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Abstract

Today’s text classifiers inevitably suffer from
unintended dataset biases, especially the
document-level label bias and word-level key-
word bias, which may hurt models’ general-
ization. Many previous studies employed data-
level manipulations or model-level balancing
mechanisms to recover unbiased distributions
and thus prevent models from capturing the
two types of biases. Unfortunately, they ei-
ther suffer from the extra cost of data col-
lection/selection/annotation or need an elab-
orate design of balancing strategies. Differ-
ent from traditional factual inference in which
debiasing occurs before or during training,
counterfactual inference mitigates the influ-
ence brought by unintended confounders after
training, which can make unbiased decisions
with biased observations. Inspired by this,
we propose a model-agnostic text classifica-
tion debiasing framework – CORSAIR, which
can effectively avoid employing data manip-
ulations or designing balancing mechanisms.
Concretely, CORSAIR first trains a base model
on a training set directly, allowing the dataset
biases “poison” the trained model. In infer-
ence, given a factual input document, COR-
SAIR imagines its two counterfactual counter-
parts to distill and mitigate the two biases cap-
tured by the poisonous model. Extensive ex-
periments demonstrate CORSAIR’s effective-
ness, generalizability and fairness. 1

1 Introduction

Text classification, mapping text documents to a
set of predefined categories, is a fundamental and
important technique serving for many applications
such as sentiment analysis (Qian et al., 2020b),

∗This work was partly done during Chen Qian’s intern-
ship at Alibaba DAMO academy. Fuli Feng and Lijie Wen
are the co-corresponding authors.

1The code is available at https://github.com/
qianc62/Corsair.

partisanship recognition (Kiesel et al., 2019) and
spam detection (Castillo et al., 2007). Machine
learning models have become the default choice
of solving text classification, owing to their abil-
ity to recognize the textual patterns from the la-
beled documents (Kim, 2014; Howard and Ruder,
2018). Nevertheless, they are at the risk of inad-
vertently capturing and even amplifying the unin-
tended dataset biases (Zhao et al., 2017; Zhang
et al., 2020; Feder et al., 2020; Blodgett et al.,
2020), which can be at document-level (i.e., label
bias) and word-level (i.e., keyword bias).

The label bias issue occurs in the scenarios
where a portion of the categories possesses a ma-
jority of training examples than others. For ex-
ample, the label distribution of a binary sentiment
analysis dataset could be 95%:5% (Dixon et al.,
2018). Many previous studies found that the mod-
els trained on such data are potentially at the risk
of simply predicting the majority answers (Dixon
et al., 2018; Zhang et al., 2020). The keyword
bias issue occurs in the situation where trained
models exhibit excessive correlations between cer-
tain words and categories, e.g., some sentiment-
irrelevant words – “black” or “islam” – are always
connected to negative category. As such, mod-
els always lean to unfairly predict any document
containing those keywords to a specific category
according to the biased statistical information in-
stead of intrinsic textual semantics (Waseem and
Hovy, 2016; Liu and Avci, 2019). The serious
disadvantages limit models’ generalization, espe-
cially in the scenarios where the training data is
differently-distributed with the testing data (Niu
et al., 2021; Goyal et al., 2017).

To resolve the issues, an effective solution is to
perform data-level manipulations (e.g., resampling
(Qian et al., 2020b)), which effectively transforms
a training set to a relatively balanced one before
training. Another line of debiasing work typically

https://github.com/qianc62/Corsair
https://github.com/qianc62/Corsair
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designs model-level balancing mechanisms (e.g.,
reweighting (Zhang et al., 2020)), aiming to adap-
tively decrease the influence of majority categories
while increasing the minority during training. The
core of the two types of solutions is to explicitly
or implicitly recover unbiased distributions and
prevent models from capturing the unintended bi-
ases. Unfortunately, the data-level strategy typi-
cally suffers from the extra manual cost of data
collection, selection and annotation (Zhang et al.,
2020), requires much longer training time and nor-
mally enlarges the gap between training and test-
ing data distributions. The model-level strategy
typically needs elaborate selection or definition
of balancing strategies and needs relearning from
scratch once certain balancing mechanisms (e.g.,
an unbiased training objective) are redesigned.

Must machine learning models perform debias-
ing before or during training? Think about the dif-
ference in the decision making processes between
machines and humans. Machine learning systems
are forced to imitate the behavior from observa-
tions via maximizing the prior probability, from
which the decision is directly drawn during infer-
ence. By contrast, we humans, although born and
raised in a biased nature, have the ability of coun-
terfactual inference to make unbiased decisions
with biased observations (Niu et al., 2021). To il-
lustrate, we briefly compare the traditional factual
inference and the counterfactual inference in text
classification:
• Factual Inference: What will the prediction be
if seeing an input document?
• Counterfactual Inference: What will the pre-
diction be if seeing the main content of an input
document only and had not seen the confounding
dataset biases?
The counterfactual inference essentially gifts hu-
mans the imagination ability (i.e., had not done)
to make decisions with a collaboration of the main
content and the confounding biases (Tang et al.,
2020), as well as to introspect whether our deci-
sion is deceived (Niu et al., 2021), i.e., counter-
factual inference leads to debiased prediction.

