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Abstract
Unsupervised Domain Adaptation (UDA)
aims to transfer the knowledge of source do-
main to the unlabeled target domain. Exist-
ing methods typically require to learn to adapt
the target model by exploiting the source data
and sharing the network architecture across
domains. However, this pipeline makes the
source data risky and is inflexible for deploy-
ing the target model. This paper tackles
a novel setting where only a trained source
model is available and different network ar-
chitectures can be adapted for target domain
in terms of deployment environments. We
propose a generic framework named Cross-
domain Knowledge Distillation (CdKD) with-
out needing any source data. CdKD matches
the joint distributions between a trained source
model and a set of target data during dis-
tilling the knowledge from the source model
to the target domain. As a type of impor-
tant knowledge in the source domain, for
the first time, the gradient information is ex-
ploited to boost the transfer performance. Ex-
periments on cross-domain text classification
demonstrate that CdKD achieves superior per-
formance, which verifies the effectiveness in
this novel setting.

1 Introduction

Annotating sufficient training data is usually an
expensive and time-consuming work for diverse
application domains. Unsupervised Domain Adap-
tation (UDA) aims at solving this learning prob-
lem in the unlabeled target domain by utilizing the
abundant knowledge in an existing domain called
source domain, even when these domains may have
different distributions. This technique has moti-
vated research on cross-domain text classification
(Chen et al., 2019; Ye et al., 2020; Gururangan
et al., 2020). One of the important knowledge in
the source domain is the labels of samples. Cur-
rent methods mainly leverage the labeled source
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data and unlabeled target data to learn the domain-
invariant features (Tzeng et al., 2014; Ganin and
Lempitsky, 2015) and the discriminative features
(Saito et al., 2017; Ge et al., 2020) that are shared
across different domains.

Unfortunately, sometimes we are forbidden ac-
cess to the source data, which are distributed on
different devices and usually contain private infor-
mation, e.g., user profile. Existing methods cannot
solve the UDA problem without the source data yet.
In addition, it is necessary to adapt the target do-
main with a flexible network architecture different
from the source domain in terms of different de-
ployment requirements for different domains. But
most of works (Liang et al., 2020; Li et al., 2020)
are required to share the same network architecture
between different domains. In this paper, we pro-
pose a novel UDA setting: only a trained source
model and a set of unlabeled target data are pro-
vided, and the target model is allowed to have dif-
ferent network architectures with the trained source
model. It differs from the vanilla UDA in that a
trained source model instead of source data is pro-
vided as supervision to the unlabeled target domain
when learning to adapt the model. Such a setting
satisfies privacy policy and effective delivery, and
helps deploy the target model flexibly according to
the target application.

Our setting seems somewhat similar to Knowl-
edge Distillation (KD) (Hinton et al., 2015), where
a trained teacher model teaches a student model
with different architecture on the same task over
a set of unlabeled data. KD assumes that the em-
pirical distribution of the data used for training the
student model matches the distribution associated
with the trained teacher model. Nevertheless, in
our setting, the unlabeled data and teacher (source)
model have different distributions. One of simple
yet generic solution for our setting is to match the
distributions between source and target domains
under the process of distilling the knowledge. How-
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ever, it is quite challenging to reduce the shifts be-
tween a known distribution (e.g., a trained source
model) and the empirical distribution of data (e.g.,
target data). Prior methods minimize a distance
metric of domain discrepancy, such as Maximum
Mean Discrepancy (MMD) (Tzeng et al., 2014) to
match the distributions across domains in terms
of the source and target data. Unfortunately, the
empirical evaluation of these metrics is unavailable
since we cannot access the source data.

In this paper, we propose a generic frame-
work named Cross-domain Knowledge Distillation
(CdKD). Specifically, we define a Joint Kernelized
Stein Discrepancy (JKSD) that measures the largest
discrepancy over the Hilbert space of functions be-
tween empirical sample expectations of target do-
main and source distribution expectations. Inspired
by the works (Liu et al., 2016), the source distri-
bution expectations are being zero via the effect of
Stein operator such that we can evaluate the discrep-
ancy of joint distributions without any source data.
We embed JKSD criterion into deep network where
multi-view features including activations, gradients
and class probabilities in the source model are ex-
ploited to explore the domain-invariant and discrim-
inative features across domains. In addition, we
further maximize JKSD using adversarial strategy
where the multi-view features are integrated into
domain adaptation abundantly. Finally, CdKD is
learnt by joint optimizing both KD objective (Hin-
ton et al., 2015) and JKSD. The main contributions
are outlined as,

• We propose to investigate the problem of
UDA without needing source data by explor-
ing the distribution discrepancy between a
source model and a set of target data. We
adapt the target domain with different network
architecture flexibly in terms of different de-
ployment environments.

• For the first time, the gradient information of
the source domain is exploited to boost the
UDA performance. Mu et al. (2020) shows a
key intuition that per-sample gradients contain
task-relevant discriminative information.

• We experiment under two Amazon review
datasets for cross-domain text classification,
which demonstrates that CdKD still has ob-
vious performance advantage in all settings
though without needing any source data.

