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Abstract

The importance of explaining the outcome of
a machine learning model, especially a black-
box model, is widely acknowledged. Recent
approaches explain an outcome by identifying
the contributions of input features to this out-
come. In environments involving large black-
box models or complex inputs, this leads to
computationally demanding algorithms. Fur-
ther, these algorithms often suffer from low
stability, with explanations varying signifi-
cantly across similar examples. In this pa-
per, we propose a Learning to Explain (L2E)
approach that learns the behaviour of an un-
derlying explanation algorithm simultaneously
from all training examples. Once the explana-
tion algorithm is distilled into an explainer net-
work, it can be used to explain new instances.
Our experiments on three classification tasks,
which compare our approach to six explana-
tion algorithms, show that L2E is between 5
and 7.5 × 104 times faster than these algo-
rithms, while generating more stable explana-
tions, and having comparable faithfulness to
the black-box model.

1 Introduction

Explaining the mechanisms and reasoning behind
the outcome of complex machine learning models,
such as deep neural networks (DNNs), is crucial.
Such explanations can shed light on the potential
flaws and biases within these powerful and widely
applicable models, e.g., in medical diagnosis (Caru-
ana et al., 2015) and judicial systems (Rich, 2016).

Existing explainability methods mostly produce
explanations, or rationales (DeYoung et al., 2020),
which identify the attributions of features in an in-
put example, e.g., are they contributing positively
or negatively to the prediction of an outcome. For
text classifiers, this means identifying words or
phrases in an input document that account for a

Novell’s Microsoft attack completes Linux conversion:
Novell Inc. has completed its conversion to Linux by
launching an attack on Microsoft Corp., claiming that
the company has stifled software innovation and that
the market will abandon Microsoft Windows at some
point in the future.

ŷxxx = 99% Sci/Tech; ŷxxxrA = 14%; ŷxxxrL2E = 0.7%

Microsoft expands Windows update Release: Microsoft
Corp. is starting to ramp up distribution of its massive
security update for the Windows XP operating system,
but analysts say they still expect the company to move
at a relatively slow pace to avoid widespread glitches.

ŷxxx = 98% Sci/Tech; ŷxxxrA = 66%; ŷxxxrL2E = 0.4%

Figure 1: Two similar examples from the News dataset.
The most important words (top 30%) found by our method
L2E are yellow-highlighted, and those from a baseline A are
underlined. L2E considers words like ‘Microsoft’ and ‘Win-
dows’ important in both examples. ŷxxx is the model’s pre-
diction, and ŷxxxr· is the model’s prediction after removing
important words in xxx.

prediction. Current approaches are typically com-
putationally demanding, requiring expensive op-
erations, such as consulting a black-box model
multiple times (Zeiler and Fergus, 2014), or gen-
erating samples to learn an approximate but ex-
plainable transparent model (Ribeiro et al., 2016).
This computational demand reduces the utility of
these explanation algorithms, especially for large
black-box models, long documents and real-time
scenarios (Kim et al., 2018). Further, these algo-
rithms generate explanations for different examples
independently. This may lead to the generation of
different explanations for similar examples, which
is undesirable. For example, a black-box predicts
with similar confidence (99% and 98%) that the
topic of the two semantically similar documents in
Figure 1 is Sci/Tech. However, even though the
words ‘Microsoft’ and ‘Windows’ appear in both
documents, the baseline explainer A deems ‘Win-
dows’ to be important for the top document, and
‘Microsoft’ for the bottom document (that is, mask-
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ing these words results in a significant drop in the
black-box’s confidence).

In this paper, we present a learning to explain
(L2E) approach that efficiently learns the common-
alities of the explanation process across different
examples. This, in turn, leads to explanations that
exhibit stability, i.e., important words are chosen
consistently, without loss of faithfulness to the
underlying black-box.1 Given a set of examples
paired with their explanations produced by an ex-
isting method, e.g., LIME (Ribeiro et al., 2016),
our approach uses a DNN to learn the explana-
tion algorithm. DNNs are Turing complete (Pérez
et al., 2019; Montufar et al., 2014); therefore, given
enough training data and learning capacity, they
should be able to learn the existing explanation
algorithms. This is akin to Knowledge Distilla-
tion (Hinton et al., 2015), where a teacher, or in our
case a teacher algorithm, distils knowledge into a
student network.

Our contributions are: (i) the L2E framework,
which is general, and can successfully learn to pro-
duce explanations from several teacher explainers;
(ii) two learning formulations, i.e., Ranking and
Sequence Labelling, to enable L2E to circumvent
the high variance of non-discrete teacher explana-
tions via discretization; (iii) an experimental setup
to compare L2E against six popular explanation
algorithms, and a comprehensive evaluation to in-
vestigate the stability and faithfulness of L2E on
three text classification tasks; (iv) a methodology
that employs human rationales as proxies for the
ground-truth explanations of a black-box model.
The core of this method is a modified training pro-
tocol whereby the model makes neutral predictions
if human rationales are absent.

2 Related Work

We consider two main approaches to explanation
generation: algorithmic and model-based.

Algorithmic Approaches. These approaches
can be broadly categorized into gradient-based,
attention-based and perturbation-based methods.

Gradient-based methods (Simonyan et al., 2013;
Sundararajan et al., 2017; Shrikumar et al., 2017;
Erion et al., 2019) or backpropagation-based meth-
ods (Bach et al., 2015) require access to the black-
box, and are mostly applied to models with differ-
entiable functions. Further, they may be sensitive

1This approach does not aim to improve the trans-
parency (Lipton, 2018) of the black-box model.

to randomized model initializations or permuted
data labels (Adebayo et al., 2018), which is undesir-
able. These methods can be computationally heavy
in the case of complex black-box models (Wu and
Ong, 2021), e.g., BERT (Devlin et al., 2018).

Attention-based methods (Wiegreffe and Pinter,
2019) can only be applied to Transformer-based
models (Vaswani et al., 2017), and their effective-
ness is questionable (Jain and Wallace, 2019; Ser-
rano and Smith, 2019).