Inspired by this, we propose a novel model-
agnostic paradigm (CORSAIR), which adopts fac-
tual learning before mitigating the negative influ-
ence of the dataset biases in inference (i.e., after
training), without the need of employing data ma-
nipulations or designing balancing mechanisms.
Concretely, in training, CORSAIR directly trains

a base model on an original training set, allowing
the unintended dataset biases “poison” the model.
To “rescue” the testing documents from the poi-
sonous model, in testing, for each factual input
document, CORSAIR imagines its two types of
counterfactual counterparts to produce two coun-
terfactual outputs as the distilled label bias and
keyword bias. Lastly, CORSAIR performs a bias
removal operation to produce a counterfactual pre-
diction that corresponds to a debiased decision.
To verify, we perform extensive experiments on
multiple public benchmark datasets. The results
demonstrate our proposed framework’s effective-
ness, generalizability and fairness, proving that
CORSAIR, when employed on four different types
of base models, is significantly helpful to mitigate
the two types of dataset biases.

2 Methodology

Problem Formalization Let X and Y denote
the input (text document) and output (category)
spaces, respectively. Given a labeled training set
Dtrain = {(xi, yi) ∈ X × Y} (i.e., the observed
data), the goal is to learn a text classifier M on
Dtrain, which serves as a mapping function f(·) :
X 7→ Y to accurately classify testing examples in
Dtest = {x̂|x̂ ∈ X}.

Considering that the dataset biases would not be
completely eliminated via data manipulations, em-
ploying data manipulations (e.g., resampling) or
designing balancing mechanisms (e.g., reweight-
ing) may be not a directly-reasonable solution. In-
spired by the success of counterfactual inference
in mitigating biases in computer vision (Niu et al.,
2021; Wang et al., 2020; Tang et al., 2020; Yang
et al., 2020; Goyal et al., 2017), we propose a
counterfactual-inference-based text-classification
debiasing framework (CORSAIR), which is able
to make unbiased decisions with biased observa-
tions. The core idea of CORSAIR is to train a
“poisonous” text classifier regardless the dataset
biases and post-adjust the biased predictions ac-
cording to the causes of the biases in inference.
It’s worth mentioning that our proposed CORSAIR

can be applied to almost any parameterized base
model, including traditional one-stage classifiers
(e.g., TEXTCNN (Kim, 2014), RCNN (Lai et al.,
2015) and LECO (Qian et al., 2020b)) and cur-
rently prevalent two-stage classifiers2 (e.g., ULM-

2For brevity, two-stage classifiers refer to two-stage lan-
guage models with an additional prediction layer.
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Figure 1: The architecture of our proposed model-agnostic framework (CORSAIR). Specifically, CORSAIR first
trains a base model on the training data directly so as to preserve the dataset biases in the trained model. In the
inference phase, given a factual input document, CORSAIR first imagines its two types of counterfactual documents
to produce two counterfactual outputs as the distilled label bias and keyword bias. Finally, CORSAIR searches two
adaptive parameters to perform bias removal to produce a counterfactual prediction for a debiased answer.

FIT (Howard and Ruder, 2018), BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)).
For brevity, we will elaborate CORSAIR by taking
RoBERTa (a robustly optimized BERT-shape
language model) as the example base model, and
binary sentiment analysis as the example applica-
tion. The high-level architecture of CORSAIR is il-
lustrated in Figure 1, which consists of three main
components: biased learning, bias distillation and
bias removal.

2.1 Biased Learning

In the learning phase (i.e., training), CORSAIR first
trains the base model RoBERTa to learn a mapping
relation based on training data. Similar to tradi-
tional training, CORSAIR uses feedforward to pre-
dict batch examples and backward to update those
learnable parameters in an end-to-end fashion. In
practice, we adopt the standard cross entropy as
the training objective (i.e., loss function):

L(θ) = − 1

n

n∑
i=1

∑
y∈Y

πi,y lnπi,y

πi = softmax(f(xi))

(1)

where θ denotes the learnable parameters of the
base model f(·), n is the number of batch exam-
ples, πi is the ground-truth label distribution (over
Y) and πi is the predicted probability distribution
(over Y) for a given training example xi.

2.2 Bias Distillation

In the inference phase (i.e., testing), traditional de-
biasing methods making predictions for each test-
ing document via the conventional feedforward

operation on the trained base model to obtain the
probability distribution over Y (i.e., factual pre-
diction) for a most possible answer. However, in
addition to the textual contents of the document,
the prediction is also affected by unintended con-
founders (Pearl and Mackenzie, 2018) which may
produce the label bias and keyword bias. Aiming
to obtain unbiased prediction, the key is to debias
during inference by blocking the spread of the bi-
ases from learning to inference. To achieve that,
inspired by the counterfactual studies in causal
reasoning (Niu et al., 2021; Tang et al., 2020), we
design an effective strategy based on causal inter-
vention (Pearl, 2013; Pearl and Mackenzie, 2018)
to distill the potentially-harmful biases captured
by the trained model (Niu et al., 2021; Tang et al.,
2020), and then mitigate them via bias removal.