2 Related Work

2.1 Unsupervised Domain Adaptation (UDA)
UDA aims at learning a model which can gener-
alize across different domains following different
probability distributions. Existing works mainly fo-
cus on how to learn domain-invariant features and
discriminative features that are shared across differ-
ent domains. Moment Matching, e.g., Maximum
Mean Discrepancy (MMD) (Tzeng et al., 2014) and
adversarial learning (Ganin and Lempitsky, 2015)
are commonly used to learn domain-invariant fea-
tures by aligning the marginal distributions. To
learn discriminative features for UDA, self-training
methods (Saito et al., 2017; Zou et al., 2019) train
the target classifier in terms of the pseudo labels
of target data. These works committed to improve
the quality of pseudo labels including introduc-
ing mutual learning (Ge et al., 2020) and dual in-
formation maximization (Ye et al., 2020). The
other line of learning discriminative features is to
match the conditional distributions across domains
by aligning multiple domain-specific layers (Long
et al., 2017, 2018) or making an explicit hypothe-
sis between conditional distributions (Wang et al.,
2018; Yu et al., 2019; Fang et al., 2020). STN (Yao
et al., 2019) explores the class-conditional distribu-
tions to approximate the discrepancy between the
conditional distributions via Soft-MMD. The work
(Zhang et al., 2021) derives a novel criterion Con-
ditional Mean Discrepancy (CMD) to measure the
shifts between conditional distributions in tensor-
product Hilbert space directly.

However, these methods assume the target users
can access to the source data, which is unsafe and
sometimes unpractical since source data may be pri-
vate and decentralized. Therefore, the recent works
propose to generalize a target model over a set of
unlabeled target data only in terms of the supervi-
sion of a trained source model. SHOT (Liang et al.,
2020) learns the target-specific feature extraction
module by using both information maximization
and self-training strategy. Li et al. (2020) improve
the target model through target-style data based on
generative adversarial network (GAN) where the
GAN and the target model are collaborated without
source data. Unfortunately, they require that the
target model must share the same network architec-
ture with the source model. Meanwhile, multi-view
features in the source model including activation
and gradient are not exploited which also contribute
most to the domain adaptation.
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Figure 1: The proposed CdKD framework for UDA without source data.

2.2 Knowledge Distillation (KD)

KD transfers the knowledge from a cumbersome
model to a small model that is more suitable for
deployment (Hinton et al., 2015). The general tech-
nique of KD involves using a teacher-student strat-
egy, where a large deep teacher model trained for
a given task teaches shallower student model on
the same task (Yim et al., 2017; Chen et al., 2018).
The teacher and student models are trained based
on the same data. These KD methods make an as-
sumption that the training data and the distribution
associated with the teacher model are independent
and identically distributed. However, sometimes
we are required to train a student model in a new
domain that the teacher model is not familiar, i.e,
the domain shifts exist between the new domain
and the domain that the teacher model is trained.
The proposed CdKD is able to relieve the domain
shifts adaptively during distilling the knowledge.

3 Methodology

We address the unsupervised domain adaptation
(UDA) task with only a trained source model and
without access to source data. We consider K-way
classification. Formally, in this novel setting, we
are given a trained source model fs : X 7→ Y
and a target domain Dt = {xi}mi=1 ⊂ X with m
unlabeled samples. Here, the goal of Cross-domain
Knowledge Distillation (CdKD) is to learn a target
model ft : X 7→ Y and infer {yi}mi=1, with only
Dt and fs available. The target model ft is allowed
to have different network architecture with fs.

CdKD is a special KD which consists of a trained
teacher model fs, a student model ft and unla-
beled data Dt as well. But it differs from KD in
that the empirical distribution of Dt don’t match

the distribution associated with the trained model
fs. Therefore, it is necessary to introduce distri-
bution adaptation to eliminate the biases between
the source and target domains during distilling the
knowledge. Specifically, as shown in Figure 1(a),
we first introduce KD to distill the knowledge to
the target domain in terms of the class probabili-
ties produced by the source model fs. Then, we
introduce a novel criterion JKSD to match the joint
distributions across domains by evaluating the shift
between a known distribution and a set of data.
This is the first work to explore the distribution
discrepancy between a model and a set of data in
UDA task.

3.1 Distilling Knowledge to Target Domain

Given a target sample x ∈ Dt, the target model
ft : X 7→ Y produces class probabilities by us-
ing a “softmax” output layer that converts the log-
its p = (p1, · · · , pK) into a probability ft(x) =
(q1, · · · , qK),

qi =
exp(pi/T )∑
j exp(pj/T )

where T is a temperature used for generating
“softer” class probabilities. We optimize the target
model ft by minimizing the following objective for
knowledge distillation,

LKD = − 1

m

∑
x∈Dt

fs(x)> log ft(x) (1)

