
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5517–5531

August 1–6, 2021. ©2021 Association for Computational Linguistics

5517

Unified Interpretation of Softmax Cross-Entropy and Negative Sampling:
With Case Study for Knowledge Graph Embedding

Hidetaka Kamigaito
Tokyo Institute of Technology

kamigaito@lr.pi.titech.ac.jp

Katsuhiko Hayashi
Gunma University, RIKEN AIP
khayashi0201@gmail.com

Abstract

In knowledge graph embedding, the theoret-
ical relationship between the softmax cross-
entropy and negative sampling loss functions
has not been investigated. This makes it dif-
ficult to fairly compare the results of the two
different loss functions. We attempted to solve
this problem by using the Bregman divergence
to provide a unified interpretation of the soft-
max cross-entropy and negative sampling loss
functions. Under this interpretation, we can
derive theoretical findings for fair comparison.
Experimental results on the FB15k-237 and
WN18RR datasets show that the theoretical
findings are valid in practical settings.

1 Introduction

Negative Sampling (NS) (Mikolov et al., 2013) is
an approximation of softmax cross-entropy (SCE).
Due to its efficiency in computation cost, NS is now
a fundamental loss function for various Natural
Language Processing (NLP) tasks such as used in
word embedding (Mikolov et al., 2013), language
modeling (Melamud et al., 2017), contextualized
embedding (Clark et al., 2020b,a), and knowledge
graph embedding (KGE) (Trouillon et al., 2016).
Specifically, recent KGE models commonly use
NS for training. Considering the current usages
of NS, we investigated the characteristics of NS
by mainly focusing on KGE from theoretical and
empirical aspects.

First, we introduce the task description of KGE.
A knowledge graph is a graph that describes the re-
lationships between entities. It is an indispensable
resource for knowledge-intensive NLP applications
such as dialogue (Moon et al., 2019) and question-
answering (Lukovnikov et al., 2017) systems. How-
ever, to create a knowledge graph, it is necessary
to consider a large number of entity combinations
and their relationships, making it difficult to con-
struct a complete graph manually. Therefore, the

prediction of links between entities is an important
task.

Currently, missing relational links between en-
tities are predicted using a scoring method based
on KGE (Bordes et al., 2011). With this method,
a score for each link is computed on vector space
representations of embedded entities and relations.
We can train these representations through vari-
ous loss functions. The SCE (Kadlec et al., 2017)
and NS (Trouillon et al., 2016) loss functions are
commonly used for this purpose.

Several studies (Ruffinelli et al., 2020; Ali et al.,
2020) have shown that link-prediction performance
can be significantly improved by choosing the ap-
propriate combination of loss functions and scoring
methods. However, the relationship between the
SCE and NS loss functions has not been investi-
gated in KGE. Without a basis for understanding
the relationships among different loss functions, it
is difficult to make a fair comparison between the
SCE and NS results.

We attempted to solve this problem by using the
Bregman divergence (Bregman, 1967) to provide a
unified interpretation of the SCE and NS loss func-
tions. Under this interpretation, we can understand
the relationships between SCE and NS in terms of
the model’s predicted distribution at the optimal so-
lution, which we called the objective distribution.
By deriving the objective distribution for a loss
function, we can analyze different loss functions,
the objective distributions of which are identical
under certain conditions, from a unified viewpoint.

We summarize our theoretical findings not re-
stricted to KGE as follows:

• The objective distribution of NS with uniform
noise (NS w/ Uni) is equivalent to that of SCE.

• The objective distribution of self-adversarial
negative sampling (SANS) (Sun et al., 2019)

5518

is quite similar to SCE with label smoothing
(SCE w/ LS) (Szegedy et al., 2016).

• NS with frequency-based noise (NS w/ Freq)
in word2vec1 has a smoothing effect on the
objective distribution.

• SCE has a property wherein it more strongly
fits a model to the training data than NS.

To check the validity of the theoretical findings
in practical settings, we conducted experiments on
the FB15k-237 (Toutanova and Chen, 2015) and
WN18RR (Dettmers et al., 2018) datasets. The
experimental results indicate that

• The relationship between SCE and SCE w/ LS
is also similar to that between NS and SANS
in practical settings.

• NS is prone to underfitting because it weakly
fits a model to the training data compared with
SCE.

• SCE causes underfitting of KGE models when
their score function has a bound.

• Both SANS and SCE w/ LS perform well as
pre-training methods.

The structure of this paper is as follows: Sec. 2
introduces SCE and Bregman divergence; Sec. 3
induces the objective distributions for NS; Sec. 4
analyzes the relationships between SCE and NS
loss functions; Sec. 5 summarizes and discusses
our theoretical findings; Sec. 6 discusses empir-
ically investigating the validity of the theoretical
findings in practical settings; Sec. 7 explains the dif-
ferences between this paper and related work; and
Sec. 8 summarizes our contributions. Our code will
be available at https://github.com/kamigaito/
acl2021kge

2 Softmax Cross Entropy and Bregman
Divergence

2.1 SCE in KGE
We denote a link representing a relationship rk
between entities ei and e j in a knowledge graph
as (ei,rk,e j). In predicting the links from given
queries (ei,rk,?) and (?,rk,e j), the model must pre-
dict entities corresponding to each ? in the queries.
We denote such a query as x and the entity to be

1The word2vec uses unigram distribution as the frequency-
based noise.

predicted as y. By using the softmax function,
the probability pθ (y|x) that y is predicted from x
with the model parameter θ given a score function
fθ (x,y) is expressed as follows:

pθ (y|x) =
exp(fθ (x,y))

∑y′∈Y exp(fθ (x,y′))
, (1)

where Y is the set of all predictable entities. We
further denote the pair of an input x and its label
y as (x,y). Let D = {(x1,y1), · · · ,(x|D|,y|D|)} be
observed data that obey a distribution pd(x,y).

2.2 Bregman Divergence

Next, we introduce the Bregman divergence. Let
Ψ(z) be a differentiable function; the Bregman di-
vergence between two distributions f and g is de-
fined as follows:

dΨ(z)(f ,g) =Ψ(f)−Ψ(g)−∆Ψ(g)T (f −g). (2)

We can express various divergences by chang-
ing Ψ(z). To take into account the diver-
gence on the entire observed data, we con-
sider the expectation of dΨ(f ,g): BΨ(z)(f ,g) =
∑x,y dΨ(z)(f (y|x),g(y|x))pd(x,y). To investigate
the relationship between a loss function and learned
distribution of a model at an optimal solution of the
loss function, we need to focus on the minimization
of BΨ(z). Gutmann and Hirayama (2011) showed
that BΨ(z)(f ,g) = 0 means that f equals g almost
everywhere when Ψ(z) is a differentiable strictly
convex function in its domain. Note that all Ψ(z)
in this paper satisfy this condition. Accordingly, by
fixing f , minimization of BΨ(z)(f ,g) with respect
to g is equivalent to minimization of

BΨ(z)(f ,g)

=∑
x,y

[
−Ψ(g)+∆Ψ(g)T g−∆Ψ(g)T f

]
pd(x,y) (3)

We use BΨ(f ,g) to reveal a learned distribution of
a model at optimal solutions for the SCE and NS
loss functions.