Perturbation-based methods approximate feature
importance by observing changes in a model’s out-
come after a feature is changed. They either con-
sider changes in performance as an indicator of
feature importance directly (Martens and Provost,
2014; Zeiler and Fergus, 2014; Schwab and Karlen,
2019), or they employ a higher-order approxima-
tion of the decision boundary (Ribeiro et al., 2016;
Lundberg and Lee, 2017). Perturbation-based
methods are typically computationally inefficient
for explaining high-dimensional data, and they suf-
fer from high variance due to perturbation random-
ness (Slack et al., 2020; Chen et al., 2019).

Model-based Approaches. These approaches
train the explainer with an objective function to
improve efficiency at test time. The closest work
to ours is by Schwab and Karlen (2019), who
train an explainer using a causality-based expla-
nation algorithm. However, these approaches do
not learn from arbitrary algorithms or discretize
feature weights — the high variation of continu-
ous weights may impair the ability to capture the
commonalities in an explanation algorithm. Jain
et al. (2020) discretize the weights produced by
an existing method, but they use these weights to
build a faithful classifier for an underlying black-
box model, rather than using them to explain the
model directly.

Other works train a classifier and an explainer
jointly in order to incorporate explainability di-
rectly into the classifier (Lei et al., 2016; Cam-
buru et al., 2018). Unlike these approaches, we
do not change the classifier or require an ex-
pensive process to collect human rationales, as
done in (Camburu et al., 2018). Lastly, a few
works use information-theoretic objectives to train
an explainer directly from the underlying classi-
fier (Chen et al., 2018; Bang et al., 2019). These ex-
plainers require careful training to select a low num-
ber of important features (Paranjape et al., 2020);
hence, some input features do not have attributions.
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Goodness of Explanations. Researchers have
quantified the goodness of an explanation in dif-
ferent ways, such as brevity, alignment to human
rationales, contrastiveness and stability.

Minimal (brief) explanations are generated
in (Martens and Provost, 2014; Ribeiro et al., 2018;
Alvarez-Melis et al., 2019; Bang et al., 2019).
Explanations aligned with human rationales are
produced in (Sen et al., 2020; Atanasova et al.,
2020), and contrastive explanations are generated
in (Miller, 2018; Alvarez-Melis et al., 2019).

According to Atanasova et al. (2020), only a few
algorithmic explanation methods produce stable
explanations (Robnik-Šikonja and Bohanec, 2018),
e.g., LIME (Ribeiro et al., 2016). To the best of our
knowledge, we are the first to explore the stability
of explanations in model-based approaches.

3 Learning to Explain (L2E)

L2E can be applied to any Natural Language Pro-
cessing task to which an underlying feature-based
explanation algorithm can be applied, such as Nat-
ural Language Inference and Question Answer-
ing (Wang et al., 2020). In this paper, we focus
on explaining text classification models.

Our setup requires two inputs: (i) a black-box
text classification model ŷ = fθθθ(xxx), which as-
signs document xxx to a label ŷ ∈ Y , where Y is
the label set; and (ii) an explanation algorithm
A(xxx, ŷ, fθθθ) → www, which generates explanation
www ∈ R|xxx| for the class of document xxx obtained
by the black-box fθθθ(xxx). A can be any off-the-shelf
explanation algorithm; and wi can be thought as
the importance weight of xi – the ith token of a
document.

The main idea of L2E is to train a separate ex-
planation model gφφφ(xxx) to predict the explanation
generated by A(.) for fθθθ(.) (Figures 2a and 2b).
Intuitively, our approach distils the explanation al-
gorithm A into the explanation model gφφφ. As con-
firmed by our experiments (§4.5), this has several
benefits. Firstly, it leads to stable explanations, as
gφφφ can captureA’s common patterns when generat-
ing explanations for different documents. Secondly,
it speeds up the explanation generation process
compared to many existing explanation algorithms,
which rely on computationally heavy operations,
such as consulting the black-box model multiple
times, e.g., Occlusion (Zeiler and Fergus, 2014), or
sampling, e.g., LIME (Ribeiro et al., 2016). Our
approach, which learns a model with explanations

Algorithm 1 Learning to Explain (L2E)

1: D: a training set of documents
2: fθθθ: the original deep NN model
3: gφφφ: the explainer deep NN model
4: A: the underlying explanation method
5: procedure TRAINEXPLAINER(D, fθθθ)
6: Z ← ∅
7: for each input xxx ∈ D do
8: ŷ ← fθθθ(xxx)
9: www ← A(xxx, ŷ, fθθθ)

10: Z ← Z ∪ (xxx, ŷ,www)
11: end for
12: initialize φφφ randomly
13: t← 0
14: while a stopping condition is not met do
15: Randomly pick (xxxt, ŷt,wwwt) ∈ Z
16: φφφ← φφφ− ηt∇φφφL(gφφφ(xxxt, ŷt),wwwt)
17: t← t+ 1
18: end while
19: return the explanation model gφφφ
20: end procedure

of all training data, takes advantage of the com-
putations done by A, and generates more stable
explanations faster.

Our approach to train the explanation model gφφφ
is summarized in Algorithm 1. First, the algo-
rithm generates training data in the form of triplets
(xxx, ŷ,www) (lines 7–11), and then it trains the explana-
tion model using supervised learning (lines 14–18).
At test time, the trained model is deployed to gen-
erate explanations for unseen documents.

A crucial component in training the explanation
model under supervised learning is the loss func-
tion L(gφφφ(xxxt, ŷ),www). It penalizes a deviation of the
predicted explanation gφφφ(xxxt, ŷ) from the ground
truth explanation www. This loss function is deter-
mined by our supervised learning formulation.

Given thatwww is a continuous-valued vector, learn-
ing the model gθθθ may be cast as a multivariate re-
gression problem. However, the continuous feature
attributions generated by existing explanation algo-
rithms could be sensitive to initializations (Slack
et al., 2020). Further, manually annotated ratio-
nales (highlighting important words in a document)
are sufficient for people to understand/perform a
classification task (Zaidan et al., 2007). So, instead
of a regression formulation, we consider two super-
vised learning formulations for discretized outputs:
Ranking and Sequence Labeling.

