking
Input: Loss : loss-results of extended dialogue

data in one batch;
N : the number of group information;
BatchSize : the number of data contained on
one Batch;

Output: Loss Mask : the mask tensor with [0,1]
elements;

1: Loss← tf.reshape(Loss, [BatchSize, N ])
2: ministLossPOSs ← tf.argmin(Loss, 1) #

find the posision of the minist loss;
3: ones← OnesTensor(1, dtype=tf.float32)
4: zeros← ZerosVector(1, dtype=tf.float32)
5: Loss Mask ← tf.cond(

tf.equal(ministLossPOSs[0],
tf.constant([0])[0],
lambda:ones, lambda:zeros)

6: for i = 1 to BatchSize do
7: for j = 1 to N do
8: if i = 1 and j = 1 then
9: continue

10: else
11: Loss Mask ← tf.concat([

Loss Mask, tf.cond(
tf.equal(ministLossPOSs[i],
tf.constant([j]))[0], lambda:ones,
lambda:zeros)],0)

12: end if
13: end for
14: end for
15: Pass Loss← Loss*Loss Mask
16: return Pass Loss