2.3 Derivation of SCE

For the latter explanations, we first derive the SCE
loss function from Eq. (3). We denote a probability
for a label y as p(y), vector for all y as y, vector of
probabilities for y as p(y), and dimension size of
z as len(z). In Eq. (3), by setting f as pd(y|x) and
g as pθ (y|x) with Ψ(z) = ∑

len(z)
i=1 zi logzi (Banerjee

https://github.com/kamigaito/acl2021kge
https://github.com/kamigaito/acl2021kge

5519

et al., 2005), we can derive the SCE loss function
as follows:

BΨ(z)(pd(y|x), pθ (y|x))

=−∑
x,y

[
|Y |

∑
i=1

pd(yi|x) log pθ (yi|x)

]
pd(x,y) (4)

=− 1
|D| ∑

(x,y)∈D
log pθ (y|x). (5)

This derivation indicates that pθ (y|x) converges to
the observed distribution pd(y|x) through minimiz-
ing BΨ(z)(pd(y|x), pθ (y|x)) in the SCE loss func-
tion. We call the distribution of pθ (y|x) when BΨ(z)
equals zero an objective distribution.

3 Objective Distribution for Negative
Sampling Loss

We begin by providing a definition of NS and
its relationship to the Bregman divergence, fol-
lowing the induction of noise contrastive estima-
tion (NCE) from the Bregman divergence that was
established by Gutmann and Hirayama (2011). We
denote pn(y|x) to be a known non-zero noise dis-
tribution for y of a given x. Given ν noise sam-
ples from pn(y|x) for each (x,y) ∈ D, NS esti-
mates the model parameter θ for a distribution
G(y|x;θ) = exp(− fθ (x,y)).

By assigning to each (x,y) a binary class label
C: C = 1 if (x,y) is drawn from observed data D
following a distribution pd(x,y) and C = 0 if (x,y)
is drawn from a noise distribution pn(y|x), we can
model the posterior probabilities for the classes as
follows:

p(C = 1,y|x;θ) =
1

1+exp(− fθ (x,y))

=
1

1+G(y|x;θ)
,

p(C = 0,y|x;θ) = 1−p(C = 1,y|x;θ)

=
G(y|x;θ)

1+G(y|x;θ)
.

The objective function `NS(θ) of NS is defined as
follows:

`NS(θ) =− 1
|D| ∑

(x,y)∈D

[
log(P(C = 1,y|x;θ))

+
ν

∑
i=1,yi∼pn

log(P(C = 0,yi|x;θ))
]
. (6)

By using the Bregman divergence, we can induce
the following propositions for `NS(θ).

Proposition 1. `NS(θ) can be induced from Eq. (3)
by setting Ψ(z) as:

Ψ(z) = z log(z)− (1+ z) log(1+ z). (7)

Proposition 2. When `NS(θ) equals 0, the follow-
ing equation is satisfied:

G(y|x;θ) =
ν pn(y|x)
pd(y|x)

. (8)

Proposition 3. The objective distribution of
Pθ (y|x) for `NS(θ) is

pd(y|x)
pn(y|x) ∑

yi∈Y

pd(yi|x)
pn(yi|x)

. (9)

Proof. We give the proof of Props. 1, 2, and 3 in
Appendix A of the supplemental material.

We can also investigate the validity of Props. 1,
2, and 3 by comparing them with the previously
reported result. For this purpose, we prove the
following proposition:

Proposition 4. When Eq. (8) satisfies ν = 1 and
pn(y|x) = pd(y), fθ (x,y) equals point-wise mutual
information (PMI).

Proof. This is described in Appendix B of the sup-
plemental material.

This observation is consistent with that by Levy
and Goldberg (2014). The differences between
their representation and ours are as follows. (1)
Our noise distribution is general in the sense that its
definition is not restricted to a unigram distribution;
(2) we mainly discuss pθ (y|x) not fθ (x,y); and (3)
we can compare NS- and SCE-based loss functions
through the Bregman divergence.

3.1 Various Noise Distributions
Different from the objective distribution of SCE,
Eq. (9) is affected by the type of noise distribution
pn(y|x). To investigate the actual objective distribu-
tion for `NS(θ), we need to consider separate cases
for each type of noise distribution. In this subsec-
tion, we further analyze Eq. (9) for each separate
case.

3.1.1 NS with Uniform Noise
First, we investigated the case of a uniform distri-
bution because it is one of the most common noise
distributions for `NS(θ) in the KGE task. From Eq.
(9), we can induce the following property.

5520

Proposition 5. When pn(y|x) is a uniform distri-
bution, Eq. (9) equals pd(y|x).

Proof. This is described in Appendix C of the sup-
plemental material.

Dyer (2014) indicated that NS is equal to NCE
when ν = |Y | and Pn(y|x) is uniform. However,
as we showed, in terms of the objective distribu-
tion, the value of ν is not related to the objective
distribution because Eq. (9) is independent of ν .

3.1.2 NS with Frequency-based Noise
In the original setting of NS (Mikolov et al., 2013),
the authors chose as pn(y|x) a unigram distribution
of y, which is independent of x. Such a frequency-
based distribution is calculated in terms of frequen-
cies on a corpus and independent of the model
parameter θ . Since in this case, different from
the case of a uniform distribution, pn(y|x) remains
on the right side of Eq. (9), pθ (y|x) decreases
when pn(y|x) increases. Thus, we can interpret
frequency-based noise as a type of smoothing for
pd(y|x). The smoothing of NS w/ Freq decreases
the importance of high-frequency labels in the train-
ing data for learning more general vector represen-
tations, which can be used for various tasks as pre-
trained vectors. Since we can expect pre-trained
vectors to work as a prior (Erhan et al., 2010) that
prevents models from overfitting, we tried to use
NS w/ Freq for pre-training KGE models in our
experiments.

3.1.3 Self-Adversarial NS
Sun et al. (2019) recently proposed SANS, which
uses pθ (y|x) for generating negative samples. By
replacing pn(y|x) with pθ (y|x), the objective distri-
bution when using SANS is as follows:

pθ (y|x) =
pd(y|x)

p
θ̂
(y|x) ∑

yi∈Y

pd(yi|x)
p

θ̂
(yi|x)

, (10)

where θ̂ is a parameter set updated in the previ-
ous iteration. Because both the left and right sides
of Eq. (10) include pθ (y|x), we cannot obtain an
analytical solution of pθ (y|x) from this equation.
However, we can consider special cases of pθ (y|x)
to gain an understanding of Eq. (10). At the begin-
ning of the training, pθ (y|x) follows a discrete uni-
form distribution u{1, |Y |} because θ is randomly
initialized. In this situation, when we set p

θ̂
(y|x) in

Eq. (10) to a discrete uniform distribution u{1, |Y |},
pθ (y|x) becomes

pθ (y|x) = pd(y|x). (11)

Next, when we set p
θ̂
(y|x) in Eq. (10) as pd(y|x),

pθ (y|x) becomes

pθ (y|x) = u{1, |Y |}. (12)

In actual mini-batch training, θ is iteratively up-
dated for every batch of data. Because pθ (y|x) con-
verges to u{1, |Y |} when p

θ̂
(y|x) is close to pd(y|x)

and pθ (y|x) converges to pd(y|x) when p
θ̂
(y|x) is

close to u{1, |Y |}, we can approximately regard the
objective distribution of SANS as a mixture of pd
and u{1, |Y |}. Thus, we can represent the objective
distribution of pθ (y|x) as

pθ (y|x)≈ (1−λ)pd(y|x)+λu{1, |Y |} (13)

where λ is a hyper-parameter to determine whether
pθ (y|x) is close to pd(y|x) or u{1, |Y |}. Assum-
ing that pθ (y|x) starts from u{1, |Y |}, λ should
start from 0 and gradually increase through train-
ing. Note that λ corresponds to a temperature α

for p
θ̂
(y|x) in SANS, defined as

p
θ̂
(y|x) = exp(α fθ (x,y))

∑y′∈Y exp(α fθ (x,y′))
, (14)

where α also adjusts p
θ̂
(y|x) to be close to pd(y|x)

or u{1, |Y |}.