2.2.1 Causal Graph

Aiming to conduct proper causal intervention, we
first formulate the causal graph (Pearl, 2013; Pearl
and Mackenzie, 2018; Tang et al., 2020) for the
text classification models (see the left-bottom part
of Figure 1), which sheds light on how the docu-
ment contents and dataset biases affecting the pre-
diction. Formally, a causal graph is a directed
acyclic graph G = (N , E), indicating how a set
of variables N causally interact with each other
through the causal links E . It provides a sketch
of the causal relations behind the data and how
variables obtain their values (Tang et al., 2020),
e.g., (X,M)→Y . In this causal graph, X , Y and
M denote a text document’s embedding, its corre-
sponding prediction and the trained model which
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inevitably captures unintended confounders exist-
ing in training data, respectively.

2.2.2 Label Bias Distillation
According to the causal graph, we diagnose how
the dataset biases existing in training data misleads
inference. Concretely, by using Bayes rule (Wang
et al., 2020), we can view the inference as:

f(x) = P (Y |X) =
∑
c

P (Y |X, c)P (c|X) (2)

where c could be any confounder captured by
the model trained on a biased training set (e.g.,
the overwhelming majority of training documents
fall in POSITIVE). Under such circumstances,
once the training documents corresponding to the
POSITIVE category are dominating than NEGA-
TIVE, the trained model tends to build strong spu-
rious connections between testing documents and
POSITIVE, achieving high accuracy even with-
out knowing testing documents’ main contents.
As such, the model is inadvertently contaminated
by the spurious causal correlation: X←M→Y ,
a.k.a. a back-door path in causal theory (Pearl
and Mackenzie, 2018; Pearl, 2013). To decouple
the spurious causal correlation, the back-door ad-
justment (Pearl and Mackenzie, 2018; Pearl, 2013;
Pearl et al., 2016) predicts an actively intervened
answer via the do(·) operation:

P (Y |do(X)) = P (Y |X = x̂) = f(x̂) (3)

where x̂ could be any counterfactual embedding
as long as it is no longer dependent onM to detach
the connection between X and M . As illustrated
in the fully-blindfolded counterfactual world in
Figure 1, the causal intervention operation wipes
out all the in-coming links of a cause variable X ,
which encourages the model M to inference with-
out seeing any testing document, i.e., RoBERTa
should be fully blind in order to detaching the
connection between M and X . To achieve that,
we use x̂ to denote the imagined fully-blindfolded
counterfactual document where all words in the
test document x are consistently masked (to cre-
ate a counterfactual embedding), and f(x̂) as the
corresponding counterfactual output via feedfor-
ward through the trained model. Since the model
cannot see any word in the factual input x after
fully blindfolding, f(x̂) actually reflects the pure
influence from the trained base modelM . Further-
more, f(x̂) refers to the output (e.g., a probabil-
ity distribution or a logit vector) where no textual

information is given. Thus, the fully-blindfolded
counterfactual output:

P (Y |do(X)) = f(x̂) = f(〈w1, w2, · · · , wn〉)
∀wi ∈ x̂, wi ← [MASK]

(4)

naturally reflects as the label bias captured by M ,
where [MASK] is a special token to mask a single
word. Due to x̂ is fully-blindfolded and indepen-
dent with trained modelM , in implementation, we
follow Wang et al. (2020) to use the average doc-
ument feature on the whole training set as its em-
bedding of the counterfactual document.

2.2.3 Keyword Bias Distillation
Inspired by the factual inference where all tex-
tual information in test documents are exposed
to the base model and the fully-blindfolded case
where all textual information in each test docu-
ment are not exposed, we make the first attempt to
utilize a partially-blindfolded counterfactual docu-
ment where some words in the test document x are
masked to distill the keyword bias from the trained
base model.

Specifically, we deliberately expose some
words which may potentially cause spurious cor-
relations (e.g., the spurious “black”-to-NEGATIVE

mapping) to the trained model to exhibit their
potentially negative influence. Some evil words
may serve as unintended confounders (Tang et al.,
2020), splitting a document into two pieces: main
content and relatively-unimportant context. In the
following, we use x̃ to denote another counterfac-
tual document where the main-content words in
a test document x are masked while other con-
text words are not, and f(x̃) as the corresponding
counterfactual output. To achieve that, an effective
masking strategy is to use discriminative text sum-
marization methods to extract the main content of
the document, before masking content words (im-
portant classification clues) and exposing others
as potentially harmful biasing factors. Since the
model is forced to see only the non-masked con-
text words in x, f(x̃) actually reflects the influence
from both the potentially harmful contexts and
the trained model. Thus, the partially-blindfolded
counterfactual output:

f(x̃) = f(〈w1, w2, · · · , wn〉)

∀wi ∈ x̃,

{
wi ← [MASK] if wi ∈ xcontent

wi ← wi if wi ∈ xcontext

(5)

naturally reflects as the keyword bias captured by
M for a specific text document x, where xcontent
and xcontext denote the main content and the con-
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text of x, respectively. Inspired by a recent coun-
terfactual word-embedding study of Feder et al.
(2020), to realize discriminative text summariza-
tion, we use Jieba3 tool, whose TextRank-based
interface can effectively extract the words that
may influence the semantics of a sentence as con-
tent, leaving potentially discriminative/unfair key-
words (e.g., stop words, a part of adjectives, and
semantically-unimportant particles) as contexts.
Empirically, the average ratio of contents to con-
texts produced by Jieba on all datasets is approxi-
mately 62.03%:37.97%.