Ranking Formulation. In this formulation, the
explanation model aims to learn the ranking of the
document tokens from their importance weights.
That is, we consider the ordering of the token
weights induced by www, and train the explanation



5343

This is a great movie.

[0.01, -0.01, 0.02, 0.9, 0.06] This is a great movie.

(a)

this is a great movie

+ - + + +

(b)

Figure 2: (a) Pipeline of our L2E method; dashed arrows represent offline processes. (b) Detailed input and output
for the sequence labeling formulation of our explanation model; red + label indicates that gθθθ considers ‘great’ to
be more important than other words in the prediction ŷ.

model gφφφ such that it induces the same ordering.
Specifically, the loss function is as follows:

L(gφφφ(xxx, ŷ),www) = −
|xxx|−1∑
i=1

|xxx|∑
j=i+1

log
evk

evi + evj

where vi (vj) is the ith (jth) component of the
importance vector vvv = gφφφ(xxx, ŷ) predicted by the
explanation model, and k = arg maxk′∈{i,j} |wk′ |.
In other words, each pair of token weights is com-
pared, and the parameters are learnt such that a
token with a high importance weight under A also
gets a high score under gφφφ.

Sequence Labeling Formulation. Here, expla-
nation generation is treated as a sequence label-
ing problem, where the continuous importance
weights are discretized according to the heuris-
tic h, whereby the importance weights are parti-
tioned along two dimensions, high/low and posi-
tive/neutral/negative, according to the mean value
of the positive/negative weights from the baseline
explanation method A. Thus, the labels are re-
coded to {high negative, low negative, neutral, low
positive, high positive}. The explanation model
gφφφ is then trained to predict the label of the tokens
according to the following loss function:

L(gφφφ(xxx, ŷ),www) = −
|xxx|∑
i=1

log Pr(h(wi)|gφφφ,i(xxx, ŷ))

where gφφφ,i(xxx, ŷ) is the predicted distribution over
the labels of the ith token of the document, and
h(wi) is the discrete label produced using the dis-
cretization heuristic h.

Owing to the quadratic complexity of the Rank-
ing formulation, compared to the linear complexity
of Sequence Labeling, we recommend using Rank-
ing when the input is short, and a fine-grained order

of feature attributions is required. Otherwise, the
Sequence Labeling formulation is a better option.

4 Experiments

4.1 Tasks and Black-Box Models (fθθθ)

We conduct experiments on three classification
tasks; each task has a different black-box classi-
fier chosen based on the best accuracy on the se-
lected dataset as reported in the literature.2 Dataset
statistics are reported in Appendix A.

• Topic Classification. The AG corpus (Zhang
et al., 2015) comprises news articles on multiple
topics. We separate 10% of the training docu-
ments for the dev set. The black-box classifier is
a fine-tuned BERT model (Devlin et al., 2018)
with 12 hidden layers and 12 attention heads. It
achieves a 92.6% test accuracy.

• Sentiment Analysis. The SST dataset (Socher
et al., 2013) comprises movie reviews with pos-
itive and negative sentiments. The black-box
classifier is a distilled BERT model (Sanh et al.,
2019) with 6 layers and 12 attention heads from
Hugging Face (Wolf et al., 2019). It achieves
90% test accuracy.

• Linguistic Acceptability. The CoLA
dataset (Warstadt et al., 2019) contains sentences
that are deemed acceptable or unacceptable in
terms of their grammatical correctness. The
black-box classifier is a fine-tuned ALBERT
model (Lan et al., 2020) with 12 attention heads
and 12 layers. It achieves a 74% test accuracy.

2All black-box models are open-sourced by TextAt-
tack (Morris et al., 2020) unless otherwise stated.
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4.2 Baseline Explanation Methods (A)

We use six baselines for our experimental setup:
Occlusion (Zeiler and Fergus, 2014; Schwab and
Karlen, 2019), Gradient (Simonyan et al., 2013),
LRP (Bach et al., 2015), LIME (Ribeiro et al.,
2016), Kernel SHAP (Lundberg and Lee, 2017)
and Deep SHAP (Shrikumar et al., 2017; Lund-
berg and Lee, 2017). The detailed setup of these
baselines is provided in Appendix B.

4.3 Explanation Models (gφφφ)

We use a Transformer encoder (Vaswani et al.,
2017) with 4 blocks and 4 attention heads as gφφφ.3

All models are trained with a Stochastic Gradient
Descent optimizer and a fixed learning rate (1e−4)
until convergence. To balance the different statuses
of model convergence, we train all models with
three random parameter initializations and report
the average values of their performance metrics.

We condition the explainer model gφφφ on the label
ŷ predicted by the underlying black-box model fθθθ
by appending ŷ to the start and the end of the input
document before passing it to gφφφ (Figure 2a). Thus,
gφφφ can leverage the predicted label in the attention
computation. For the sequence labeling formula-
tion, we also introduce a softmax layer on top to
produce the labeling distribution over the discrete
labels for each token, as detailed in Figure 2b.

4.4 Performance Metrics

Faithfulness. A standard approach to evaluate
the faithfulness of an explanation to a black-box
classification model is to measure the degree of
agreement between the prediction given the full
document and the prediction given the explana-
tion (Ribeiro et al., 2016). However, the aim of L2E
is to approximate an existing explanation method
A, which constitutes a layer of separation from
the original black-box fθθθ. Hence, we provide two
faithfulness evaluations for our approach when the
ground-truth explanation is unavailable:

• Prediction based. We measure the agreement
between: (a) the predictions of the black-box
model fθθθ when the explanations generated by gφφφ
are given as input, and (b) fθθθ’s predictions when
A’s explanations are given as input (instead of
using the full document);4

3We use the fairseq framework (Ott et al., 2019) for all
our implementations of gφφφ. Our source code is available at
https://github.com/situsnow/L2E.

4We do not evaluate the faithfulness of L2E to A in terms

• Confidence based. We adopt the ∆log-odds(xxx)
metric used by Schwab and Karlen (2019), which
measures the difference in the confidence of the
fθθθ black-box model in a prediction before and
after masking the words in an explanation.

log-odds(Pr(ŷ|fθθθ(xxx)))−log-odds(Pr(ŷ|fθθθ(x̃xx)))

where ŷ is the predicted output of fθθθ(xxx),
log-odds(Pr) = log Pr

1−Pr , and x̃xx is a version
of input xxx where the tokens in the explanation
are masked out. We expect a high ∆log-odds
value if we mask positive important words in
x̃̃x̃x, and a low value if we mask unimportant or
negative important words.