4 Theoretical Relationships among Loss
Functions

4.1 Corresponding SCE form to NS with
Frequency-based Noise

We induce a corresponding cross entropy loss from
the objective distribution for NS with frequency-
based noise. We set Tx,y = pn(y|x) ∑

yi∈Y

pd(yi|x)
pn(yi|x) ,

q(y|x) = T−1
x,y pd(y|x), and Ψ(z) = ∑

len(z)
i=1 zi logzi.

Under these conditions, following induction from
Eq. (4) to Eq. (5), we can reformulate
BΨ(z)(q(y|x), p(y|x)) as follows:

BΨ(z)(q(y|x), pθ (y|x))

=−∑
x,y

[
|Y |

∑
i=1

T−1
x,y pd(yi|x) log pθ (yi|x)

]
pd(x,y)

=− 1
|D| ∑

(x,y)∈D
T−1

x,y log pθ (y|x). (15)

5521

Loss Objective Distribution Ψ(z) or Ψ(z) Remarks

NS w/ Uni pd(y|x) Ψ(z) = z log(z)− (1+ z) log(1+ z)
NS w/ Freq T−1

x,y pd(y|x) Ψ(z) = z log(z)− (1+ z) log(1+ z) Tx,y = pn(y|x) ∑
yi∈Y

pd(yi|x)
pn(yi|x)

SANS (1−λ)pd(y|x)+λu{1, |Y |} Ψ(z) = z log(z)− (1+ z) log(1+ z) Approximately derived. λ increases
from zero in training.

SCE pd(y|x) Ψ(z) = ∑
len(z)
i=1 zi logzi

SCE w/ BC T−1
x,y pd(y|x) Ψ(z) = ∑

len(z)
i=1 zi logzi Tx,y = pn(y|x) ∑

yi∈Y

pd(yi|x)
pn(yi|x)

SCE w/ LS (1−λ)pd(y|x)+λu{1, |Y |} Ψ(z) = ∑
len(z)
i=1 zi logzi λ is fixed.

Table 1: Summary of our theoretical findings. w/ Uni denotes with uniform noise, w/ Freq denotes with frequency-
based noise, w/ BC denotes with backward correction, and w/ LS denotes with label smoothing.

Except that Tx,y is conditioned by x and not nor-
malized for y, we can interpret this loss function
as SCE with backward correction (SCE w/ BC)
(Patrini et al., 2017). Taking into account that back-
ward correction can be a smoothing method for
predicting labels (Lukasik et al., 2020), this rela-
tionship supports the theoretical finding that NS
can adopt a smoothing to the objective distribution.

Because the frequency-based noise is used in
word2vec as unigram noise, we specifically con-
sider the case in which pn(y|x) is set to unigram
noise. In this case, we can set pn(y|x) = pd(y).
Since relation tuples do not appear twice in a
knowledge graph, we can assume that pd(x,y) is
uniform. Accordingly, we can change T−1

x,y to
1

pd(y) ∑
yi∈Y

pd (yi|x)
pd (yi)

= 1
pd(y) ∑

yi∈Y

pd (yi ,x)
pd (yi)pd (x)

= pd(x)
pd(y)C

, where C

is a constant value, and we can reformulate Eq. (15)
as follows:

− 1
|D| ∑

(x,y)∈D

pd(x)
pd(y)C

log pθ (y|x)

∝− 1
|D| ∑

(x,y)∈D

#x
#y

log pθ (y|x), (16)

where #x and #y respectively represent frequencies
for x and y in the training data. We use Eq. (16) to
pre-train models for SCE-based loss functions.

4.2 Corresponding SCE form to SANS

We induce a corresponding cross entropy loss from
the objective distribution for SANS by setting
q(y|x) = (1−λ)pd(y|x)+λu{1, |Y |} and Ψ(z) =
∑

len(z)
i=1 zi logzi. Under these conditions, on the ba-

sis of induction from Eq. (4) to Eq. (5), we can

reformulate BΨ(z)(q(y|x), p(y|x)) as follows:

BΨ(z)(q(y|x), p(y|x))

=−∑
x,y

[|Y |
∑
i=1

(1−λ)pd(yi|x) log pθ (yi|x)

+
|Y |

∑
i=1

λu{1, |Y |} log pθ (yi|x)
]

pd(x,y)

=− 1
|D| ∑

(x,y)∈D

[
(1−λ) log pθ (y|x)

+
|Y |

∑
i=1

λ

|Y |
log pθ (yi|x)

]
.

(17)
The equation in the brackets of Eq. (17) is the cross
entropy loss that has a corresponding objective dis-
tribution to that of SANS. This loss function is sim-
ilar in form to SCE with label smoothing (SCE w/
LS) (Szegedy et al., 2016). This relationship also
accords with the theoretical finding that NS can
adopt a smoothing to the objective distribution.

5 Understanding Loss Functions for Fair
Comparisons

We summarize the theoretical findings from Sec-
tions 2, 3, and 4 in Table 1. To compare the results
from the theoretical findings, we need to under-
stand the differences in their objective distributions
and divergences.

5.1 Objective Distributions
The objective distributions for NS w/ Uni and SCE
are equivalent. We can also see that the objec-
tive distribution for SANS is quite similar to that
for SCE w/ LS. These theoretical findings will be
important for making a fair comparison between
scoring methods trained with the NS and SCE loss
functions. When a dataset contains low-frequency

5522

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

p

d Ψ
(z
)(

0.
5,

p)

Ψ(z) = ∑
len(z)
i=1 zi logzi

Ψ(z) = z log(z)− (1+ z) log(1+ z)

Figure 1: Divergence between 0.5 and p in dΨ(z) for
each Ψ(z).

entities, SANS and SCE w/ LS can improve the
link-prediction performance through their smooth-
ing effect, even if there is no performance improve-
ment from the scoring method itself. For compar-
ing the SCE and NS loss functions fairly, therefore,
it is necessary to use the vanilla SCE against NS w/
Uni and use SCE w/ LS against SANS.

However, we still have room to discuss the rela-
tionship between SANS and SCE w/ LS because
λ in SANS increases from zero during training,
whereas λ in SCE w/ LS is fixed. To introduce the
behavior of λ in SANS to SCE w/ LS, we tried
a simple approach in our experiments that trains
KGE models via SCE w/ LS using pre-trained em-
beddings from SCE as initial parameters. Though
this approach is not exactly equivalent to SANS,
we expected it to work similarly to increasing λ

from zero in training.
We also discuss the relationship between NS w/

Freq and SCE w/ BC. While NS w/ Freq is often
used for learning word embeddings, neither NS w/
Freq nor SCE w/ BC has been explored in KGE.
We investigated whether these loss functions are
effective in pre-training KGE models2. Because
SANS and SCE w/ LS are similar methods to NS
w/ Freq and SCE w/ BC in terms of smoothing, in
our experiments, we also compared NS w/ Freq
with SANS and SCE w/ BC with SCE w/ LS as
pre-training methods.

5.2 Divergences

Comparing Ψ(z) for NS and SCE losses is as im-
portant as focusing on their objective distributions.
The Ψ(z) determines the distance between model-

2As a preliminary experiment, we also trained KGE mod-
els via NS w/ Freq and SCE w/ BC. However, these meth-
ods did not improve the link-prediction performance because
frequency-based noise changes the data distribution drasti-
cally.

