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Abstract

In this paper we present the first model for
directly synthesizing fluent, natural-sounding
spoken audio captions for images that does
not require natural language text as an inter-
mediate representation or source of supervi-
sion. Instead, we connect the image caption-
ing module and the speech synthesis module
with a set of discrete, sub-word speech units
that are discovered with a self-supervised vi-
sual grounding task. We conduct experiments
on the Flickr8k spoken caption dataset in addi-
tion to a novel corpus of spoken audio captions
collected for the popular MSCOCO dataset,
demonstrating that our generated captions also
capture diverse visual semantics of the images
they describe. We investigate several different
intermediate speech representations, and em-
pirically find that the representation must sat-
isfy several important properties to serve as
drop-in replacements for text.

1 Introduction

Although there are over 7,000 languages spoken
worldwide (Lewis et al., 2016), only several dozen
have enough data available to support supervised
speech recognition, and many languages do not
even employ a writing system (Adda et al., 2016).
In contrast, most people learn to use spoken lan-
guage long before they learn to read and write,
suggesting that linguistic annotation is not a pre-
requisite for speech processing systems. This line
of reasoning motivates research that aims to dis-
cover meaningful linguistic abstractions (phones,
words, etc.) directly from the speech signal, with
the intention that they could reduce the reliance of
spoken language systems on text transcripts.

A rich body of work has recently emerged inves-
tigating representation learning for speech using
visual grounding objectives (Synnaeve et al., 2014;
Harwath and Glass, 2015; Harwath et al., 2016;

Kamper et al., 2017; Havard et al., 2019a; Merkx
et al., 2019; Chrupała et al., 2017; Alishahi et al.,
2017; Scharenborg et al., 2018; Hsu and Glass,
2018a; Kamper et al., 2018; Surís et al., 2019; Il-
harco et al., 2019; Eloff et al., 2019), as well as
how word-like and subword-like linguistic units
can be made to emerge within these models (Har-
wath and Glass, 2017; Harwath et al., 2019; Drexler
and Glass, 2017; Alishahi et al., 2017; Harwath
et al., 2019; Harwath and Glass, 2019; Havard et al.,
2019b; Harwath et al., 2020). So far, these efforts
have predominantly focused on inference, where
the goal is to learn a mapping from speech wave-
forms to a semantic embedding space. Generation
of speech conditioned on a point in a semantic
space has been less explored, and is what we focus
on in this work. We hypothesize that generative
approaches offer interesting advantages over rely-
ing solely on inference. For example, prior works
have demonstrated the capability of recognizing vi-
sually descriptive words, but have not been shown
to learn non-visual words or grammar. Our experi-
ments show that these aspects of spoken language
are learned to some degree by a visually-grounded
generative model of speech.

Specifically, we introduce a model capable of
directly generating fluent spoken audio captions of
images without the need for natural language text,
either as an intermediate representation or a form
of supervision during training (Figure 1). Tremen-
dous progress has been made recently in natural
language image caption generation (Kiros et al.,
2014; Mao et al., 2015; Vinyals et al., 2015; Karpa-
thy and Fei-Fei, 2015; Xu et al., 2015; Rennie et al.,
2017; Dai and Lin, 2017; Lu et al., 2017; Anderson
et al., 2018; Lu et al., 2018) and naturalistic text-to-
speech synthesis (TTS) (Ping et al., 2017; Taigman
et al., 2017; Wang et al., 2017; Shen et al., 2018;
Oord et al., 2016). Combining these models pro-
vides a means for generating spoken image descrip-
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a person in a blue jacket is on a 
snowboard on a snow covered slope

a snowboarder is snowboarding 
on the side of the mountain

a snowboarder is snowboarding 
on the side of the mountain

Same unit sequence, different speakersDifferent unit sequences, same speaker

Figure 1: Spoken image captions generated from the proposed model, with diversity in both linguistic content and
acoustic properties, controlled through the I2U and the U2S models, respectively. Transcriptions are provided only
for illustration. Audio samples are available at https://wnhsu.github.io/image-to-speech-demo.