We report the average of each of these metrics
across the test documents.

Stability. We employ Intersection over Union
(IoU) to measure explanation stability across simi-
lar instances. Specifically, for each test instance xxx,
we select its nearest neighbors N (xxx) according to
one of two pairwise document similarity metrics:
semantic similarity – cosine of their BERT repre-
sentations; and lexical similarity – ratio of over-
lapping n-grams. Details appear in Appendix C.
IoU(xxx,N (xxx)) then measures the consistency of ex-
planations of xxx and those of its neighbours,

1

|N (xxx)|
∑

xxx′∈N (xxx)

∑
`∈L

`6=neutral
|vvv`xxx ∩ vvv`xxx′ |∑

`∈L
`6=neutral

|vvv`xxx ∪ vvv`xxx′ |
(1)

where L is the discretized label set in the Sequence
Labeling formulation or the top K words in the
Ranking formulation, and vvv`xxx is the set of tokens
with label ` in the predicted explanation gφφφ(xxx, ŷ).
We report the average of IoU(xxx,N (xxx)) across doc-
uments in the test set.

4.5 Results and Discussion
We start by investigating the faithfulness of an ex-
planation model to the black-box model fθθθ. Once
faithfulness has been established, we investigate
stability and speed compared to the underlying
explanation methods A. We also include a Ran-
dom baseline, which displays the performance ob-
tained by randomly selecting the same K number
of words as we select from explanations produced
by L2E and A in each row of the table, and averag-
ing it over the six comparisons.

of token importance, because A is not always faithful to the
black-box model.

https://github.com/situsnow/L2E
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Ranking Seq. Labeling
News SST CoLA News SST CoLA

Random 60 37 65 43.6 45.8 70

Occ.
A 94 88 67 81 89 76
L2E 89 83 65 84 90 80
Both 89 85 98 82 85 94

Grad.
A 89 73 65 87 71 68
L2E 91 66 65 94 70 70
Both 85 73 100 89 77 92

LRP
A 97 95 67 85 83 62
L2E 90 83 67 86 85 52
Both 93 84 100 90 83 90

LIME
A 100 86 67 99 84 71
L2E 96 81 65 98 82 80
Both 96 81 98 97 80 89

K’ SHAP
A 79 34 63 70 23 72
L2E 89 70 63 90 70 72
Both 80 58 100 74 51 100

D’ SHAP
A 82 68 65 81 70 59
L2E 77 70 65 82 73 59
Both 76 64 100 78 69 100

Table 1: Percentage agreement of the black-box model
with the baseline explanation algorithm A and L2E;
“Both” shows the agreement between L2E andA; bold
indicates statistical significance.

Faithfulness. For the Ranking formulation of
L2E, we select the top 30% of the important words
in each test sample.5 For the Sequence Labeling
formulation, we select the same number of posi-
tive/negative words identified by L2E and A.

Table 1 shows the Prediction-based agreement
between the black-box model fθθθ and our method
L2E, between fθθθ and the underlying explainer A,
and between L2E and A. We see that the explana-
tions generated by L2E are equally predictive of
the output class as those generated by A in both
the Ranking and the Sequence Labeling formula-
tions. We also note that the L2E version that learns
with the Ranking formulation is often less faithful,
though not significantly, to the black-box model
fθθθ than A compared to the version that learns with
the Sequence Labeling formulation.6 For example,
the percentage agreement of L2E-Ranking is lower
than that of Occlusion for the three datasets, while
the agreement of L2E-SequenceLabeling is higher
than that of Occlusion for these datasets. Inter-
estingly, when the baseline explanation algorithm
does not perform well, e.g., Kernel SHAP on SST,
L2E is still able to find words that are predictive of
the output of fθθθ. In such circumstances, the agree-

5We select 30% to ensure sufficient important words are
selected in each dataset given their average document length.
We use the same percentage in the Stability evaluation.

6Statistical significance (α<0.05) was measured by per-
forming the Wilcoxon Signed-Rank Test (Woolson, 2007)
followed by a sequential Holm-Bonferroni correction (Holm,
1979; Abdi, 2010) for all pairs of comparisons in a table.

Positive ∆log-odds ↑
Models News SST CoLA

Random 0.57±0.11 1.93±0.17 1.92±0.1

Occ. A 3.69±1.2 5.04±1.55
L2E 6.82±1.06 4.79±1.16

Grad. A 2.69±1.2 5.29±0.83 1.87±0.24
L2E 6.59±1.31 6.47±0.74 1.8±0.24

LRP A 1.87±0.67 4.48±0.89 1.18±0.46
L2E 2.09±0.7 3.68±0.86 0.92±0.37

LIME A 11.06±0.86 5.7±1.51 1.41±0.44
L2E 11.31±0.53 5.26±0.91 1.41±0.44

K’ SHAP A 4.33±1.21 0.22±0.37 1.96±0.28
L2E 3.24±0.92 2.81±0.65 1.97±0.24

D’ SHAP A 1.16±0.54 4.82±2.65 1.22±0.58
L2E 2.25±0.72 7.61±1.86 1.02±0.48

Table 2: Positive ∆log-odds when employing the Se-
quence Labeling formulation; bold indicates statistical
significance; the experimental results also show that
L2E never performs significantly worse than A; miss-
ing entries are due to all words being considered as pos-
itively important.

ment between L2E and A is quite low (“Both” is
58% and 51% for Ranking and Sequence Label-
ing respectively). The low performance of Kernel
SHAP may be attributed to insufficient samples
(103 in this case) in the kernel computation for
SST, while L2E could still utilize all the samples
during training.

Table 2 presents the ∆log-odds results for pos-
itive explanation words in the Sequence Labeling
formulation. Similar results are observed for neg-
ative explanation words in the same formulation,
and top important words in the Ranking formula-
tion. These results appear in Appendix D. They
are obtained by randomly selecting 100 documents
in the test set, and masking the same number of
important words in each document based on the
explanations generated by L2E and by A.