WN18RR FB15k-237 YAGO3-10 Kinship UMLS Nations
0

10

20

22.28

9.63 8.95

3.09
1.87

0.88

Figure 2: KL divergence of pd(y|x) between training
and test relations for each dataset

predicted and data distributions in the loss. It has
an important role in determining the behavior of
the model. Figure 1 shows the distance in Eq. (3)
between the probability p and probability 0.5 for
each Ψ in Table 13. As we can see from the ex-
ample, dΨ(z)(0.5, p) of the SCE loss has a larger
distance than that of the NS loss. In fact, Painsky
and Wornell (2020) proved that the upper bound
of the Bregman divergence for binary labels when
Ψ(z) = ∑

len(z)
i=1 zi logzi. This means that the SCE

loss imposes a larger penalty on the same predicted
value than the NS loss when the value of the learn-
ing target is the same between the two losses.

However, this does not guarantee that the dis-
tance of SCE is always larger than NS. This is be-
cause the values of the learning target between the
two losses are not always the same. To take into
account the generally satisfied property, we also
focus on the convexity of the functions. In each
training instance, the first-order and second-order
derivatives of these loss functions indicate that SCE
is convex, but NS is not in their domains4. Since
this property is independent of the objective distri-
bution, we can consider SCE fits the model more
strongly to the training data in general. Because of
these features, SCE can be prone to overfitting.

Whether the overfitting is a problem depends on
how large the difference between training and test
data is. To measure the difference between training
and test data in a KG dataset, we calculated the
Kullback-Leibler (KL) divergence for p(y|x) be-
tween the training and test data of commonly used
KG datasets. To compute p(y|x), we first calculated

3In this setting, we can expand Ψ(z) = ∑
len(z)
i=1 zi logzi to

Ψ(z) = z logz+(1− z) log(1− z).
4Goldberg and Levy (2014) discuss the convexity of the

inner product in NS. Different from theirs, our discussion is
about the convexity of the loss functions itself.

5523

Method Loss FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TuckER

NS 0.257 0.151 0.297 0.472 0.431 0.407 0.440 0.473
SANS 0.330 0.238 0.365 0.512 0.445 0.421 0.455 0.489

SCE 0.338 0.246 0.372 0.521 0.453 0.424 0.465 0.507
SCE w/ LS 0.343 0.251 0.378 0.529 0.472 0.441 0.483 0.528

RESCAL

NS 0.337 0.247 0.368 0.516 0.385 0.354 0.405 0.437
SANS 0.339 0.249 0.372 0.520 0.389 0.363 0.404 0.434

SCE 0.352 0.260 0.387 0.537 0.451 0.417 0.470 0.512
SCE w/ LS 0.363 0.269 0.400 0.548 0.469 0.435 0.485 0.529

ComplEx

NS 0.296 0.211 0.324 0.468 0.394 0.373 0.403 0.432
SANS 0.300 0.214 0.328 0.472 0.432 0.407 0.442 0.480

SCE 0.300 0.218 0.326 0.466 0.463 0.434 0.473 0.521
SCE w/ LS 0.318 0.231 0.348 0.493 0.477 0.441 0.491 0.546

DistMult

NS 0.304 0.219 0.336 0.470 0.389 0.374 0.394 0.416
SANS 0.320 0.234 0.352 0.489 0.410 0.386 0.419 0.452

SCE 0.342 0.252 0.374 0.521 0.438 0.407 0.447 0.497
SCE w/ LS 0.344 0.254 0.377 0.526 0.448 0.410 0.460 0.527

TransE

NS 0.284 0.182 0.319 0.498 0.218 0.011 0.390 0.510
SANS 0.328 0.230 0.365 0.525 0.219 0.016 0.394 0.514

SCE 0.324 0.232 0.359 0.508 0.229 0.054 0.366 0.523
SCE w/ LS 0.323 0.231 0.359 0.508 0.229 0.054 0.369 0.522

RotatE

NS 0.301 0.203 0.333 0.505 0.469 0.429 0.484 0.547
SANS 0.333 0.238 0.371 0.523 0.472 0.431 0.487 0.550

SCE 0.315 0.228 0.347 0.486 0.452 0.423 0.463 0.507
SCE w/ LS 0.315 0.228 0.346 0.489 0.447 0.417 0.461 0.502

Table 2: Results for each method in FB15k-237 and WN18RR datasets. Notations are same as those in Table 1.

p(ei|rk,e j) = p(ei|rk)+ p(ei|e j) on the basis of fre-
quencies in the data then calculated p(e j|rk,ei) in
the same manner. We treated both p(ei|rk,e j) and
p(e j|rk,ei) as p(y|x). We denote p(y|x) in the train-
ing data as P and in the test data as Q. With these
notations, we calculated DKL(P||Q) as the KL di-
vergence for p(y|x) between the test and training
data. Figure 2 shows the results. There is a large
difference in the KL divergence between FB15k-
237 and WN18RR. We investigated how this dif-
ference affects the SCE and NS loss functions for
learning KGE models.

In a practical setting, the loss function’s diver-
gence is not the only factor to affect the fit to the
training data. Model selection also affects the fit-
ting. However, understanding a model’s behav-
ior is difficult due to the complicated relationship
between model parameters. For this reason, we
experimentally investigated which combinations
of models and loss functions are suitable for link
prediction.

6 Experiments and Discussion

We conducted experiments to investigate the valid-
ity of what we explained in Section 5 through a

comparison of the NS and SCE losses.

6.1 Experimental Settings
We evaluated the following models on the FB15k-
237 and WN18RR datasets in terms of the Mean
Reciprocal Rank (MRR), Hits@1, Hits@3, and
Hits@10 metrics: TuckER (Balazevic et al., 2019);
RESCAL (Bordes et al., 2011); ComplEx (Trouil-
lon et al., 2016); DistMult (Yang et al., 2015);
TransE (Bordes et al., 2013); RotatE (Sun et al.,
2019). We used LibKGE (Broscheit et al., 2020)5

as the implementation. For each model to be able to
handle queries in both directions, we also trained
a model for the reverse direction that shares the
entity embeddings with the model for the forward
direction.

To determine the hyperparameters of these mod-
els, for RESCAL, ComplEx, DistMult, and TransE
with SCE and SCE w/ LS, we used the settings
that achieved the highest performance in a previ-
ous study (Ruffinelli et al., 2020) for each loss
function as well as the settings from the original
papers for TuckER and RotatE. In TransE with
NS and SANS, we used the settings used by Sun

5https://github.com/uma-pi1/kge

https://github.com/uma-pi1/kge

5524

et al. (2019). When applying SANS, we set α to
an initial value of 1.0 for LibKGE for all models
except TransE and RotatE, and for TransE and Ro-
tatE, where we followed the settings of the original
paper since SANS was used in it. When applying
SCE w/ LS, we set λ to the initial value of LibKGE,
0.3, except on TransE and RotatE. In the original
setting of RotatE, because the values of SANS for
TransE and RotatE were tuned, we also selected λ

from {0.3, 0.1, 0.01} using the development data
in TransE and RotatE for fair comparison. Ap-
pendix D in the supplemental material details the
experimental settings.

6.2 Characteristics of Loss functions

Table 2 shows the results for each loss and model
combination. In the following subsections, we dis-
cuss investigating whether our findings work in a
practical setting on the basis of the results.