In our paper, the setting of temperature follows the
work (Hinton et al., 2015): a high temperature T is
adopted to compute ft(x) during training, but after
it has been trained it uses a temperature of 1.
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3.2 Joint Kernelized Stein Discrepancy
In traditional UDA setting, Joint Maximum Mean
Discrepancy (JMMD) (Long et al., 2017) has been
applied to measure the discrepancy in joint distribu-
tions of different domains, and it can be estimated
empirically using finite samples of source and tar-
get domains. Specifically, suppose k : X ×X 7→ R
and l : Y × Y 7→ R are the positive definite ker-
nels with feature maps φ(·) : X 7→ F and ψ(·) :
Y 7→ G for domains of X and Y , respectively that
corresponds to reproducing kernel Hilbert space
(RKHS) F and G . Let CPXY : G 7→ F be the
uncentered cross covariance operator that be de-
fined as CPXY = E(x,y)∼P [φ(x) ⊗ ψ(y)]. JMMD
measures the shifts in joint distributions P (X,Y)
and Q(X,Y) by

J(P,Q) = sup
f⊗g∈H

EQ(f(x)g(y))− EP (f(x)g(y))

=‖CQXY − C
P
XY ‖F⊗G

whereH is a unit ball in F ⊗ G .
In our setting, unfortunately, the empirical esti-

mation of JMMD is unavailable since we cannot
access the source data Ds directly (The empirical
estimation of JMMD is in Appendix A.1). Ker-
nelized stein discrepancy (KSD) as a statistical
test for goodness-of-fit can test whether a set of
samples are generated from a marginal probability
(Chwialkowski et al., 2016; Liu et al., 2016). In-
spired by KSD, we introduce Joint KSD (JKSD) to
evaluate the discrepancy between a known distri-
bution P (X,Y) and a set of data Q̂ = {xi,yi}mi=1

obtained from a distribution Q(X,Y).
Assume the dimension of X is d (X = Rd), i.e.,

x = (x1, · · · , xd), ∀x ∈ X . We denote by F d =
F ×· · ·F the Hilbert space of d×1 vector-valued
functions f = {f1, · · · , fd}with fi ∈ F , and with
an inner product 〈f, f ′〉Fd =

∑d
i=1 〈fi, f ′i〉F for

f ′ ∈ F d. We begin by defining a Stein operator
AP : F d ⊗ G 7→ F d ⊗ G acting on functions
f ∈ F d and g ∈ G

(AP f⊗g)(x,y) = g(y) ( ∇xf(x)

+f(x)∇x logP (x,y) )> 1d
(2)

where ∇x logP (x,y) = ∇xP (x,y)
P (x,y) ∈ Rd×1,

∇xf(x) = (∂f1(x)∂x1
, · · · , ∂fd(x)∂xd

) ∈ Rd×1 for x =
(x1, · · · , xd) and 1d is a d× 1 vector with all ele-
ments equal to 1. The expectation of Stein operator
AP over the distribution P is equal to 0

EP (AP f ⊗ g)(x,y) = 0 (3)

which can be proved easily by (Chwialkowski et al.,
2016, Lemma 5.1). The Stein operator AP can
be expressed by defining a function ξxy over the
space F d ⊗ G that depends on gradients of the
log-distribution and the kernel,

ξxy =∇xφ(x)⊗ ψ(y)

+(∇x logP (x,y))φ(x)⊗ ψ(y)
(4)

Thus, (AP f ⊗ g)(x,y) can be presented as an in-
ner product, i.e., 〈f ⊗ g, ξxy〉Fd⊗G . Now, we can
define JKSD and express it in the RKHS by re-
placing the term f(x)g(y) in J(P,Q) as our Stein
operator,

S(P,Q) := sup
f⊗g∈H′

EQ(AP f ⊗ g)(x,y)

− EP (AP f ⊗ g)(x,y)

= supEQ(AP f ⊗ g)(x,y)

= sup 〈f ⊗ g,EQξxy〉Fd⊗G

=‖EQξxy‖Fd⊗G

where H′ is a unit ball in F d ⊗ G . This makes
it clear why Eq. 3 is a desirable property: we
can compute S(P,Q) by computing the Hilbert-
Schmidt norm ‖EQξxy‖, without need to access
the data obtained from P .

We can empirically estimate S2(P,Q) based on
the known probability P and finite samples Q̂ =
{(xi,yi)}mi=1 ∼ Q(X,Y) in term of kernel tricks
as follows,

Ŝ2(P,Q) =
1

m2
tr(∇2KL+ 2ΥL+ ΩL) (5)

(∇2K)i,j =
〈
∇xiφ(xi),∇xjφ(xj)

〉
Fd

Υi,j = (∇xik(xi,xj))
>∇xj logP (xj ,yj)

Ωi,j = k(xi,xj)
(
∇xi logP (xi,yi)

>

∇xj logP (xj ,yj)
)

where L = {l(yi,yj)} is the kernel gram matrix,
〈∇xφ(x),∇x′φ(x′)〉Fd =

∑d
i=1

∂k(x,x′)
∂xi∂x′i

, all the

matrices ∇2K, Υ, Ω and L are in Rm×m, and
tr(M) is the trace of the matrix M. (Refer to Ap-
pendix A.2 for detail.)