We observe that some baselines have inconsis-
tent faithfulness for different datasets. For example,
LRP and Deep SHAP perform worse than Kernel
SHAP for the News dataset, but better for SST. We
also note that, when one baseline performs worse
than the other baselines, e.g., Kernel SHAP for
SST, our method L2E still performs significantly
better than that baseline. This result demonstrates
that our model can learn important words that yield
more faithful explanations than those learned by
the teacher explainer. Interestingly, none of the
results for the CoLA dataset, from the baseline
A or L2E, significantly outperforms the Random
baseline. This flags a drawback of evaluating ex-
planation faithfulness on short documents.
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Ranking Sequence Labeling
Models News SST CoLA News SST CoLA

Random 6.19±0.38 3.74±0.39 9.29±0.9 11.0±0.6 6.75±0.36 19.25±1.45

Occlusion A 7.18±1.35 4.58±1.19 15.59±3.88 10.82±1.34 7.04±0.87 23.67±3.76
L2E 8.96±1.67 8.52±1.48 21.26±3.72 13.94±1.49 8.38±0.75 26.47±3.84

Gradient A 7.17±1.17 3.87±0.97 8.63±1.89 9.02±1.06 6.33±0.74 10.4±1.84
L2E 10.36±1.77 7.41±1.2 20.75±4.11 14.38±1.42 7.27±0.67 22.09±3.61

LRP A 10.2±1.74 1.13±0.46 10.92±2.25 13.84±1.45 6.28±0.79 22.53±3.37
L2E 11.2±1.95 7.75±1.22 19.45±3.8 14.67±1.48 7.45±0.79 26.45±3.84

LIME A 8.24±1.3 3.01±0.87 13.96±2.96 8.61±1.11 6.92±0.86 17.48±3.49
L2E 12.44±1.94 5.01±0.88 16.78±3.82 13.89±1.47 8.24±0.73 25.35±3.82

K’ SHAP A 7.47±1.52 2.49±0.72 19.12±3.91 5.75±1.2 1.47±0.52 22.39±4.8
L2E 12.84±1.97 2.82±0.83 18.78±3.96 9.15±1.63 1.73±0.53 21.82±4.7

D’ SHAP A 6.68±1.08 2.87±0.71 16.8±4.18 7.22±1.02 6.66±0.88 13.05±3.23
L2E 8.67±1.3 1.43±0.68 20.82±3.71 10.05±1.38 8.41±0.81 21.88±3.89

Table 3: Intersection over Union (IoU) using semantic similarity; bold indicates statistical significance. Since LRP
considers all words to be positively important for the prediction, we only consider the IoU of high positive words
in the Labeling formulation.

Stability. For each test document, we consider
the top-3 similar documents in the test set, and re-
port the average IoU as explained in §4.4. Table 3
shows the results obtained using semantic similar-
ity for the baselineA and L2E. Similar results with
lexical similarity appear in Appendix C. From Ta-
ble 3, we see that, in most cases, our method statis-
tically significantly outperforms the baseline for all
three datasets. For both formulations, Ranking and
Sequence Labeling, L2E achieves a higher stability
than the baseline A, even in cases where A’s IoU
is comparable to that of the Random baseline, e.g.,
Gradient for SST and CoLA. These results show
that learning the explanation process across differ-
ent examples, as done by L2E, can capture more
commonalities (higher stability) than generating
explanation individually (baselines).

Overall, the LIME baseline performs consis-
tently better than most baselines in terms of faithful-
ness and stability across the three datasets. There-
fore, L2E also performs better when it learns from
LIME than when it learns from other baselines.

Computational Efficiency. We now compare
the efficiency of L2E against that of the baseline
explanation algorithms A when generating expla-
nations for test documents. In our experiments,
the black-box is a transformer-based model com-
prising L layers, H attention-heads and D embed-
ding dimensions. The complexity of this model
when predicting a document of size N is then
O(L×N ×D× (D +N +H)) (Gu et al., 2020).
Various factors contribute to the computational de-
mands of existing explanation algorithms (details
in Appendix B), and make the complexity of these
algorithms grow with the size of the black-box
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Figure 3: Average inference time for the baseline expla-
nation algorithms and L2E-SequenceLabeling for 100
documents from IMDB-R; lower is better; y-axis is in
log-scale; * indicates statistical significance.

model. These factors include the size of the input
document (Occlusion), the sample size (LIME, Ker-
nel SHAP and Deep SHAP) etc. In contrast, L2E
is a distillation of any explanation algorithm, em-
ploying a smaller architecture than the black-box,
e.g., fewer layers and attention heads, and lower
embedding dimensions.

Figure 3 shows the inference time of L2E-
SequenceLabeling compared to that of the baseline
explainers for the IMDB-R dataset.7 We only show
the results obtained with Sequence Labeling, since
the inference time of L2E models is independent of
the learning formulation. As seen in Figure 3, L2E
requires statistically significantly less time than
any of the six baseline explanation algorithms for
IMDB-R. Similar patterns were observed for the

7All timing information is collected with the same hard-
ware configuration: Intel Xeon E5-2680 v3, NVIDIA Tesla
K80, 32 GB RAM.
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other three datasets (Appendix E).
Finally, L2E only needs a forward pass through

the explainer DNN. Comparing with Gradient and
LRP, which require only one backpropagation
through the black-box DNN, L2E is respectively 5
and 10 times faster for all datasets (all black-box
sizes appear in §4.1 and Appendix F).