6.2.1 Objective Distributions
In terms of the objective distribution, when SCE
w/ LS improves performance, SANS also improves
performance in many cases. Moreover, it accords
with our finding that SCE w/ LS and SANS have
similar effects. For TransE and RotatE, the rela-
tionship does not hold, but as we will see later, this
is probably because TransE with SCE and RotatE
with SCE did not fit the training data. If the SCE
does not fit the training data, the effect of SCE
w/ LS is suppressed as it has the same effect as
smoothing.

6.2.2 Divergences
Next, let us focus on the distance of the loss func-
tions. A comparison of the results of WN18RR
and FB15k-237 shows no performance degrada-
tion of SCE compared with NS. This indicates that
the difference between the training and test data
in WN18RR is not so large to cause overfitting
problems for SCE.

In terms of the combination of models and loss
functions, the results of NS are worse than those
of SCE in TuckER, RESCAL, ComplEx, and Dist-
Mult. Because the four models have no constraint
to prevent fitting to the training data, we con-
sider that the lower scores are caused by under-
fitting. This conjecture is on the basis that the NS
loss weakly fits model-predicted distributions to
training-data distributions compared with the SCE
loss in terms of divergence and convexity.

In contrast, the performance gap between NS

FB15k-237

Method Pre-train MRR Hits@1 Hits@3 Hits@10

- 0.363 0.269 0.400 0.548
RESCAL SCE 0.363 0.268 0.400 0.552
+SCE w/ LS SCE w/ BC 0.361 0.266 0.398 0.547

SCE w/ LS 0.364 0.269 0.402 0.550

- 0.339 0.249 0.372 0.520
RESCAL NS 0.342 0.251 0.376 0.524
+SANS NS w/ Freq 0.343 0.251 0.378 0.524

SANS 0.345 0.254 0.380 0.525

WN18RR

Method Pre-train MRR Hits@1 Hits@3 Hits@10

- 0.477 0.441 0.491 0.546
ComplEx SCE 0.477 0.439 0.493 0.550
+SCE w/ LS SCE w/ BC 0.469 0.433 0.486 0.533

SCE w/ LS 0.481 0.444 0.496 0.553

- 0.472 0.431 0.487 0.550
RotatE NS 0.470 0.433 0.483 0.548
+SANS NS w/ Freq 0.470 0.428 0.484 0.553

SANS 0.471 0.429 0.488 0.552

Table 3: Results of pre-training methods. + denotes
combination of model and loss function. Other nota-
tions are same as those in Table 1.

and SCE is smaller in TransE and RotatE. This
is because the score functions of TransE and Ro-
tatE have bounds and cannot express minus values.
Since SCE has a normalization term, it is difficult
to represent values close to 1 when the score func-
tion cannot represent negative values. This feature
prevents TransE and RotatE from completely fitting
to the training data. Therefore, we can assume that
NS can be a useful loss function when the score
function is bounded.

6.3 Effectiveness of Pre-training Methods
We also explored pre-training for learning KGE
models. We selected the methods in Table 2 that
achieved the best MRR for each NS-based loss and
each SCE-based loss in each dataset. In accordance
with the success of word2vec, we chose unigram
noise for both NS w/ Freq and SCE w/ BC.

Table 3 shows the results. Contrary to our ex-
pectations, SCE w/ BC does not work well as a
pre-training method. Because the unigram noise
for SCE w/ BC can drastically change the original
data distribution, SCE w/ BC is thought to be effec-
tive when the difference between training and test
data is large. However, since the difference is not
so large in the KG datasets, as discussed in the pre-
vious subsection, we believe that the unigram noise
may be considered unsuitable for these datasets.

Compared with SCE w/ BC, both SCE w/ LS
and SANS are effective for pre-training. This is
because the hyperparameters of SCE w/ LS and

5525

SANS are adjusted for KG datasets.
When using vanilla SCE as a pre-training

method, there is little improvement in prediction
performance, compared with other methods. This
result suggests that increasing λ in training is not
as important for improving task performance.

For RotatE, there is no improvement in pre-
training. Because RotatE has strict constraints on
its relation representation, we believe it may de-
grade the effectiveness of pre-training.

7 Related Work

Mikolov et al. (2013) proposed the NS loss func-
tion as an approximation of the SCE loss function
to reduce computational cost and handle a large
vocabulary for learning word embeddings. NS is
now used in various NLP tasks, which must handle
a large amount of vocabulary or labels. Melamud
et al. (2017) used the NS loss function for training a
language model. Trouillon et al. (2016) introduced
the NS loss function to KGE. In contextualized pre-
trained embeddings, Clark et al. (2020a) indicated
that ELECTRA (Clark et al., 2020b), a variant of
BERT (Devlin et al., 2019), follows the same man-
ner of the NS loss function.

NS is frequently used to train KGE mod-
els. KGE is a task to complement a knowledge
graph that describes relationships between enti-
ties. Knowledge graphs are used in various im-
portant downstream tasks because of its conve-
nience in incorporating external knowledge, such
as in a language model (Logan et al., 2019), di-
alogue (Moon et al., 2019), question-answering
(Lukovnikov et al., 2017), natural language infer-
ence (K M et al., 2018), and named entity recog-
nition (He et al., 2020). Thus, current KGE is
important in NLP.

Due to the importance of KGE, various scoring
methods including RESCAL (Bordes et al., 2011),
TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016),
TuckER (Balazevic et al., 2019), and RotatE (Sun
et al., 2019) used in our experiment, have been pro-
posed. However, the relationship between these
score functions and loss functions is not clear. Sev-
eral studies (Ruffinelli et al., 2020; Ali et al., 2020)
have investigated the best combinations of scoring
method, loss function, and their hyperparameters
in KG datasets. These studies differ from ours in
that they focused on empirically searching for good
combinations rather than theoretical investigations.

As a theoretical study, Levy and Goldberg (2014)
showed that NS is equivalent to factorizing a matrix
for PMI when a unigram distribution is selected as
a noise distribution. Dyer (2014) investigated the
difference between NCE (Gutmann and Hyvärinen,
2010) and NS. Gutmann and Hirayama (2011) re-
vealed that NCE is derivable from Bregman diver-
gence. Our derivation for NS is inspired by their
work. Meister et al. (2020) proposed a framework
to jointly interpret label smoothing and confidence
penalty (Pereyra et al., 2017) through investigating
their divergence. Yang et al. (2020) theoretically
induced that a noise distribution that is close to
the true distribution behind the training data is suit-
able for training KGE models in NS. They also
proposed a variant of SANS in the basis of their
investigation.

Different from these studies, we investigated the
distributions at optimal solutions of SCE and NS
loss functions while considering several types of
noise distribution in NS.

8 Conclusion

We revealed the relationships between SCE and
NS loss functions in KGE. Through theoretical
analysis, we showed that SCE and NS w/ Uni are
equivalent in objective distribution, which is the
predicted distribution of a model at an optimal so-
lution, and that SCE w/ LS and SANS have similar
objective distributions. We also showed that SCE
more strongly fits a model to the training data than
NS due to the divergence and convexity of SCE.

The experimental results indicate that the differ-
ences in the divergence of the two losses were not
large enough to affect dataset differences. The re-
sults also indicate that SCE works well with highly
flexible scoring methods, which do not have any
bound of the scores, while NS works well with
RotatE, which cannot express minus values due
to its bounded scoring. Moreover, they indicate
that SCE and SANS work better in pre-training
than NS w/ Uni, commonly used for learning word
embeddings.

For future work, we will investigate the proper-
ties of loss functions in out-of-domain data.

Acknowledgements

This work was partially supported by JSPS Kakenhi
Grant nos. 19K20339, 21H03491, and 21K17801.