tions, but existing approaches for training these
models are reliant on text during training. Instead,
we leverage sub-word speech units discovered us-
ing a self-supervised learning objective as a drop-in
replacement for the text. We hypothesize that by
using such techniques, an even wider variety of tra-
ditionally text-based NLP models could be applied
to speech data without the need for transcription or
automatic speech recognition (ASR) systems. Be-
cause all human languages utilize small, discrete
phonetic inventories (International Phonetic Asso-
ciation, 1999), we posit that our framework should
be applicable for any language in the world. In our
experiments, we demonstrate that not just any set
of discovered speech units can function in this role.
We find the greatest success with units that are dis-
crete, exhibit a low frame-rate, and highly robust
to speaker and environmental variability. The main
contributions of our paper are as follows:

1. The first methodology for fluent image-to-
speech synthesis that does not rely on text. A
critical aspect of our approach is factorizing the
model into an Image-to-Unit (I2U) module and a
Unit-to-Speech (U2S) module, where the speech
units are discovered in a self-supervised fashion.
This approach enables disentanglement of linguis-
tic variability and acoustic/speaker variability.

2. Extensive analysis on the properties re-
quired for learned units to replace text. While
the idea may seem simple and straightforward, ob-
taining proper units is not a trivial task. In fact,
most of the units experimented in this paper fail
to serve as drop-in replacements. Moreover, we
demonstrate that what are deemed good units vary
significantly for inference and generation.

3. Demonstrating insufficiency of beam
search-based evaluation. We show that even
when an I2U model fails to generate sensible cap-
tion through beam search decoding, it can still pro-

duce reasonable captions by sampling from the pos-
terior, hinting that posterior mode-based evaluation
can only inspect limited aspects of a model.

4. Proposing a semantic diversity-aware met-
ric. We identify issues of an existing metric (Vi-
jayakumar et al., 2018) and propose M-SPICE for
sampling-based evaluation to address the problems.

5. Over 600,000 spoken audio captions for
the MSCOCO dataset. We collect 742 hours of
speech from 2,352 people tasked with reading each
caption out loud. This dataset will be made pub-
licly available to support work at the intersection
of speech, language, and vision.

2 Related Work

Image-to-Text and Image-to-Speech Caption-
ing. Significant progress towards generating re-
alistic (text) captions that describe the content of
visual images was made with the advent of deep
neural networks (Vinyals et al., 2015; Karpathy
and Fei-Fei, 2015; Xu et al., 2015; Anderson et al.,
2018). Far less work has focused on generat-
ing spoken audio captions from natural images.
Training an image-to-speech system using separate
(image, text) and (text, speech) datasets was ex-
plored in (Ma et al., 2019). Hasegawa-Johnson
et al. (2017) is the only prior work that has ex-
plored image-to-speech synthesis without using
text, but with limited results. In that work, BLEU
scores were only computed in terms of unsuper-
vised acoustic units, not an estimate of the actual
words produced by the synthesizer, which can be
problematic as discussed in Section 4. The result-
ing captions were not evaluated for fluency, nat-
uralness, or intelligibility, and the BLEU scores
in terms of the unsupervised units were very low
(0.014 on the MSCOCO test set) compared to
ours (0.274). Wang et al. (2020b) is a concurrent
work that proposes a text-free end-to-end image-to-

https://wnhsu.github.io/image-to-speech-demo
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speech model, which simplifies the task by using
pairs of image and synthesized speech generated
from a single-speaker TTS model to reduce the
acoustic variation. In contrast, by leveraging robust
learned units, our I2U module can be trained on
real speech with abundant variation, and the U2S
module serves as a vocoder that requires a small
amount of clean speech (transcripts not needed).
Hence, our system imposes less data constraints
yet still outperforms Wang et al. (2020b).