In our experiments, we adopt Gaussian ker-
nel k(x1,x2) = exp(− 1

σ2 ‖x1 − x2‖2) where its
derivative ∇x1k(x1,x2) ∈ Rd and (∇2K)i,j ∈ R
can be computed numerically,

∇x1k(x1,x2) = k(x1,x2)

(
− 2

σ2
(x1 − x2)

)
(∇2K)i,j = k(x1,x2)

(
2d

σ2
− 4‖x1 − x2‖2

σ4

)
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Remark. Based on the virtue of goodness-fit test
theory, we will have S(P,Q) = 0 if and only if
P = Q (Chwialkowski et al., 2016). Instead of
applying uniform weights as MMD does, JKSD
applies non-uniform weights βi,j ,

Ŝ2(P,Q) =
∑
i,j

βi,jl(yi,yj)

where βi,j = (∇2K + 2Υ + Ω)i,j is, in turn, deter-
mined by the activation-based and gradient-based
features of the known probability P . JKSD com-
putes a dynamic weight βi,j to decide whether the
sample i shares the same label with other sample j
in the target domain. Different from cluster-based
methods (Liang et al., 2020), JKSD assigns each
sample a label according to all the data in the target
domain instead of the centroid of each category.
The computation of centroid severely suffers from
the noise due to the domain shifts. In contrast,
our solution is more suitable for UDA because we
avoid to use the untrusted intermediate results (i.e.,
the centroid of each category) to infer the labels.

3.3 Training

The pipeline of our CdKD framework is shown in
Figure 1(b). The source model parameterized by a
DNN consists of two modules: a feature extractor
Ts : X 7→ Zs and a classifier Gs : Zs 7→ Y , i.e.,
fs(x) = Gs(Ts(x)). The target model ft = Tt◦Gt
also has two modules where we use parallel nota-
tions Tt(·; θT ) : X 7→ Zt and Gt(·; θG) : Zt 7→ Y
for target model. Note here in our experiments, the
dimension of the latent representations of source
model is set equal to the target model, i.e., Zs =
Zt = Rd. The extractors Ts and Tt are allowed to
adopt different network architectures.

The input space X is usually highly sparse
where the kernel function cannot capture suffi-
cient features to measure the similarity. There-
fore, we evaluate JKSD based on latent represen-
tations of target samples, i.e., Q̂ = {(z,y)|z =
Tt(x),y = Gt(z),x ∈ Dt} ∼ Q(Z,Y). In Eq.
5, it is required to evaluate the joint probability
P (Y = y,Z = z) = p(y|z)p(z) over a sample
(z,y) obtained from Q̂. The probability p(y|z)
that the sample follows conditional distribution of
the source domain P (Y|Z) can be evaluated as
p(y|z) = y>Gs(z). Similarly, the term p(z) rep-
resents the probability that the target representation
z follows the marginal distribution P (Z) of the
source domain. Since we cannot access the source

marginal distribution directly, we approximate it
by evaluating the cosine similarity of the represen-
tations outputted from the source model and target
model, i.e.,

p(z) =
1

2
cos(z, Ts(x)) +

1

2

where x = T−1t (z) is the sample corresponding to
z for any z ∈ Q̂. Formally, the term∇z logP (z,y)
in Eq. 5 can be computed as

∇z logP (z,y) =
1

p(y|z)
y>∇zGs(z) +

∇zp(z)

p(z)

where ∇zGs(z) ∈ RK×d is a Jacobian matrix of
the target latent representation with respect to the
source classifier Gs.

We propose to train the target model ft by jointly
distilling the knowledge from the source domain
and reducing the shifts in the joint distributions via
JKSD,

min
θT ,θG

LKD + µŜ2(P,Q)

where µ > 0 is a tradeoff parameter for JKSD.
In order to maximize the test power of JKSD, we

require the class of functions h ∈ F d⊗G to be rich
enough. Meanwhile, kernel-based metrics usually
suffer from vanishing gradients for low-bandwidth
kernels. We are enlightened by (Long et al., 2017)
which introduces the adversarial training to circum-
vent these issues. Specifically, we multiple fully
connected layers U and V parameterized by θU
and θV to JKSD, i.e., k(xi,xj) and l(yi,yj) are
replaced as k(U(xi), U(xj)) and l(V (yi), V (yj))
in Eq. 5. We maximize JKSD with respect to
the new parameters θU and θV to maximize the
test power of JKSD such that the samples in the
target domain are made more discriminative by
abundantly exploiting the activation and gradient
features in the source domain. As shown in Figure
1(c), the target model ft can be optimized by the
following adversarial objective,

min
θT ,θG

max
θU ,θV

LKD + µŜ2(P,Q) (6)

4 Experiments

4.1 Setup

To testify its versatility, we evaluate the proposed
model in two tasks including UDA and knowledge
distillation.
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Table 1: Classification accuracy (%) on Amazon-Feature dataset using MLP Extractor.