2.3 Bias Removal

Our final goal is to use the direct effect from X to
Y for debiased prediction, removing (\) the label
bias and the keyword bias existing in training data
(i.e., blocking the spread of the biases from train-
ing data to inference): f(x)\f(x̂)\f(x̃). The de-
biased prediction via bias removal can be formal-
ized via the conceptually simple and empirically
powerful element-wise subtraction operation:
c(x) = f(x)\f(x̂)\f(x̃) = f(x)− λ̂f(x̂)− λ̃f(x̃) (6)

where f(x) and c(x) correspond to the traditional
factual prediction and our counterfactual predic-
tion, respectively; f(x̂) and f(x̃) correspond to
the label bias and the keyword bias distilled from
the trained base model, respectively; λ̂ and λ̃
are two independent parameters balancing the two
types of biases.

Note that the two distilled biases could be prob-
ability distributions over all categories or logit
vectors (i.e., without normalization), and they typ-
ically do not contribute completely equally to
the final classification. As such, in Equation 6,
directly subtracting without adaptive parameters
(i.e., λ̂=λ̃=1

2 ) would cause that mitigating a certain
bias too much or too less for a specific testing set.
Therefore, we propose the elastic scaling mecha-
nism to search two adaptive parameters (scaling
factors) – λ̂∗ and λ̃∗ – on the validation set to
amplify or penalize the two biases, which would
dynamically adapt to different datasets accord-
ing to the extent to which two biases in training
set “poison” the validation set. In practice, elas-
tic scaling can be implemented using grid beam
search (Hokamp and Liu, 2017) in a scoped two-
dimensional space:

λ̂∗, λ̃∗ = argmax
λ̂,λ̃

ψ(Ddev, c(x; λ̂, λ̃)) λ̂, λ̃ ∈ [a, b] (7)

3https://github.com/fxsjy/jieba

whereψ is a metric function (e.g., recall, precision
and F1-score) to evaluate the performance on the
validation set Ddev=(Xdev, Ydev); a and b are the
boundaries of the search range. The two factors
are at dataset-level and thus searched only once for
each validation set, and would be used in inference
for all testing documents.

3 Evaluation

Baselines We choose four types of represen-
tative text classifiers as the base models of
our proposed framework, covering classical,
data-manipulation-based, model-balancing-based,
as well as large-scale and two-stage methods.
TEXTCNN (Kim, 2014) is a classical classifier
that uses convolutional neural networks (CNN)
with scale-variant convolution filters to capture lo-
cal textual features, which may potentially cap-
ture spurious correlations between certain key-
words and categories. LECO (Qian et al., 2020b)
utilizes the combination of the implicit encod-
ing of deep linguistic information and the ex-
plicit encoding of morphological features, which
would also capture the keyword bias inadvertently.
Besides, it uses a sentence-level over-sampling
mechanism (He and Garcia, 2009) to mitigate the
label bias, and we further enhance it via a pow-
erful word-level augmentation technique (EDA)
(Wei and Zou, 2019) to mitigate the keyword bias,
denoted as LECOEDA. WEIGHT (Zhang et al.,
2020) is a most recent debiasing text classifier that
uses a specially-designed reweighting technique
under an unbiased objective for fair (i.e., non-
discrimination) learning, which is proven effective
to mitigate the unfairness or discrimination issue
caused by unintended dataset biases. RoBERTa
(Liu et al., 2019) is an improved version of BERT,
whose effective modifications allow RoBERTa to
generalize better and match or exceed the perfor-
mance of many post-BERT methods, serving as a
very strong baseline in recent work (Gururangan
et al., 2020).

Datasets We use multiple English benchmark
datasets (used mainly in academic commu-
nity): HyperPartisan (Kiesel et al., 2019), Twit-
ter (Huang et al., 2017), ARC (Jurgens et al.,
2018), SCIERC (Luan et al., 2018), ChemProt
(Kringelum et al., 2016), Economy (Huang and
Paul, 2018), News (Lang, 1995), Parties (Huang
and Paul, 2018), YelpHotel (Zhang et al., 2014);
and also randomly collect real-world query-

https://github.com/fxsjy/jieba
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Table 1: Statistics of the datasets. #D denotes the aver-
age number of characters per document. #C denotes the
number of categories. #Train, #Dev and #Test denote
the number of training set, validation set and testing set,
respectively.