5 Evaluation with Human Rationales

Evaluation of explanation methods for DNNs is
challenging, as ground-truth explanations are often
unavailable. In this section, we propose to address
this issue using the IMDB-R dataset (Zaidan et al.,
2007), which contains movie reviews xxx together
with their sentiment y, as well as rationales rrr an-
notated by people for the sentiment label. Our use
of rationales for evaluating explanations is related
to that in (Osman et al., 2020), where synthetic
data are generated from apriori fixed rationales.
Specifically, we generate new data by assigning a
“neutral” label to an example where the human ra-
tionales are masked. We then use both the original
data (without masking) and the new data to train
the black-box model, where the training protocol
forces the classifier to make a “neutral” prediction
when the human rationales are removed from the
review. More formally, we maximize the following
training objective,∑

(xxx,rrr,y)∈D

log Pr(y = fθθθ(xxx))+

log Pr(NEUTRAL = fθθθ(xxx− rrr))

where xxx− rrr denotes the input xxx with the rationale
words rrr masked out, NEUTRAL is an extra label,8

and D is the training data.
Our classifier achieves an accuracy of 83.83% on

the training set, 79.68% on the validation set and
74.5% on the test set. Due to the large document
sizes (Table 6 in Appendix A) and the quadratic
time complexity of the Ranking formulation as
a function of document size, we only train L2E
with the Sequence Labeling formulation; we use
lexical similarity to measure IoU, due to the time-
consuming computation of semantic similarity with
BERT. Details about the dataset, the classifier and
the explainer’s architecture appear in Appendix F.

The faithfulness and stability of the explanation
methods are evaluated as follows.

8It simulates abstaining from predicting any label from the
original label set.

Positive Reviews Negative Reviews
Pre. Re. F1 Pre. Re. F1

Occ. A 9 42 14 12 41 16
L2E 10 92 18 12 82 19

Grad. A 9 21 12 13 26 15
L2E 11 49 17 15 47 18

LRP A 7 5 5 12 18 14
L2E 12 12 11 12 28 16

LIME A 12 39 17 15 42 21
L2E 11 45 17 13 49 20

K’SHAP A 11 2 3 11 2 3
L2E 10 2 2 14 2 3

D’SHAP A 9 22 12 12 28 16
L2E 11 50 17 13 54 20

Table 4: Percentage precision, recall and F1 of explana-
tions from L2E and corresponding baselines for dataset
IMDB-R; bold indicates statistical significance. De-
tailed precision and recall values of positive reviews
appear in Appendix G.

Faithfulness. We select the top-K important
words generated by an explanation method and
compute the precision, recall and F1 against the
human-annotated rationales. It is worth noting that
our L2E explainer is not supervised by human ra-
tionales directly. Instead, we use the same exper-
imental setup as in Section 4.5 to ensure the L2E
explainer is learning from the baseline algorithms
rather than the human rationales.

Table 4 displays the average values over all test
instances. As noted by Carton et al. (2020), the ra-
tionales in the original dataset are not exhaustively
identified by human annotators. For a particular
event, we expect to observe a lower precision than
recall, since the black-box model might still be able
to utilize the words not being annotated in addition
to the words annotated by a human. The results
in Table 4 align with this hypothesis. For instance,
besides LRP for the positive reviews and Kernel
SHAP for both reviews, all baselines and the cor-
responding L2E have higher recall than precision.
Furthermore, L2E outperforms the corresponding
baseline A significantly in most cases for both pos-
itive and negative reviews, except when comparing
with LIME’s precision. This observation indicates
that learning the explanations of multiple examples
together, as done by L2E, achieves high faithful-
ness to human rationales, as well as to the black-
box model.

Stability. Table 5 displays stability computed in
three ways: (1) no filtering (which extracts im-
portant words only, Table 3), (2) filtering non-
annotated words, and (3) filtering stop-words. For
the two filtering measures, prior to filtering, we
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no filter filter non-
annotated
words

filter stop-
words

Human 5.83±0.27 5.83±0.27 3.06±0.27

Occ. A 4.53±0.38 5.8±0.28 2.46±0.19
L2E 4.57±0.38 5.86±0.27 2.48±0.19

Grad. A 4.06±0.25 3.64±0.31 1.65±0.15
L2E 4.41±0.33 4.7±0.34 2.33±0.19

LRP A 1.89±0.15 1.08±0.27 1.7±0.13
L2E 4.01±0.24 5.66±0.43 2.45±0.17

LIME A 1.36±0.08 1.05±0.16 0.93±0.07
L2E 2.19±0.17 1.93±0.25 1.97±0.15

K’SHAP A 0.03±0.04 0.06±0.09 0.03±0.04
L2E 0.45±0.17 0.69±0.59 0.45±0.17

D’SHAP A 4.29±0.18 3.33±0.29 1.61±0.13
L2E 4.39±0.25 4.02±0.3 2.37±0.17

Table 5: Intersection over Union (IoU) using lexical
similarity for the IMDB-R test set; bold indicates sta-
tistical significance.

ensure the same number of important words is se-
lected from the explanation produced by baseline
A and L2E. Equation 1 is then used to compute
the IoU value. To ensure a fair comparison, we
select the same number of words in L2E and a
comparable baseline A before filtering.

Similarly to the results in §4.5, as seen in Table 5,
L2E yields more stable explanations than the cor-
responding baselines. The best stability, obtained
with L2E (58.6 ± 0.27) by filtering non-annotated
words when learning from Occlusion, is compara-
ble to that of the human rationales. This is due to
the high recall (92 and 82 for positive and negative
reviews respectively in Table 4) in the explana-
tions produced by L2E, which indicates they have
high overlap with human rationales. Further, when
measuring the IoU values, the L2E explanations of
similar examples have the same intersection with
the human rationales, but a lower union. This re-
sult indicates that people favour stable rationales in
similar documents, and reinforces our findings re-
garding the greater consistency of the explanations
produced by L2E compared to the baselines.

LRP has been proven to have explanation con-
tinuity (Montavon et al., 2018), where the expla-
nations of two nearly equivalent instances are also
equivalent. However, we do not observe such a
pattern in our experiments. We hypothesize that
using perturbed instances as neighbours, as done
by Montavon et al. (2018), does not necessarily fol-
low the same distribution of the data. Instead, we
posit that finding similar examples within a dataset,
as done in our experiments, is a better proxy for
stability evaluation.

6 Conclusions and Future Work

We have presented a Learning to Explain (L2E)
approach to learn the commonalities of the expla-
nation generation processes across different exam-
ples. We have further proposed Ranking and Se-
quence Labeling formulations to effectively learn
the explainer model by discretizing feature weights
produced by existing explanation algorithms.