5526

References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-

rent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann. 2020. Pykeen 1.0: A python library
for training and evaluating knowledge graph emebd-
dings. arXiv preprint arXiv:2007.14175.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Arindam Banerjee, Srujana Merugu, Inderjit S.
Dhillon, and Joydeep Ghosh. 2005. Clustering with
bregman divergences. Journal of Machine Learning
Research, 6(58):1705–1749.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26, pages 2787–2795.
Curran Associates, Inc.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI’11, page 301–306. AAAI Press.

L.M. Bregman. 1967. The relaxation method of finding
the common point of convex sets and its application
to the solution of problems in convex programming.
USSR Computational Mathematics and Mathemati-
cal Physics, 7(3):200 – 217.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek,
Patrick Betz, and Rainer Gemulla. 2020. LibKGE
- A knowledge graph embedding library for repro-
ducible research. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 165–
174.

Kevin Clark, Minh-Thang Luong, Quoc Le, and
Christopher D. Manning. 2020a. Pre-training trans-
formers as energy-based cloze models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
285–294, Online. Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020b. Electra: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Tim Dettmers, Minervini Pasquale, Stenetorp Pon-
tus, and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of

the 32th AAAI Conference on Artificial Intelligence,
pages 1811–1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chris Dyer. 2014. Notes on noise contrastive es-
timation and negative sampling. arXiv preprint
arXiv:1410.8251.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why does unsupervised pre-training
help deep learning? J. Mach. Learn. Res.,
11:625–660.

Yoav Goldberg and Omer Levy. 2014. word2vec ex-
plained: deriving mikolov et al.’s negative-sampling
word-embedding method. CoRR, abs/1402.3722.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 297–304.

Michael U. Gutmann and Jun-ichiro Hirayama. 2011.
Bregman divergence as general framework to es-
timate unnormalized statistical models. In Pro-
ceedings of the Twenty-Seventh Conference on Un-
certainty in Artificial Intelligence, UAI’11, page
283–290, Arlington, Virginia, USA. AUAI Press.

Qizhen He, Liang Wu, Yida Yin, and Heming Cai.
2020. Knowledge-graph augmented word represen-
tations for named entity recognition. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7919–7926.

Annervaz K M, Somnath Basu Roy Chowdhury, and
Ambedkar Dukkipati. 2018. Learning beyond
datasets: Knowledge graph augmented neural net-
works for natural language processing. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 313–322, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2017. Knowledge base completion: Baselines strike
back. In Proceedings of the 2nd Workshop on Rep-
resentation Learning for NLP, pages 69–74, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
http://jmlr.org/papers/v6/banerjee05b.html
http://jmlr.org/papers/v6/banerjee05b.html
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/https://doi.org/10.1016/0041-5553(67)90040-7
https://www.aclweb.org/anthology/2020.emnlp-demos.22
https://www.aclweb.org/anthology/2020.emnlp-demos.22
https://www.aclweb.org/anthology/2020.emnlp-demos.22
https://doi.org/10.18653/v1/2020.emnlp-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.20
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
https://doi.org/10.1609/aaai.v34i05.6299
https://doi.org/10.1609/aaai.v34i05.6299
https://doi.org/10.18653/v1/N18-1029
https://doi.org/10.18653/v1/N18-1029
https://doi.org/10.18653/v1/N18-1029
https://doi.org/10.18653/v1/W17-2609
https://doi.org/10.18653/v1/W17-2609

5527

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Pro-
ceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, page 2177–2185, Cambridge, MA, USA.
MIT Press.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt
Gardner, and Sameer Singh. 2019. Barack’s wife
hillary: Using knowledge graphs for fact-aware lan-
guage modeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5962–5971, Florence, Italy. Associa-
tion for Computational Linguistics.

Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon,
and Sanjiv Kumar. 2020. Does label smoothing mit-
igate label noise? In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 6448–6458. PMLR.

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and
Sören Auer. 2017. Neural network-based question
answering over knowledge graphs on word and char-
acter level. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, page
1211–1220, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Clara Meister, Elizabeth Salesky, and Ryan Cot-
terell. 2020. Generalized entropy regularization or:
There’s nothing special about label smoothing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6870–
6886, Online. Association for Computational Lin-
guistics.

Oren Melamud, Ido Dagan, and Jacob Goldberger.
2017. A simple language model based on PMI ma-
trix approximations. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1860–1865, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019. OpenDialKG: Explainable conver-
sational reasoning with attention-based walks over
knowledge graphs. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 845–854, Florence, Italy. Associ-
ation for Computational Linguistics.

A. Painsky and G. W. Wornell. 2020. Bregman diver-
gence bounds and universality properties of the loga-
rithmic loss. IEEE Transactions on Information The-
ory, 66(3):1658–1673.

Giorgio Patrini, Alessandro Rozza, Aditya Kr-
ishna Menon, Richard Nock, and Lizhen Qu. 2017.
Making deep neural networks robust to label noise:
A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey E. Hinton. 2017. Regu-
larizing neural networks by penalizing confident out-
put distributions. CoRR, abs/1701.06548.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You can teach an old dog new
tricks! on training knowledge graph embeddings.
In International Conference on Learning Represen-
tations.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In Interna-
tional Conference on Learning Representations.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
pages 2071–2080.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang,
Jingren Zhou, and Jie Tang. 2020. Understanding
negative sampling in graph representation learning.
In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’20, page 1666–1676, New York,
NY, USA. Association for Computing Machinery.

https://doi.org/10.18653/v1/P19-1598
https://doi.org/10.18653/v1/P19-1598
https://doi.org/10.18653/v1/P19-1598
http://proceedings.mlr.press/v119/lukasik20a.html
http://proceedings.mlr.press/v119/lukasik20a.html
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.18653/v1/2020.acl-main.615
https://doi.org/10.18653/v1/2020.acl-main.615
https://doi.org/10.18653/v1/D17-1198
https://doi.org/10.18653/v1/D17-1198
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.1109/TIT.2019.2958705
https://doi.org/10.1109/TIT.2019.2958705
https://doi.org/10.1109/TIT.2019.2958705
http://arxiv.org/abs/1701.06548
http://arxiv.org/abs/1701.06548
http://arxiv.org/abs/1701.06548
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://doi.org/10.1145/3394486.3403218
https://doi.org/10.1145/3394486.3403218

5528

A Proof of Proposition 1, 2, and 3

We can reformulate `NS as follows:

`NS(θ) =− 1
|D| ∑

(x,y)∈D

(
log(P(C = 1,y|x;θ))+

ν

∑
i=1,yi∼pn

log(P(C = 0,yi|x;θ))

)

=− 1
|D| ∑

(x,y)∈D
log(P(C = 1,y|x;θ))− 1

|D| ∑
(x,y)∈D

ν

∑
i=1,yi∼pn

log(P(C = 0,yi|x;θ))

=− 1
|D| ∑

(x,y)∈D
log(

1
1+G(y|x;θ)

)− 1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼pn

log(
G(yi|x;θ)

1+G(yi|x;θ)
)

=
1
|D| ∑

(x,y)∈D
log(1+G(y|x;θ))+

ν

ν |D| ∑
(x,y)∈D

ν

∑
i=1,yi∼pn

log(1+
1

G(yi|x;θ)
)

= ∑
x,y

pd(y|x) log(1+G(y|x;θ))pd(x)+∑
x,y

ν pn(y|x) log(1+
1

G(y|x;θ)
)pd(x) (18)