Dataset Domain/Genre #D #C #Train↑ #Dev #Test
HYP Political News 3,265.64 2 516 64 65
TWI Social Network 84.32 2 1,631 272 272
ARC Computer Science 222.49 6 1,688 125 128
SCI Computer Science 192.92 7 3,219 712 717
CHE Biomedicine 220.28 13 4,169 2,944 2,952
ECO Finance 1,152.22 2 4,744 595 596
NEW News 1,801.20 20 9,445 4,689 4,694
PAR Political Speech 140.31 2 10,059 2,012 2,012
YEL User Comment 651.73 3 20,975 6,991 6,993
TAO E-Commerce 8.09 143 68,086 6,949 7,022
SUN E-Commerce 7.70 56 234,074 50,851 50,844

category pairs (used in industrial community)
from two famous Chinese e-commerce platforms:
Taobao4 and Suning5. For brevity, we will use the
first three letters to denote each dataset (e.g., HYP
for HyperPartisan). The statistics of the datasets
are summarized in Table 1.

Metric We use the widely-used macro-F1 met-
ric, which is the balanced harmonic mean of pre-
cision and recall. Furthermore, macro-F1 is more
suitable than micro-F1 to reflect the extent of the
dataset biases, especially for the highly-skewed
cases, since macro-F1 is strongly influenced by
the performance in each category (i.e., category-
sensitive) but micro-F1 easily gives equal weight
over all documents (i.e., category-agnostic) (Kim
et al., 2019).

Implementation Details The search range in
Equation 7 is set as [−2.0, 2.0]. Each training
is run for 10 epochs with the Adam optimizer
(Kingma and Ba, 2015), a mini-batch size of 16,
a learning rate of 2e−5, and a dropout rate of 0.1.
We implement CORSAIR via Python 3.7.3 and Py-
torch 1.0.1. All of our experiments are run on a
machine equipped with seven standard NVIDIA
TITAN-RTX GPUs.

3.1 Overall Performance
We report the average results over five different
initiations in Table 2. We can observe that COR-
SAIR consistently improves the four types of rep-
resentative baselines on almost all datasets with a
significance level, regardless of the languages, do-
mains, volumes and applications of the datasets,
which validates the effectiveness and the general-
izability of the proposed framework. Furthermore,
since CORSAIR performs debiasing between the

4https://www.taobao.com
5https://www.suning.com

traditional factual predictions and two counter-
factual outputs to produce counterfactual predic-
tions, the comparison between each baseline and
its CORSAIR-equipped counterparts highlights the
importance of the counterfactual inference, which
is largely ignored by most of previous text clas-
sification methods. Particularly, CORSAIR can
even benefit the data-manipulation-based method
(i.e., LECOEDA) and the model-balancing-based
method (i.e., WEIGHT) consistently, which in turn
verifies our initial intuition that the dataset biases
would not be completely eliminated via data ma-
nipulations merely, and further illuminates our key
insight – preserving biases in models before debi-
asing in inference.

We can also notice that CORSAIR sometimes
hurts performance (e.g., RoBERTa+CORSAIR on
HYP and ARC); we conjecture the phenomenon
comes from the small-scale data, making the giant
model RoBERTa overfits and thus “fail” to dis-
till two potential biases that are identically dis-
tributed with the ideal distributions of factual bi-
ases. Moreover, finetuning a RoBERTa model on
large-datasets (e.g., SUN) would take about 36
hours, nearly 50 times that of training a WEIGHT

model (about 44 minutes); we thus suggest to use
lightweight base models in practice with consid-
ering systems’ robustness and efficiency. Besides,
the proposed framework works only in inference
and can thus be employed on the previous already-
trained models. Therefore, by leveraging coun-
terfactual inference, our approach can serve as a
powerful, “data-manipulation-free” and “model-
balancing-free” weapon to enhance different types
of text classification methods.

3.2 Bias Analysis
According to Sweeney and Najafian (2020), the
more imbalanced/skewed a prediction produced
by a trained model is, the more unfair opportuni-
ties it gives over predefined categories, the more
unfairly-discriminative the trained model is. We
thus follow previous work (Xiang and Ding, 2020;
Sweeney and Najafian, 2020) to use the metric –
imbalance divergence – to evaluate whether a pre-
diction (normally a probability distribution) P is
imbalanced/skewed/unfair:

D(P,U) =JS(P ||U) (8)

whereD(·) is defined as the distance of P and the
uniform distribution U (with |P | elements). Con-
cretely, we use the JS divergence as the distance

https://www.taobao.com
https://www.suning.com
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Table 2: Experimental results (F1; %) of all methods on all benchmark datasets (higher is better). For each
dataset, the best-performing results among all methods are highlighted with boldfaces. For each baseline, the best-
performing results between the baseline and our approach are highlighted with ∗. † denotes statistical significance
(p≤0.05) between a baseline and the counterpart employed on our framework.