Voice Conversion without Text aims to convert
the speaker identity in a recording while preserv-
ing the textual content (Abe et al., 1990; Stylianou
et al., 1998; Toda et al., 2007). It has recently seen
progress using neural approaches (Hsu et al., 2016,
2017a,b; Fang et al., 2018; Chorowski et al., 2018;
Chou et al., 2018; Lorenzo-Trueba et al., 2018;
Serrà et al., 2019), but the most relevant work to
our own is the ZeroSpeech 2019 challenge (Dunbar
et al., 2019; Tjandra et al., 2019; Cho et al., 2019),
which addresses unsupervised learning of discrete
speech units that can replace text and be used as
input to TTS models. Unlike image-to-speech syn-
thesis, these tasks only infer phonetic units from
given audio recordings instead of generating ones.

Speech Pre-Training and Its Applications. In-
terest in this area has recently surged. Various learn-
ing objectives have been proposed, including auto-
encoding with structured latent spaces (van den
Oord et al., 2017; Eloff et al., 2019; Chorowski
et al., 2019; Hsu et al., 2017b; Hsu and Glass,
2018b; Khurana et al., 2019), predictive cod-
ing (Chung et al., 2019; Wang et al., 2020a), con-
trastive learning (Oord et al., 2018; Schneider et al.,
2019), and more. Prior work addresses inferring
linguistic content such as phones from the learned
representations (Baevski et al., 2020; Kharitonov
et al., 2020; Hsu et al., 2021). In contrast, this
work focuses on generating the learned represen-
tation from a different modality, which evaluates
representations from a different perspective.

3 Method

3.1 Framework Overview

A depiction of our modeling approach is shown in
Figure 2. Caption generation for an image involves
a cascade of two components: given an input im-
age I , we first generate a linguistic unit sequence
U according to the I2U module P (U | I). Given
the linguistic symbol sequence U , we generate a
speech waveform S according to the U2S module

P (S | U). If the linguistic unit sequence U were
to take the form of natural language text, the model
would be equivalent to the cascade of a conven-
tional image captioning system followed by a TTS
module. Note that we assume S ⊥ I | U because
prosody variation is not dependent on the image
for the datasets considered.

The key idea in this paper is to instead define U
to be a sequence of learned speech units that are as
robust and compact as possible like text, but discov-
ered without text supervision. We define inference
with this S2U model as U = f(S), enabling us
to “transcribe” any given speech audio waveform
S into a sequence of units U . The addition of
this third component enables us to train P (U | I)
from a dataset of images paired with spoken cap-
tions {(I1, S1), . . . , (IN , SN )}. The conditional
independence assumption between S and I given
the U enables us to choose any arbitrary speech
dataset for training P (S | U), therefore enabling
the speaker characteristics and other acoustic prop-
erties to be independently controllable from the
I2U system (Wang et al., 2018; Hsu et al., 2019;
Henter et al., 2018; Akuzawa et al., 2018).

3.2 Datasets

Table 1 summarizes the five datasets used for train-
ing S2U, I2U, and U2S models. Note that we
deliberately choose different datasets for training
each module, which aims to examine the robust-
ness of the units when transferring across domains,
including shift in speaker demography, speaking
style (scripted/spontaneous), and linguistic content
(book/newspaper/image description). Among the
three datasets with image and speech pairs: Places,
Flickr8k, MSCOCO, we chose the latter two for
training I2U models, because they include five cap-
tions per image, which is more suitable for caption
metrics such as SPICE (Anderson et al., 2016);
moreover, they are commonly used image caption-
ing datasets with many text-based baselines in the
literature. Places only contains one spoken caption
per image and has not been used for captioning.

Specifically, as part of this work we collect Spo-
kenCOCO, a spoken version of the MSCOCO cap-
tioning dataset (Lin et al., 2014) with 742 hours
from 2532 speakers, via Amazon Mechanical Turk
by displaying the text to a person and having
them read it aloud. Additional details regarding
the dataset can be found in appendix Section A.
Note that although there exists a speech version
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3 * (ResBlock + VQ) 263 32 32 32 32 208 208 
5 5 5 476 570 395 16...

263 32 208 5 476 570 
395 16...