Models D→B E→B K→B B→D E→D D→E B→K E→K Avg

Source Only 71.8 69.4 69.5 78.1 69.3 75.9 77.6 81.1 74.1
Train on Target 81.7 81.7 81.7 82.3 82.3 85.5 85.8 85.8 83.4

TCA (Pan et al., 2010) 62.2 59.5 64.0 62.4 62.7 66.3 65.1 73.8 64.5
BDA (Wang et al., 2017) 62.7 58.7 62.5 64.3 62.1 67.0 63.4 74.5 64.4
GFK (Gong et al., 2012) 66.5 63.0 65.5 66.3 63.4 64.0 69.2 73.3 66.4
DDC (Tzeng et al., 2014) 77.7 74.8 73.1 79.6 77.8 80.3 78.5 83.5 78.2

RevGrad (Ganin and Lempitsky, 2015) 76.9 74.7 74.7 80.2 76.1 79.4 79.3 84.1 78.2
DAAN (Yu et al., 2019) 78.4 70.9 68.5 77.0 75.5 77.3 78.7 84.0 76.3

SHOT (Liang et al., 2020) 75.1 75.2 75.3 81.1 76.0 79.0 80.6 84.7 78.4

KD (µ = 0.0) 71.9 70.7 72.7 78.7 65.0 80.6 80.5 82.3 75.3
Our method 77.0 74.6 76.1 80.8 77.2 81.8 82.5 83.6 79.2

Amazon-Review1 is a benchmark dataset for do-
main adaptation in text classification task. Two
versions of Amazon Review datasets are used to
evaluate models. The work provides a simplified
Amazon-Review dataset (Amazon-Feature) col-
lected from four distinct domains: Books (B), DVD
(D), Electronics (E) and Kitchen (K). Each domain
comprises 4,000 samples with 400d feature rep-
resentations and 2 categories (positive and nega-
tive). Zhang et al. (2021) collected a larger dataset
called Amazon-Text from Amazon-Review with
the same domains in Amazon-Feature to test the
model performance for large-scale transfer learning.
The review texts are divided into two categories ac-
cording to user rating, i.e., positive (5 stars) and
negative (1 star). There are 10,000 original review
texts in each category and 20,000 texts in each do-
main. The notation S→T represents the transfer
learning from the source domain S to the target
domain T.

Baselines. For the bulk of experiments the fol-
lowing baselines are evaluated. The Source-Only
model is trained only over source domain and tested
over target-domain data while Train-on-Target
model is trained and tested over target-domain data
directly. We compare with conventional domain
adaptation methods: Transfer Component Analysis
(TCA) (Pan et al., 2010), Balanced Distribution
Adaptation (BDA) (Wang et al., 2017), Geodesic
Flow Kernel (GFK) (Gong et al., 2012), Deep
Domain Confusion (DDC) (Tzeng et al., 2014),
Domain Adversarial Neural Networks (RevGrad)
(Ganin and Lempitsky, 2015) and Dynamic Ad-
versarial Adaptation Network (DAAN) (Yu et al.,
2019). We compare with SHOT (Liang et al.,
2020) for the UDA task without the source data.

1http://jmcauley.ucsd.edu/data/amazon/

We also compare with the knowledge distillation
method (KD) (Hinton et al., 2015) in our setting.

In our experiments, three different extractors are
selected. For Amazon-Feature dataset, the extrac-
tor is simply modeled as a typical 3-layer fully
connected network (MLP) to transform 400d in-
puts into 50d latent feature vectors. Two types of
networks are leveraged for Amazon-Text dataset to
encode the original review texts, i.e., TextCNN and
BertGRU. TextCNN (Kim, 2014) is a text convo-
lutional network that consists of 150 convolutional
filters with 3 different window sizes. We also eval-
uate the performance of cross-domain text classifi-
cation on a pre-trained language model, i.e., BERT
(Devlin et al., 2019). We freeze BERT model and
construct a 2-layer bi-directional GRU (Cho et al.,
2014) to learn from the representations produced by
BERT. The classifier is modeled as a 2-layer fully
connected network for all the settings. For CdKD,
we consider to learn the source model fs by min-
imizing the standard cross-entropy loss. We ran-
domly specify a 0.7/0.3 split in the source dataset
and generate the optimal source model based on the
validation split. U and V are modeled as weight
matrices.

We implement all deep methods based on Py-
torch framework, and BERT model is implemented
and pre-trained by pytorch-transformers2. We
adopt Gaussian kernel with bandwidth set to me-
dian pairwise squared distances on the training
data (Gretton et al., 2012). The temperature T
is set to 10 during training. We use AdamW op-
timizer (Loshchilov and Hutter, 2019) with batch
size of 128 and the learning rate annealing strat-
egy in (Long et al., 2017): it is adjusted dur-
ing back propagation using the following formula:

2https://github.com/huggingface/
transformers

http://jmcauley.ucsd.edu/data/amazon/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Table 2: Classification accuracy (%) on Amazon-Text dataset using TextCNN and BertGRU Extractors.