Method HYP TWI ARC SCI CHE ECO NEW PAR YEL TAO SUN AVG. ∆

TEXTCNN 40.48 65.94 12.46 10.09 18.96 46.07 12.07 54.94 51.49 08.16 10.90 30.14 –
TEXTCNN+CORSAIR 46.71†∗ 69.03†∗ 17.03†∗ 19.85†∗ 22.55†∗ 59.74†∗ 16.18†∗ 56.39†∗ 58.37†∗ 08.70∗ 14.20†∗ 35.34†∗ 5.20↑
LECOEDA 58.78 72.43 52.64 22.37 30.22 60.81 54.39 57.33 60.60 12.02 17.17 45.34 –
LECOEDA+CORSAIR 60.46†∗ 74.62†∗ 53.10†∗ 23.28∗ 30.42∗ 61.81∗ 54.48∗ 57.51∗ 60.87∗ 14.25†∗ 22.62†∗ 46.67†∗ 1.33↑
WEIGHT 49.14 60.80 12.71 09.80 11.98 44.67 15.19 54.90 45.73 01.67 06.54 28.46 –
WEIGHT+CORSAIR 55.03†∗ 68.35†∗ 18.04†∗ 17.73†∗ 22.08†∗ 59.24†∗ 20.93†∗ 55.70∗ 58.47†∗ 06.54†∗ 14.02†∗ 36.01†∗ 7.55↑
RoBERTa 87.92∗ 88.71 68.76∗ 81.76 50.10 53.55 85.38 65.54 77.67 50.70 44.05 68.55 –
RoBERTa+CORSAIR 86.45 89.12∗ 68.10 82.21∗ 51.65∗ 61.31†∗ 86.83†∗ 67.09†∗ 77.69∗ 51.52†∗ 46.15†∗ 69.82†∗ 1.27↑

Table 3: Experimental results (imbalance divergence or unfairness; %) of all methods on all benchmark datasets
(lower is better). The top subtable shows the average document-level imbalance of predictions for label bias
evaluation, and the bottom one shows the average word-level imbalance of predictions for keyword bias evaluation.

Method HYP TWI ARC SCI CHE ECO NEW PAR YEL TAO SUN AVG. ∆

L
ab

el
Im

ba
la

nc
e

(R
L

I) TEXTCNN 01.39 06.31 11.88 09.99 18.86 06.62 28.21∗ 01.41∗ 09.43 41.87∗ 46.12∗ 16.55 –
TEXTCNN+CORSAIR 01.07∗ 05.18†∗ 02.27†∗ 01.62†∗ 11.53†∗ 01.52†∗ 28.49 01.49 09.23∗ 42.01 46.77 13.74†∗ 2.81↓
LECOEDA 01.11∗ 07.47†∗ 10.42†∗ 11.08∗ 08.93∗ 03.51∗ 05.36†∗ 00.64∗ 06.66 26.91 22.25∗ 09.48†∗ –
LECOEDA+CORSAIR 01.21 11.29 12.96 11.99 09.26 04.47 06.05 00.72 05.08∗ 26.06†∗ 23.05 10.19 0.71↑
WEIGHT 00.81∗ 03.19 07.06 05.10 12.65 03.81 01.99 00.18 02.43 25.71 34.76 08.88 –
WEIGHT+CORSAIR 00.88 01.66†∗ 01.95†∗ 00.98†∗ 04.68†∗ 00.56†∗ 01.30†∗ 00.16∗ 01.21†∗ 14.08†∗ 14.01†∗ 03.77†∗ 5.11↓
RoBERTa 01.29 02.96 14.57 18.10 16.74 06.69 00.16 00.01∗ 02.55 57.74 56.76 16.14 –
RoBERTa+CORSAIR 00.11†∗ 01.27†∗ 01.66†∗ 12.57†∗ 02.76†∗ 02.15†∗ 00.02∗ 00.01∗ 00.82†∗ 28.83†∗ 22.91†∗ 06.64†∗ 9.50↓

K
ey

w
or

d
Im

ba
la

nc
e

(R
K

I) TEXTCNN 17.96 17.39 44.76 47.39 37.35 20.69 38.23 05.76 18.46 65.37 60.87 34.02 –
TEXTCNN+CORSAIR 07.44†∗ 15.17†∗ 29.36†∗ 22.36†∗ 28.84†∗ 08.51†∗ 35.80†∗ 05.09∗ 12.02†∗ 64.81†∗ 58.37†∗ 26.16†∗ 7.86↓
LECOEDA 06.77 11.93†∗ 26.54 15.01 24.16 07.71 30.05 05.09 12.39∗ 65.30 60.63 24.14 –
LECOEDA+CORSAIR 06.61∗ 14.46 25.94∗ 14.13†∗ 22.53†∗ 04.77†∗ 30.03∗ 05.05∗ 12.58 57.51†∗ 52.98†∗ 22.41†∗ 1.73↓
WEIGHT 10.32 18.77 43.64 47.70 46.53 21.29 38.98 06.30 21.34 66.75 61.73 34.85 –
WEIGHT+CORSAIR 06.34†∗ 13.70†∗ 33.29†∗ 23.40†∗ 28.97†∗ 08.80†∗ 34.74†∗ 05.32∗ 10.12†∗ 64.87†∗ 58.63†∗ 26.19†∗ 8.66↓
RoBERTa 21.58 21.58 45.39 41.57 54.57 21.58 59.26 21.58 31.83 67.23 64.82 40.99 –
RoBERTa+CORSAIR 19.40†∗ 13.52†∗ 35.87†∗ 34.19†∗ 53.37∗ 18.99†∗ 55.82†∗ 17.74†∗ 30.52∗ 62.23†∗ 60.82†∗ 36.58†∗ 4.41↓

metric since it is symmetric (i.e., JS(P ||U) =
JS(U ||P )) and strictly scoped (in [0.0, 1.0]) com-
pared with the KL divergence. Based on this, to
evaluate the label bias and the keyword bias of a
trained model M , we average its relative label im-
balance (RLI) over the predicted distributions of
all the testing documents, and the relative keyword
imbalance (RKI) over all the testing documents
containing whichever context word, respectively:

RLI(M) =
1

|D|
∑
x∈D

D(P (x), U)

RKI(M,V) = 1

|V|
∑
w∈V

D(P ({x|w ∈ x ∧ x ∈ D}), U)

(9)

where a prediction P (x) could be a factual predic-
tion f(x) or a counterfactual one c(x); V denotes
the vocabulary of context words. The two metrics
implicitly capture the distance between all predic-
tions and the fair uniform distribution U .

Table 3 shows the average results of the bias
analysis investigation over five different initia-
tions. The results show that our framework re-

duces the imbalance metrics (lower is better) when
employed on non-data-balanced baselines signif-
icantly and consistently, indicating it is indeed
helpful to mitigate the two dataset bias issues.
We all know that data-balanced LECOEDA per-
fectly mitigates the label bias issue via data bal-
ancing, thus achieving the lowest RLI. Due to the
powerful debiasing operations via strictly balanc-
ing data, it serves as the skyline of RLI. This
finding is similar to previous evidence of Morik
et al. (2020). Moreover, we can also see that
LECOEDA reduces the RKI, validating that data
manipulation methodology is indeed helpful to
debias the keyword bias issue but fails to elimi-
nate it completely; our framework can further re-
duce RKI (1.73↓). Note that WEIGHT exhibits a
more severe keyword bias than label bias (34.85
vs. 08.88). The key reason is that WEIGHT ex-
plicitly balances each category according to a the-
oretically fair objective but ignores the consider-
ation of label distributions conditioned on finer-
grained words. Moreover, RoBERTa exhibits the
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most imbalanced prediction against all baselines
and across small- and large-scale datasets (e.g.,
ARC and TAO), indicating that its answers ex-
cessively distribute on certain categories due to
the overfitting phenomenon rooted from its large-
scale parameters (about 110M). Luckily, by being
equipped with our framework, the RoBERTa case
remarkably reduces the imbalance issue caused by
dataset biases (9.50↓ and 4.41↓).

Another finding is that the keyword bias issue
typically is more severe than the label bias, mean-
ing that trained models typically utilize the word-
level information to inference, which could catch
angel keywords as good clues but also inevitably
utilize evil keywords that are potential biases. Ad-
ditionally, the keyword bias issue, compared with
label bias, is much harder to be completely elim-
inated via data manipulations, which imposes a
caution for relevant studies to keep a watchful eye
on the detrimental causal correlations.

3.3 Ablation Study

We conduct ablation studies on CORSAIR to em-
pirically examine the contribution of its main
mechanisms/components, including the label bias
removal operation (\LBR), the keyword bias re-
moval operation (\KBR) and the elastic scaling
mechanism (\ES).

The average results of the ablation study are
shown in Table 4. We can see that removing the
proposed CORSAIR causes serious performance
degradation, dropping F1-score by 7.55 points for
the WEIGHT case. Additionally, it also provides
evidence that using the counterfactual framework
for text classification can explicitly mitigate two
types of dataset biases to generalize better on un-
seen examples. Moreover, we observe that mit-
igating the two types of biases are consistently
helpful for classification tasks. The key reason
is that the distilled label bias provides a global
(i.e., document-agnostic) offset and the distilled
keyword bias provides a local (i.e., document-
specific) one to “move” in the predicted space,
which makes the trained models “blind” to see po-
tentially harmful biases existing in observed data
so as to focus only on the main content of each
document to inference. Meanwhile, elastic scal-
ing effectively finds two dynamic scaling factors
to amplify or shrink two biases, making the biases
be mitigated properly and adaptively.

Table 4: Ablation study on main components or mecha-
nisms of our framework evaluated on all datasets. \ de-
notes the removing operation. ↓ denotes performance
drop. The worst scores are underlined.

LECOEDA+CORSAIR 46.67 ∆ WEIGHT+CORSAIR 36.01 ∆

\CORSAIR 45.34† 1.33↓ \CORSAIR 28.46† 7.55↓
\LBR 40.82† 5.85↓ \LBR 33.05† 2.96↓
\KBR 45.30† 1.37↓ \KBR 30.05† 5.96↓
\ES 43.97† 2.70↓ \ES 32.85† 3.16↓

3.4 Further Investigation on Counterfactual
Learning

Recall that our proposed framework first trains a
base model on a training set directly (factual learn-
ing) so as to preserve dataset biases in the trained
model, and in the inference phase, given a factual
input document, CORSAIR imagines two types of
counterfactual documents aiming to produce two
counterfactual outputs as the distilled label bias
and keyword bias for bias removal. That is, the
framework deliberately causes the discrepancy be-
tween learning and inference, leading to an opera-
tional gap between the two phases. In this section,
we investigate more deeply to explore what will
happen if the operational gap is bridged.
• Factual Learning. Learn with L(θ; f(xi), yi)
as objective, i.e., to minimize the loss between fac-
tual predictions and ground-truth labels. Then, in-
ference via counterfactual predictions.
• Counterfactual Learning. Learn with
L(θ; c(xi), yi) as objective, i.e., to minimize
the loss between counterfactual predictions and
ground-truth labels. Then, inference directly.