Our experimental results show that our method
can generate more stable explanations (i.e., not vary
much across similar documents) than those gener-
ated by the explainer baselines, while maintaining
the same level of faithfulness to the underlying
black-box model as the baseline algorithms. More-
over, our L2E approach produces explanations be-
tween 5 and 7.5 × 104 times faster than the six
baselines, making it suitable for long documents
and very large black-box models.

Our L2E approach trains an explainer, a black-
box, to mimic the behaviour of an explanation
method for an existing black-box model. A key
challenge lies in the variation in the convergence
status of such an explainer for different initializa-
tions. In order to mitigate this problem, we evalu-
ate the performance of our explainer by averaging
three different initializations.

The L2E approach opens up the possibility
of distilling multiple explanation algorithms into
one model. Although we focused on the stabil-
ity, faithfulness and efficiency aspects of explana-
tion generation, there are further desirable prop-
erties, e.g., transparency, comprehensibility and
novelty (Robnik-Šikonja and Bohanec, 2018). De-
vising model-based explanation methods and their
evaluation with these desiderata are interesting di-
rections for future research.
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Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. 2018. Methods for interpreting and
understanding deep neural networks. Digital Signal
Processing, 73:1–15.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho,
and Yoshua Bengio. 2014. On the number of lin-
ear regions of deep neural networks. In Advances in
neural information processing systems, pages 2924–
2932.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake
Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack:
A framework for adversarial attacks, data augmenta-
tion, and adversarial training in nlp.

Ahmed Osman, Leila Arras, and Wojciech Samek.
2020. Towards ground truth evaluation of visual ex-
planations. ArXiv:2003.07258.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. Fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, pages 48–53.

Bhargavi Paranjape, Mandar Joshi, John Thickstun,
Hannaneh Hajishirzi, and Luke Zettlemoyer. 2020.
An information bottleneck approach for controlling
conciseness in rationale extraction. In Proceedings
of EMNLP, pages 1938–1952.

Jorge Pérez, Javier Marinković, and Pablo Barceló.
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Appendix A Datasets Statistics

Datasets Train/Dev/Test Avg. len
News 108000/12000/7600 38
SST 6920/872/1821 17
CoLA 8551/527/516 8
IMDB-R 2864/320/200 666

Table 6: Dataset statistics used in the experiments.

Appendix B Baseline Explanation
Methods (A)

In this section, we describe our experimental setups
for the six baselines.

• Occlusion (Zeiler and Fergus, 2014; Schwab
and Karlen, 2019). The occlusion method con-
verts xxx into x̃̃x̃x by masking token xi with a pre-
defined token. The weight of xi is then deter-
mined by the difference of the output or loss from
fθθθ(x̃̃x̃x) and fθθθ(xxx). In our experiments, we use the
mask token from the corresponding black-box
tokenizer, and measure the feature weight based
on the changes between the loss functions before
and after the masking. The time complexity for
this baseline is O(|xxx|) at test time.

• Gradient (Simonyan et al., 2013). The weight
of token xi is given by the accumulated gradients
of the highest probable prediction with regards
to each dimension of the token in the embed-
ding layer. We also multiply the corresponding
embedding value before accumulation (Kinder-
mans et al., 2016). Gathering the weights of
all features in xxx requires one pass of backward
propagation, and the time complexity for this
baseline is dependent on the size of black-box
model at test time.

• LRP (Bach et al., 2015). Layer-wise Rele-
vance Propagation decomposes a model’s out-
come from the output layer into relevance scores
of neurons in each intermediate layer until it
reaches features in the input layer. The rule of
decomposition is subject to the type of kernel
and connectivity between neurons in adjacent
layers, such as linear or attention layers. We fol-
low the implementation by Wu and Ong (2021)
to measure relevance score in variations of BERT
model (Devlin et al., 2018).

• LIME (Ribeiro et al., 2016). LIME samples the
neighbors of xxx by perturbing different xi, and
uses these samples to learn a linear separator
which approximates the local behavior of the

black-box fθθθ. The weight of each xi is then
given by the coefficients of the separator.

• Kernel SHAP (Lundberg and Lee, 2017). The
Shapley value (Shapley, 1953) is a concept from
cooperative game theory which calculates the
weight of feature xi by considering its interac-
tion with all the other subsets of features. Ker-
nel SHAP approximates the Shapley value by
weighted sampling (kernel). The kernel is deter-
mined by the number of permutations of features.
According to Lundberg and Lee (2017), LIME
and Kernel SHAP only differ in the choice of
kernel. We use cosine similarity in LIME and
the size of subset permutations in Kernel SHAP
for the kernel computation.

• Deep SHAP (Shrikumar et al., 2017). This is an-
other method to approximate the Shapley value.
It computes the weight of xi as the effect on the
output when xi is set to a reference value. Such
an effect is achieved by linearizing the black-box
model through back-propagation. Hence, the
complexity of Deep SHAP is dependent on both
the size of reference samples and the black-box,
which makes it the most computationally expen-
sive method among all our baselines. In our
experiments, we use the API provided by Lund-
berg and Lee (2017) and set the reference value
of xi to the corresponding value in each of the
randomly selected samples. A sample size of
500/1000/1000/1000 respectively for datasets
IMDB-R, AGNews, SST and CoLA is used in
the baselines requiring sampling – LIME, Kernel
SHAP and Deep SHAP.

Appendix C Document Similarity for
Intersection over Union

The first approach for computing IoU uses semantic
similarity between two documents. This is mea-
sured by summing the token representations along
hidden dimensions from a pre-trained BERT base
model with uncased English, open-sourced by Hug-
ging Face (Wolf et al., 2019).