Letting u = (x,y), f (u) = ν pn(y|x)
pd(y|x) , g(u) = G(y|x;θ), and pd(x) = 1

pd(y|x) pd(x,y), we can reformulate
Eq. (18) as:

`NS(θ) =

(
∑
x,y

pd(y|x) log(1+g(u))
1

pd(y|x)
pd(x,y)+∑

x,y
ν pn(y|x) log(1+

1
g(u)

)
1

pd(y|x)
pd(x,y)

)

=∑
x,y

[
log(1+g(u))+ log(1+

1
g(u)

) f (u)
]

pd(x,y)

=∑
x,y

[
log(1+g(u))− log(g(u)) f (u)+ log(1+g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
−g(u) log(1+g(u))+(1+g(u)) log(1+g(u))

+ log(g(u))g(u)+ log(1+g(u))g(u)− log(g(u)) f (u)+ log(1+g(u)) f (u)
]

pd(x,y) (19)

With Ψ(g(u)) = g(u) log(g(u))− (1+g(u)) log(1+g(u)) and Ψ′(g(u)) = log(g(u))− log(1+g(u)), we
can reformulate Eq. (19) as:

`NS(θ) =∑
x,y

[
−Ψ(g(u))+Ψ

′(g(u))g(u)−Ψ
′(g(u)) f (u)

]
pd(x,y)

=BΨ(g(u), f (u)). (20)

From Eq. (20), when `NS(θ) is minimized, g(u) = f (u) is satisfied. In this condition, G(y|x;θ) becomes
ν pn(y|x)
pd(y|x) , and exp(fθ (x,y)) becomes pd(y|x)

ν pn(y|x) as follows:

g(u) = f (u)⇔ G(y|x;θ) =
ν pn(y|x)
pd(y|x)

⇔ exp(fθ (x,y)) =
pd(y|x)

ν pn(y|x)
. (21)

Based on the Eq. (1) and Eq. (21), the objective distribution for pθ (y|x) is as follows:

pθ (y|x) =
pd(y|x)

pn(y|x) ∑
yi∈Y

pd(yi|x)
pn(yi|x)

. (22)

B Proof of Proposition 4

PMI is induced by multiplying pd(x) to the right-hand side of Eq. (8) and then computing logarithm for
both sides as follows:

G(y|x;θ) =
pn(y|x)
pd(y|x)

⇔ exp(fθ (x,y)) =
pd(y|x)
pn(y|x)

=
pd(y|x)
pd(y)

=
pd(x,y)

pd(x)pd(y)
⇔ fθ (x,y) = log

pd(x,y)
pd(y)pd(y)

(23)

5529

C Proof of Proposition 5

When pn(y|x) is a uniform distribution, pn(y|x) ∑
yi∈Y

pd(yi|x)
pn(yi|x) = ∑

yi∈Y
pd(yi|x) = 1, and thus, Eq. (9) becomes

pd(y|x).

D Experimental Details

Dataset: We use FB15k-237 (Toutanova and Chen, 2015)6 and WN18RR (Dettmers et al., 2018)7 datasets
in the experiments. We followed the standard split in the original papers for each dataset. Table 4 lists the
statistics for each dataset.

Dataset Entities Relations Tuples

Train Valid Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 4: The numbers of each instance for each dataset.

Metric: We evaluated the link prediction performance of models with MRR, Hits@1, Hits@3, and
Hits@10 by ranking test triples against all other triples not appeared in the training, valid, and test datasets.
We used LibKGE for calculating these metric scores.
Model: We compared the following models: TuckER (Balazevic et al., 2019); RESCAL (Bordes et al.,
2011); ComplEx (Trouillon et al., 2016); DistMult (Yang et al., 2015); TransE (Bordes et al., 2013);
RotatE (Sun et al., 2019). For each model, we also trained a model for the reverse direction that shares
the entity embeddings with the model for the forward direction. Thus, the dimension size of subject and
object embeddings are the same in all models.
Implementation: We used LibKGE (Broscheit et al., 2020)8 as the implementation. We used its 1vsAll
setting for SCE-based loss functions and negative sampling setting for NS-based loss functions. We
modified LibKGE to be able to use label smoothing on the 1vsAll setting. We also incorporated NS w/
Freq and SCE w/ BC into the implementation.
Hyper-parameter: Table 5 and 6 show the hyper-parameter settings of each method for each dataset.
In RESCAL, ComplEx, and DistMult we used the settings that achieved the highest performance for
each loss function in the previous study (Ruffinelli et al., 2020)9. In TuckER and RotatE, we follow the
settings from the original paper. When applying SANS, we set α to an initial value of 1.0 for LibKGE
for all models except TransE and RotatE, and for TransE and RotatE, where we followed the settings
of the original paper of SANS since SANS was used in it. When applying SCE w/ LS, we set λ to the
initial value of LibKGE, 0.3, except on TransE and RotatE. In the original setting of TransE and RotatE,
because the value of SANS was tuned for comparison, for fairness, we selected λ from {0.3, 0.1, 0.01} by
using the development data through a single run for each value. We set the maximum epoch to 800. We
calculated MRR every five epochs on the developed data, and the training was terminated when the highest
value was not updated ten times. We chose the best model by using the MRR score on the development
data. These hyperparameters were also used in the pre-training step.
Validation Score Table 7, 8, and 9 show the best MRR scores of each loss for each model on the validation
dataset.
Device: In all models, we used a single NVIDIA RTX2080Ti for training. Except for RotetE with
SCE-based loss functions, all models finished the training in one day. The RotetE with SCE-based loss
function finished the training in at most one week.

6https://www.microsoft.com/en-us/download/confirmation.aspx?id=52312
7https://github.com/TimDettmers/ConvE
8https://github.com/uma-pi1/kge
9https://github.com/uma-pi1/kge-iclr20

https://www.microsoft.com/en-us/download/confirmation.aspx?id=52312
https://github.com/TimDettmers/ConvE
https://github.com/uma-pi1/kge
https://github.com/uma-pi1/kge-iclr20

5530

FB15k-237

Model Batch Dim Initialize
Regularize Dropout Optimizer Sample

λ α

Type Entity Relation Entity Rel. Type LR Decay P. sub. obj.

TuckER

SCE 128 200 xn: 1.0 - - - 0.3 0.4 Adam 0.0005 - - All All - -
SCE w/ LS 128 200 xn: 1.0 - - - 0.3 0.4 Adam 0.0005 - - All All 0.3 -
NS 128 200 xn: 1.0 - - - 0.3 0.4 Adam 0.0005 - - All All - -
SANS 128 200 xn: 1.0 - - - 0.3 0.4 Adam 0.0005 - - All All - 1.0

Rescal

SCE 512 128 n: 0.123 - - - 0.427 0.159 Adam 7.39E-5 0.95 1 All All - -
SCE w/ LS 512 128 n: 0.123 - - - 0.427 0.159 Adam 7.39E-5 0.95 1 All All 0.3 -
NS 256 128 xn: 1.0 lp: 3 1.22E-12 4.80E-14 0.347 - Adagrad 0.0170 0.95 5 22 155 - -
SANS 256 128 xn: 1.0 lp: 3 1.22E-12 4.80E-14 0.347 - Adagrad 0.0170 0.95 5 22 155 - 1.0