The average results of TEXTCNN on ECO
(|Y|=2) and CHE (|Y|=13) are reported in Fig-
ure 2. We observe that these configurations con-
verge at different F1 scores as the number of
epochs increases gradually. As for each dataset,
the configuration of a factual model with coun-
terfactual inference (i.e., CORSAIR) achieves the
best performance with even a relatively more rapid
convergence. More interestingly, in the early
phases of model training (e.g., epoch=0), COR-
SAIR usually provides a higher starting point than
traditional factual inference. We conjecture that
the superiority may come from the use of average
embedding which usually produces a stable distri-
bution similarly distributed with ideal biases, mak-
ing a base model happen to “see” the label bias
once the initiation operation is done. This phe-
nomenon is empirically held, especially for small-
scale classification tasks.
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Figure 2: The average results of three types of different
learning paradigms on two datasets, including a factual
learning with factual inference, a factual learning with
counterfactual inference (i.e., CORSAIR) and a coun-
terfactual learning with direct inference.

Surprisingly, counterfactual learning converges
at the factual learning case. This finding consis-
tently holds on all other baselines across datasets,
which means that the so-called counterfactual
learning actually degrades to a factual inference.
This indicates that if a training model explicitly
mitigates two types of dataset biases in an end-to-
end fashion, i.e., without the operational gap, it ac-
tually loses the function to perform debiased infer-
ence. The important reason is that under such cir-
cumstance, the potential biases actually “spread”
throughout the whole model architecture, instead
of the mere part before bias removal is operated,
which makes bias removal only look like debi-
asing but is just a factual feedforward operation
that is unable to capture, distill and even miti-
gate biases. Therefore, the counterfactual infer-
ence works only when the operational gap be-
tween learning and inferencing exists. This ben-
eficial gap instead makes the biases spread only
throughout the part before the bias removal mod-
ule, and thus enables them to be distilled via coun-
terfactual inference.

4 Related Work

Text classification is a backbone component in
many downstream tasks or applications (Broder
et al., 2007; Chen et al., 2019; Sun et al., 2019;
Qian et al., 2020a,c). Earlier text classifica-
tion methods focus on manual feature engineering
(Aggarwal and Zhai, 2012; Cavnar and Trenkle,
1994; Post and Bergsma, 2013). The key factor
of text classification lies in the quality of text rep-
resentation (Mikolov et al., 2013b,a; Pennington
et al., 2014; Canuto et al., 2019; Yan, 2009; Qian
et al., 2021). Benefiting from high-quality word

vectors, some subsequent studies explored differ-
ent types of downstream text classification mod-
els, including support vector machine (Joachims,
1999), maximum entropy model (Nigamy and Mc-
Callum, 1999), naive Bayes (Pang et al., 2002),
word clustering (Baker and McCallum, 1998) and
neural networks (Kim, 2014; Zhou et al., 2016;
Howard and Ruder, 2018; Devlin et al., 2019; Liu
et al., 2019).

To solve the dataset bias issue, a straightfor-
ward solution is to perform data-level manipula-
tions to prevent models from capturing the unin-
tended dataset biases in model training, including
data balance (Dixon et al., 2018; Geng et al., 2007;
Chen et al., 2017; Sun et al., 2018; Rayhan et al.,
2017; Nguyen et al., 2011) (a.k.a. resampling)
and data augmentation (Wei and Zou, 2019; Qian
et al., 2020b). Another common paradigm for text
classification is typically to design model-level
balancing mechanisms, including unbiased em-
bedding (Bolukbasi et al., 2016; Kaneko and Bol-
legala, 2019), threshold correction (Kang et al.,
2020; Provost, 2000; Calders and Verwer, 2010)
and instance weighting (Zhang et al., 2020; Zhao
et al., 2017; Jiang and Zhai, 2007).

5 Conclusion

We have designed a counterfactual framework for
text classification debiasing. Extensive experi-
ments demonstrated the framework’s good effec-
tiveness, generalizability and fairness. Future
work will design a joint-learning technique to dy-
namically decide each document’s main content.
We hope the paradigm can illuminate a promising
technical direction of causal inference in natural
language processing.

Acknowledgements

We thank the anonymous reviewers for their en-
couraging feedbacks. The work was supported by
the National Key Research and Development Pro-
gram of China (No. 2019YFB1704003), the Na-
tional Nature Science Foundation of China (No.
71690231), Tsinghua BNRist, Alibaba DAMO
academy, NExT++ Research Center and Beijing
Key Laboratory of Industrial Bigdata System and
Application.



5443

References
Charu C. Aggarwal and ChengXiang Zhai. 2012. A

Survey of Text Classification Algorithms. In Mining
Text Data, pages 163–222.

L. Douglas Baker and Andrew Kachites McCallum.
1998. Distributional Clustering of Words for Text
Classification. In the ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 96–103.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
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