Models E→B K→B B→D E→D K→D B→E D→E D→K Avg

Using TextCNN as Extractor

Source Only 68.7 69.7 81.2 75.8 70.3 68.7 62.8 64.9 70.3
Train on Target 83.7 83.7 89.1 89.1 89.1 85.4 85.4 85.5 86.4

DDC (Tzeng et al., 2014) 69.6 69.9 82.0 76.8 76.5 72.5 70.2 63.4 72.6
RevGrad (Ganin and Lempitsky, 2015) 71.7 72.0 81.9 78.5 68.8 70.2 69.2 69.4 72.7

DAAN (Yu et al., 2019) 73.3 71.1 83.0 76.1 73.1 73.5 70.9 71.1 74.0
SHOT (Liang et al., 2020) 72.4 72.1 81.9 74.0 77.2 72.8 73.3 72.5 74.5

KD (µ = 0.0) 71.7 70.0 80.9 73.8 74.7 75.2 65.6 67.1 72.4
Our method 74.0 72.7 83.2 76.6 76.3 77.0 75.0 74.3 76.1

Using BertGRU as Extractor

Source Only 85.1 85.1 91.6 88.6 89.5 85.0 84.6 84.3 86.7
Train on Target 93.2 93.2 94.9 94.9 94.9 92.6 92.6 94.4 93.8

DDC (Tzeng et al., 2014) 87.8 86.6 92.2 91.2 90.9 87.3 87.0 87.4 88.8
RevGrad (Ganin and Lempitsky, 2015) 87.5 83.7 92.7 90.5 88.2 85.0 87.2 86.6 87.7

DAAN (Yu et al., 2019) 88.7 85.7 92.0 89.8 90.4 85.5 86.6 88.8 88.4
SHOT (Liang et al., 2020) 86.5 87.2 91.9 90.0 89.3 87.2 86.0 85.9 88.0

KD (µ = 0.0) 85.6 87.0 92.2 90.1 90.1 86.6 87.2 86.3 88.1
Our method 87.8 88.0 92.8 90.4 91.8 87.6 87.8 87.2 89.2

Table 3: Classification accuracy (%) on knowledge distillation task.

Models E→B K→B B→D E→D K→D B→E D→E D→K Avg

TextCNN 69.5 67.4 79.7 72.9 71.2 70.2 64.6 65.5 70.1
BertGRU 83.8 84.4 91.3 87.0 88.6 84.8 79.1 79.7 84.8

KD (Hinton et al., 2015) 83.1 81.8 87.0 86.3 85.8 82.6 78.5 78.2 82.9
CdKD (our) 83.8 83.5 87.9 86.7 86.6 83.9 82.3 81.8 84.6

ηp = η0
(1+10p)0.75

where p is the training progress
linearly changing from 0 to 1 and η0 is set to 0.001.
We apply the same strategy in (Ganin and Lempit-
sky, 2015) to adjust the factor µ dynamically, i.e.,
we gradually change it from 0 to 1 by a progressive
schedule: µp = 2

1+exp(−10p) − 1.

4.2 Results

In the first experiment, we compare with the con-
ventional domain adaptation methods where the
source model and target model share the same net-
work architectures. The classification accuracy re-
sults on the Amazon-Feature dataset for domain
adaptation based on MLP are shown in Table 1.
Some of the observations and analysis are listed as
follows. (1) The performance of traditional UDA
methods (e.g., TCA, GFK and BDA) is worse than
Source-Only model, i.e., negative transfer learning
occurs in all transfer tasks. These models directly
define kernel over sparse input vectors such that the
kernel function cannot capture sufficient features to
measure the similarity. The deep transfer methods
outperform all the traditional methods, suggesting
that embedding domain adaptation modules into

deep network can reduce domain discrepancy sig-
nificantly. (2) The average accuracy of CdKD is
slightly 1.0% higher than other deep transfer meth-
ods (DDC, RevGrad, DAAN and SHOT) overall. It
verifies the positive effect of transferring the knowl-
edge from trained source model without accessing
the source data.

Table 2 shows the classification performance
of deep UDA models based on TextCNN and
BertGRU over a large dataset Amazon-Text. For
TextCNN extractor, we have following analysis.
CdKD achieves superior performance over prior
methods by larger margins compared to small
dataset Amazon-Feature. Compared to DDC and
RevGrad that obtains the domain-invariant features,
CdKD can learn discriminative information from
the source model by minimizing JKSD criterion.
SHOT assumes that the target outputs should be
similar to one-hot encoding. However, the one-
hot encoding used in SHOT is noisy and untrusted
due to the domain shifts. Different from SHOT,
we match the joint distributions across domains in
terms of multi-view features rather than only class
probabilities when adapting the target model. By
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Figure 2: Accuracy (%) results of CdKD and its abla-
tions.

going from TextCNN to extremely deep BertGRU,
we attain a more in-depth understanding of feature
transferability. BertGRU-based models outperform
TextCNN-based models significantly, which shows
BERT enables learning more transferable represen-
tations for UDA. Our CdKD has a slight advantage
compared to other models overall under the pow-
erful transferability of BertGRU. It reveals the ne-
cessity of designing a moment matching approach
to incorporate activation and gradient features into
domain adaptation for reducing the losses caused
by the lack of source data.