ComlEx

SCE 512 128 u: 0.311 - - - 0.0476 0.443 Adagrad 0.503 0.95 7 All All - -
SCE w/ LS 512 128 u: 0.311 - - - 0.0476 0.443 Adagrad 0.503 0.95 7 All All 0.3 -
NS 512 256 n: 4.81E-5 lp: 2 6.34E-9 9.08E-18 0.182 0.0437 Adagrad 0.241 0.95 4 1 48 - -
SANS 512 256 n: 4.81E-5 lp: 2 6.34E-9 9.08E-18 0.182 0.0437 Adagrad 0.241 0.95 4 1 48 - 1.0

DistMult

SCE 512 128 n: 0.806 - - - 0.370 0.280 Adam 0.00063 0.95 1 All All - -
SCE 512 128 n: 0.806 - - - 0.370 0.280 Adam 0.00063 0.95 1 All All 0.3 -
NS 1024 256 u: 0.848 lp: 3 1.55E-10 3.93E-15 0.455 0.360 Adagrad 0.141 0.95 9 557 367 - -
SANS 1024 256 u: 0.848 lp: 3 1.55E-10 3.93E-15 0.455 0.360 Adagrad 0.141 0.95 9 557 367 - 1.0

TransE

SCE 128 128 u: 1.0E-5 - - - - - Adam 0.0003 0.95 5 All All - -
SCE w/ LS 128 128 u: 1.0E-5 - - - - - Adam 0.0003 0.95 5 All All 0.01 -
NS 1024 1000 xu: 1.0 - - - - - Adam 0.00005 0.95 5 256 256 - -
SANS 1024 1000 xu: 1.0 - - - - - Adam 0.00005 0.95 5 256 256 - 1.0

Rotate

SCE 1024 1000 xu: 1.0 - - - - - Adam 0.00005 0.95 5 All All - -
SCE w/ LS 1024 1000 xu: 1.0 - - - - - Adam 0.00005 0.95 5 All All 0.01 -
NS 1024 1000 xu: 1.0 - - - - - Adam 0.00005 0.95 5 256 256 - -
SANS 1024 1000 xu: 1.0 - - - - - Adam 0.00005 0.95 5 256 256 - 1.0

Table 5: The hyper-parameters for each model in FB15k-237. Rel. denotes relation, P. denotes patience, sub.
denotes subjective, obj. denotes objective, xn denotes xavier normal, n denotes normal, xu denotes xavier uniform,
and u denotes uniform.

WN18RR

Model Batch Dim Initialize
Regularize Dropout Optimizer Sample

λ α

Type Entity Relation Entity Rel. Type LR Decay P. sub. obj.

TuckER

SCE 128 200 xn: 1.0 - - - 0.2 0.2 Adam 0.0005 - - All All - -
SCE w/ LS 128 200 xn: 1.0 - - - 0.2 0.2 Adam 0.0005 - - All All 0.3 -
NS 128 200 xn: 1.0 - - - 0.2 0.2 Adam 0.0005 - - All All - -
SANS 128 200 xn: 1.0 - - - 0.2 0.2 Adam 0.0005 - - All All - 1.0

Rescal

SCE 512 256 xn: 1.0 - - - - - Adam 0.00246 0.95 9 All All - -
SCE w/ LS 512 256 xn: 1.0 - - - - - Adam 0.00246 0.95 9 All All 0.3 -
NS 512 128 n: 1.64E-4 - - - - - Adam 0.00152 0.95 1 6 8 - -
SANS 512 128 n: 1.64E-4 - - - - - Adam 0.00152 0.95 1 6 8 - 1.0

ComlEx

SCE 512 128 u: 0.281 lp: 2 4.52E-6 4.19E-10 0.359 0.311 Adagrad 0.526 0.95 5 All All - -
SCE w/ LS 512 128 u: 0.281 lp: 2 4.52E-6 4.19E-10 0.359 0.311 Adagrad 0.526 0.95 5 All All 0.3 -
NS 1024 128 xn: 1.0 - - - 0.0466 0.0826 Adam 3.32E-5 0.95 7 6 6 - -
SANS 1024 128 xn: 1.0 - - - 0.0466 0.0826 Adam 3.32E-5 0.95 7 6 6 - 1.0

DistMult

SCE 512 128 u: 0.311 lp: 2 1.44E-18 1.44E-18 0.0476 0.443 Adagrad 0.503 0.95 7 All All - -
SCE w/ LS 512 128 u: 0.311 lp: 2 1.44E-18 1.44E-18 0.0476 0.443 Adagrad 0.503 0.95 7 All All 0.3 -
NS 1024 128 xn: 1.0 - - - 0.0466 0.0826 Adam 3.32E-5 0.95 7 6 6 - -
SANS 1024 128 xn: 1.0 - - - 0.0466 0.0826 Adam 3.32E-5 0.95 7 6 6 - 1.0

TransE

SCE 128 512 xn: 1.0 lp: 2 2.13E-7 8.99E-13 0.252 - Adagrad 0.253 0.95 5 All All - -
SCE w/ LS 128 512 xn: 1.0 lp: 2 2.13E-7 8.99E-13 0.252 - Adagrad 0.253 0.95 5 All All 0.01 -
NS 512 500 xu: 1.0 - - - - - Adam 0.00005 0.95 5 1024 1024 - -
SANS 512 500 xu: 1.0 - - - - - Adam 0.00005 0.95 5 1024 1024 - 0.5

Rotate

SCE 512 500 xu: 1.0 - - - - - Adam 0.00005 0.95 5 All All - -
SCE w/ LS 512 500 xu: 1.0 - - - - - Adam 0.00005 0.95 5 All All 0.01 -
NS 512 500 xu: 1.0 - - - - - Adam 0.00005 0.95 5 1024 1024 - -
SANS 512 500 xu: 1.0 - - - - - Adam 0.00005 0.95 5 1024 1024 - 0.5

Table 6: The hyper-parameters for each model in WN18RR. The notations are the same as Table 5.

5531

Model Loss FB15k-237 WN18RR

TuckER

SCE 0.345 0.451
SCE w/ LS 0.350 0.470
NS 0.261 0.433
SANS 0.337 0.441

RESCAL

SCE 0.359 0.461
SCE w/ LS 0.369 0.474
NS 0.344 0.389
SANS 0.344 0.390

ComplEx

SCE 0.304 0.468
SCE w/ LS 0.324 0.478
NS 0.302 0.399
SANS 0.308 0.433

DistMult

SCE 0.350 0.441
SCE w/ LS 0.351 0.451
NS 0.308 0.391
SANS 0.326 0.412

TransE

SCE 0.328 0.227
SCE w/ LS 0.322 0.220
NS 0.289 0.216
SANS 0.333 0.218

RotatE

SCE 0.320 0.452
SCE w/ LS 0.320 0.449
NS 0.306 0.472
SANS 0.340 0.475

Table 7: The best MRR scores on validation data.

Dataset Mehotd MRR

FB15k-237 RESCAL+SCE w/BC 0.149
RESCAL+NS w/ Freq 0.171

WN18RR ComplEx+SCE w/ BC 0.361
RotatE+NS w/ Freq 0.469

Table 8: The best MRR scores of pre-trained models on validation data.

FB15k-237

Method Pretrain MRR

RESCAL+SCE w / LS
SCE 0.369
SCE w/ BC 0.369
SCE w/ LS 0.371

RESCAL+SANS
NS 0.349
NS w/ Freq 0.348
SANS 0.350

WN18RR

Method Pretrain MRR

ComplEx+SCE w/ LS
SCE 0.483
SCE w/ BC 0.469
SCE w/ LS 0.481

RotatE+SANS
NS 0.472
NS w/ Freq 0.474
SANS 0.475

Table 9: The best MRR scores of models initialized with pre-trained embeddings on validation data.