Our second approach is to compute the intersec-
tion over union for overlapping n-grams between
two documents, referred to as lexical similarity. In
our experiment, we sum this value up to 4-grams
in two documents as the score of similarity. The
results from this approach are reported in Table 7.
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Ranking Sequence Labeling
Models News SST CoLA News SST CoLA

Random 7.36±0.34 6.34±0.54 11.94±0.92 13.11±0.57 13.1±0.51 23.35±1.45

Occlusion A 7.5±1.23 8.15±1.35 16.83±3.37 12.36±1.26 13.5±1.19 28.78±3.51
L2E 10.51±1.63 14.11±1.86 23.37±3.71 16.8±1.26 15.56±0.89 31.78±3.56

Gradient A 7.05±1.11 5.14±1.05 11.95±2.33 10.32±0.96 11.5±0.87 13.36±1.95
L2E 11.92±1.79 13.8±1.7 22.52±3.81 17.35±1.16 13.77±0.8 25.77±3.38

LRP A 10.34±1.64 2.67±0.58 12.37±2.27 16.33±1.23 12.76±0.84 26.69±3.16
L2E 11.87±1.92 12.52±1.61 21.87±3.85 17.6±1.21 14.84±0.73 31.8±3.55

LIME A 8.65±1.22 6.42±1.17 16.8±3.19 9.83±0.97 13.92±1.13 20.56±3.38
L2E 13.89±2.02 11.23±1.61 18.9±3.85 16.71±1.25 16.24±0.74 30.48±3.53

K’ SHAP A 8.85±1.44 5.74±1.31 22.17±4.02 6.96±1.13 4.8±1.0 25.9±4.78
L2E 14.59±1.77 8.79±1.52 21.92±4.03 10.79±1.39 5.67±1.01 25.12±4.69

D’ SHAP A 7.2±1.05 5.31±1.13 19.74±3.91 8.35±0.89 11.88±1.04 14.38±3.38
L2E 10.98±1.27 4.93±1.14 23.77±3.62 12.53±1.16 16.24±0.71 25.38±3.65

Table 7: Intersection over union (IoU) using lexical similarity (measured according to overlapping n-grams); bold
indicates statistical significance.

Appendix D Faithfulness

We present the negative explanation words of the
Sequence Labeling formulation in Table 8 and the
top important words of Ranking formulation in
Table 9.

Negative ∆log-odds ↓
Models News SST CoLA

Random 0.57±0.11 1.93±0.17 1.92±0.1

Occ. A -0.69±0.36 1.47±1.1
L2E -0.39±0.4 1.57±1.15

Grad. A 0.12±0.21 0.99±0.55 1.53±0.36
L2E 0.05±0.29 0.87±0.41 1.48±0.33

LIME A -0.4±0.26 1.51±1.24 1.05±0.71
L2E -0.41±0.27 1.03±0.95 1.04±0.76

K’ SHAP A 1.57±0.7 3.78±0.91
L2E 0.46±0.33 1.8±0.76

D’ SHAP A 0.83±0.44 0.37±0.52 1.67±0.29
L2E 1.19±0.6 0.5±0.78 1.93±0.22

Table 8: Negative ∆log-odds when employing the Se-
quence Labeling formulation; bold indicates statistical
significance; the experimental results show that L2E
never performs significantly worse than A; LRP is not
included because all words were considered to be posi-
tively important.

Appendix E Computational efficiency

Figures 4, 5 and 6 show that L2E is more efficient
than all baselines for AGNews, SST and CoLA
datasets.

Appendix F IMDB dataset with
human-annotated rationales

There are 900 positive and 900 negative movie re-
views with rationales annotated by human in the
original dataset from Zaidan et al. (2007). We
randomly assign 160 and 200 examples to the vali-

Methods Models News SST CoLA
Random 0.57±0.11 1.93±0.17 1.92±0.1

Occ.
A 3.03±0.79 4.84±0.86 1.87±0.23
L2E 1.78±0.67 3.08±0.75 1.9±0.23

Grad.
A 1.13±0.56 2.17±0.66 1.95±0.22
L2E 0.91±0.54 1.74±0.56 1.88±0.23

LRP
A 2.89±0.78 4.41±0.86 1.93±0.22
L2E 2.43±0.65 2.64±0.68 1.87±0.23

LIME
A 6.96±1.02 5.01±0.89 1.86±0.22
L2E 5.03±0.95 2.93±0.62 1.89±0.23

K’ SHAP
A 4.51±1.19 0.2±0.32 1.97±0.23
L2E 1.8±0.77 2.25±0.67 2.03±0.23

D’ SHAP
A 0.22±0.29 2.74±0.68 1.92±0.23
L2E 0.57±0.33 2.98±0.77 1.85±0.23

Table 9: ∆log-odds when employing the Ranking for-
mulation; bold indicates statistical significance.

dation and test set respectively, with each set hav-
ing an even distribution of positive and negative
reviews. We also remove 8 very long documents
from the training set for the sake of CUDA memory.
For each example in the training and validation sets,
we construct a new example by masking the ratio-
nales, i.e., we replace each words in the rationale
with a mask token, and assign this new example
to a third label, e.g., neutral, so as to ensure the
classifier ‘pays attention’ to the rationale. The final
dataset split appears in Table 6.

The classifier is trained by fine-tuning the last
layer of a pre-trained Longformer (Beltagy et al.,
2020) with 12 layers and 12 attention heads from
Hugging Face (Wolf et al., 2019). It achieves
83.83%/79.68%/74.5% accuracy for the train-
ing/validation/test sets respectively after 40 epochs.
The statistics of our experiment are measured on
test examples that are predicted correctly by the
classifier. For each L2E explainer that learns from a
baseline explanation method, we use a Longformer
with 4 layers, 4 attention heads.
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Figure 4: Average inference time for the six baseline
explanation algorithms and ours (L2E) for the same
100 documents on the News dataset; lower is better;
* indicates statistical significance.
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Figure 5: Average inference time for the six baseline
explanation algorithms and ours (L2E) for the same
100 documents on the SST dataset; lower is better; *
indicates statistical significance.

Appendix G Precision and Recall on
Positive Reviews

We plot the precision versus recall from all the L2E-
A pairs in dataset IMDB-R in Figure 7. The results
show that, in most case, L2E performs better than
A in terms of faithfulness to the underlying black-
box and alignment with the human rationales.
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Figure 6: Average inference time for the six baseline
explanation algorithms and ours (L2E) for the same
100 documents on the CoLA dataset; lower is better;
* indicates statistical significance.
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Figure 7: Precision and recall of L2E versus each of the six baselines for all correctly predicted positive reviews
from IMDB-R test.