In the second experiment, we compare with the
KD model where the knowledge in BertGRU is dis-
tilled to the TextCNN-based model. We generate
the optimal BertGRU as the teacher model based
on the source dataset. The TextCNN model uses
BERT tokenizer tool to guarantee the same input
space between two models. We randomly specify
a 0.5/0.2/0.3 split in the target dataset where we
train and select TextCNN-based model based on
the train split and validation split respectively. The
result is reported in Table 3 in terms of the test split.
The average accuracy of CdKD is 1.6% higher
than original KD and approaches to the teacher
model BertGRU. Significantly, the accuracy scores
of tasks D → E and D → K are higher than Bert-
GRU. This is attributed to distribution adaptation
where extra performance is also gained from JKSD
besides the guidance of the teacher model.

4.3 Analysis

Ablation Study. We conduct the ablation exper-
iments to see the contributions of gradient infor-
mation (g) and the adversarial strategy (a), which
are evaluated with TextCNN extractor for UDA
task. By ablating CdKD, we have two baselines
of CdKD-g (w/o g) and CdKD-a (w/o a). For
CdKD-g, we set the gradient of log-distribution
∇xj logP (xj ,yj) ∈ Rd×1 to a constant, i.e.,
1
d(1, 1, ..., 1)> while we optimize CdKD without
adversarial strategy for CdKD-a. From the results
in Figure 2, CdKD-g and CdKD-a perform worse
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Figure 3: Accuracy (%) result of CdKD and KD for
different source models.
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Figure 4: Accuracy (%) result of CdKD for varying
batch sizes.

than CdKD but still better than KD, suggesting that
gradient information and the adversarial strategy
both contribute to the improvements of our model.
The gradient information is one type of important
knowledge in the source domain, but all previous
methods ignore its importance for UDA.
Effects of Source Model Accuracy. Here we
study how the performance of target model are in-
fluenced by the source model accuracy, which are
analyzed based on B → E task using TextCNN
extractor. We randomly obtain 9 optimal source
models using different seeds over B dataset, and
train CdKD and KD models based on different
source models for B → E task. Figure 3 shows
the classification accuracy of CdKD and KD by
varying accuracy of source models tested over E
dataset. CdKD obtains similar performance under
different source models, indicating that CdKD is
not very sensitive to the quality of source models.
However, the curves of KD is unstable, i.e., the
performance of KD is vulnerable to the impact of
the source models, because different source models
follow the different distributions. Obviously, JKSD
plays a crucial role in determining the effects of
alleviating this distribution discrepancy among dif-
ferent source models.
Effects of Batch Size. Batch size is a key parame-
ter to optimize JKSD metric because it is required
to compute kernel over a min-batch of data. Figure
4 shows the classification accuracy of CdKD by
varying batch size in {64, 128, 256, 512}. The ex-
periment shows that CdKD is not sensitive to batch
size when batch size is larger than 64, suggesting
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that CdKD don’t need a very large batch size for
accurate estimation of JKSD.

5 Conclusion

In this paper, we shed a new light on the challenges
of UDA without needing source data. Specifically,
we provided a generic framework named CdKD
to learn a classification model over a set of un-
labeled target data by making use of the knowl-
edge of the activation and gradient information
in the trained source model. CdKD learned the
collective knowledge across different domains in-
cluding domain-invariant and discriminative fea-
tures by matching the joint distributions between a
trained source model and a set of target data. Exper-
iments for cross-domain text classification testified
that CdKD still achieves advantages for UDA task
though without any source data and improves the
performance of KD task when the trained teacher
model doesn’t match the training data.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Geoffrey E Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
arXiv: Machine Learning.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181


5432

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong,
and Si Wu. 2020. Model adaptation: Unsupervised
domain adaptation without source data. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9641–9650.

Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we
really need to access the source data? source hypoth-
esis transfer for unsupervised domain adaptation. In
International Conference on Machine Learning.

Qiang Liu, Jason Lee, and Michael Jordan. 2016.
A kernelized stein discrepancy for goodness-of-fit
tests. In International conference on machine learn-
ing, pages 276–284.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. 2018. Conditional adversarial do-
main adaptation. In Advances in Neural Information
Processing Systems, pages 1640–1650.

Mingsheng Long, Han Zhu, Jianmin Wang, and
Michael I Jordan. 2017. Deep transfer learning with
joint adaptation networks. In International confer-
ence on machine learning, pages 2208–2217.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations.

Fangzhou Mu, Yingyu Liang, and Yin Li. 2020. Gradi-
ents as features for deep representation learning. In
8th International Conference on Learning Represen-
tations, ICLR 2020.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2010. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural
Networks, 22(2):199–210.

Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.
2017. Asymmetric tri-training for unsupervised do-
main adaptation. In International Conference on
Machine Learning, pages 2988–2997.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko,
and Trevor Darrell. 2014. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474.

Jindong Wang, Yiqiang Chen, Shuji Hao, Wenjie Feng,
and Zhiqi Shen. 2017. Balanced distribution adap-
tation for transfer learning. In 2017 IEEE Interna-
tional Conference on Data Mining (ICDM), pages
1129–1134. IEEE.

Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu,
Meiyu Huang, and Philip S Yu. 2018. Visual do-
main adaptation with manifold embedded distribu-
tion alignment. In Proceedings of the 26th ACM
international conference on Multimedia, pages 402–
410.

Yuan Yao, Yu Zhang, Xutao Li, and Yunming Ye. 2019.
Heterogeneous domain adaptation via soft transfer
network. In Proceedings of the 27th ACM Interna-
tional Conference on Multimedia, page 1578–1586.

Hai Ye, Qingyu Tan, Ruidan He, Juntao Li, Hwee Tou
Ng, and Lidong Bing. 2020. Feature adaptation of
pre-trained language models across languages and
domains with robust self-training. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 7386–
7399, Online. Association for Computational Lin-
guistics.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim.
2017. A gift from knowledge distillation: Fast op-
timization, network minimization and transfer learn-
ing. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4133–
4141.

Chaohui Yu, Jindong Wang, Yiqiang Chen, and Meiyu
Huang. 2019. Transfer learning with dynamic ad-
versarial adaptation network. In International Con-
ference on Data Mining, pages 778–786. IEEE.

Bo Zhang, Xiaoming Zhang, Yun Liu, and Lei Chen.
2021. Discriminative feature adaptation via con-
ditional mean discrepancy for cross-domain text
classification. In International Conference on
Database Systems for Advanced Applications (DAS-
FAA), pages 104–119.

Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar,
and Jinsong Wang. 2019. Confidence regularized
self-training. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 5982–
5991.

A Appendices

A.1 Empirical Evaluation of JMMD
JMMD J(P,Q) measures the shifts in joint distri-
butions P (X,Y) and Q(X,Y) by

sup
f⊗g∈H

EQ(f(x)g(y))− EP (f(x)g(y))

= supEQ (〈f ⊗ g, φ(x)⊗ ψ(y)〉)
− EP (〈f ⊗ g, φ(x)⊗ ψ(y)〉)

= sup
〈
f ⊗ g, CQXY − C

P
XY

〉
F⊗G

=
∥∥∥CQXY − CPXY ∥∥∥

F⊗G

Given a source domain Ds = {(xsi ,ysi )}ni=1 ∼
P (X,Y) and a target domain Dt =
{(xtj ,ytj)}mj=1 ∼ Q(X,Y), the empirical
estimation of JMMD is,

Ĵ2(P,Q) =
1

n2
tr(KssLss) +

1

m2
tr(KttLtt)

− 2

mn
tr(KstLts)

(7)

where (Kst)i,j = k(xsi ,x
t
j) and (Lst)i,j =

l(ysi ,y
t
j) are gram matrices, and tr(A) is the trace
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of the matrix A. The Eq. 7 applies the source
data Kst, Kss, Lst and Lss to compute the score
of JMMD, which cannot adapt to our new setting
obviously. Note here that the JMMD used in our
paper is a simplified version of (Long et al., 2017),
where we only consider two variables.

A.2 Empirical Evaluation of JKSD
Denote λxy = ∇xφ(x) + φ(x)(∇x logP (x,y))
where ξxy can be represented as ξxy = λxy⊗ψ(y).
The empirical evaluation of JKSD can be computed
as,

‖EQξxy‖2 = 〈EQξxy,EQξxy〉
=EQEQ′

〈
λxy ⊗ ψ(y), λx′y′ ⊗ ψ(y′)

〉
=EQEQ′

〈
λxy, λx′y′

〉
Fd

〈
ψ(y), ψ(y′)

〉
G

=EQEQ′
〈
λxy, λx′y′

〉
Fd l(y,y

′)

where EQ′ [·] refers to E(x′,y′)∼Q[·].
For f = (f1, · · · , fd) ∈ F d and g =

(g1, · · · , gd) ∈ F d, the inner product between
f and g is defined as 〈f, g〉 =

∑d
i=1 〈fi, gi〉F .

Based on this definition, the inner product
〈∇xφ(x),∇x′φ(x′)〉Fd can be evaluated as

d∑
i=1

〈
∂φ(x)

∂xi
,
∂φ(x′)

∂x′i

〉
F

=

d∑
i=1

∂k(x,x′)

∂xi∂x′i

Similar to (Chwialkowski et al., 2016), we can
compute h(x,y,x′,y′) =

〈
λxy, λx′y′

〉
Fd as,

∇x logP (x,y)>∇x′ logP (x′,y′)k(x,x′)

+∇x logP (x,y)>∇x′k(x,x′)

+∇x′ logP (x′,y′)>∇xk(x,x′)

+
〈
∇xφ(x),∇x′φ(x′)

〉
Fd

Thus, JKSD S2(P,Q) is the expectation of
h(x,y,x′,y′)l(y,y′) over the distribution Q,

S2(P,Q) = EQEQ′h(x,y,x′,y′)l(y,y′)

Given a set of samples Dt = {(xi,yi)}mi=1 ∼
Q(X,Y), we can evaluate S2(P,Q) as

1

m2

∑
x,y

∑
x′,y′

h(x,y,x′,y′)l(y,y′)

which can be represented in the matrix form as
shown in Eq. 5.