Speech-to-Unit Model (ResDAVEnet-VQ)
pre-trained on (image,speech) pairs

T / 4 units
(fixed unit rate)

Lossy Run-Length Encoding

N (≤ T / 4) units
(variable unit rate)T frames

ResNet-101
1L LSTM + 
Attention

263 32 208 5 476 
570 395 16...

Image-to-Unit Model (Show, Attend, and Tell)

14x14 feature map

3L Conv
+ 

1L BLSTM

Pre-Net + 
LSTM + 

Attention + 
PostNet

...

Unit-to-Speech Model (Tacotron 2)

N feature vecs

Image
Learned Units

Speech

Figure 2: Diagram of our proposed framework. The ResDAVEnet-VQ model was trained using a {2} → {2, 3}
curriculum (in the notation given in Harwath et al. (2020)).

Data Hr #Utt #Spk Maj. Spk Description

S2U PlacesAudio (Harwath et al., 2016) 936 400K 2683 American spontaneous image caption

I2U Flickr8kAudio (Harwath and Glass, 2015) 46 40K 183 American scripted image captionSpokenCOCO (this work) 742 605K 2353

U2S LJSpeech (Ito, 2017) 24 13K 1 American read non-fiction books
VCTK (Veaux et al., 2017) 44 40K 109 British read newspaper

Table 1: Speech dataset summary. For training S2U and I2U models, their corresponding image datasets,
MSCOCO (Lin et al., 2014), Flickr8k (Rashtchian et al., 2010), and Places (Zhou et al., 2014), are also used.

of MSCOCO named Speech-COCO (Havard et al.,
2017), it is comprised of only synthesized speech
using a concatenative TTS model in eight speak-
ers’ voice. Disfluencies (e.g. “uh”) are randomly
inserted in between words to imitate real speech.
Compared to SpokenCOCO, Speech-COCO offers
limited diversity and naturalness.

3.3 Learning Robust Linguistic Units from
Visually-Grounded Speech

We propose to build the S2U model upon
ResDAVEnet-VQ, an audio-visual grounding
model introduced in Harwath et al. (2020) that
has shown to learn discrete phone- and word-
like units in the intermediate vector quantizing
(VQ) layers. This model is trained to associate
speech with contextually relevant visual inputs us-
ing a triplet loss (Weinberger and Saul, 2009),
which can be interpreted as maximizing a mu-
tual information lower bound between image and
speech (Tschannen et al., 2020). Since visual se-
mantics are described with words, which in turn are
composed of phones, the representations learned
by ResDAVEnet-VQ are forced to be predictive of
words and phones rather than speaker, noise, etc.

In contrast, many of the speech representations
are trained by reconstructing (Chorowski et al.,
2019; Hsu et al., 2017b) or predicting unseen
speech signals (Chung et al., 2019), which would
inevitable capture factors unrelated to the linguistic

content. To demonstrate the advantage of repre-
sentation learning with grounding, we will com-
pare ResDAVEnet-VQ with a reconstruction based
model, WaveNet-VQ, trained on the PlacesAudio
dataset. We denote the units extracted from this
model with WVQ. We use the implementation of
Harwath et al. (2020) for ResDAVEnet-VQ, and
Cho et al. (2019) for WaveNet-VQ which achieves
the best ZeroSpeech 2019 challenge performance.

3.4 Unit Selection and Run Length Encoding

Although the ResDAVEnet-VQ model has been
shown to be capable of learning both phone-like
and word-like units, the experiments in (Harwath
et al., 2020) show that only several hundred words
are explicitly learned, which tend to be “visual
words.” Conversely, the phone-like units learned
by the lower VQ layers of the model were shown
to cover all of the phones in American English (as
there are only several dozens). For this reason, we
choose to use phone-like units learned by the lower
VQ layers to represent U .

Nominally, the VQ layers will output one-hot
vectors at a uniform temporal rate, downsampled
with respect to the framerate of the acoustic input
depending upon which VQ layer is used. Given
an input computed with a 10ms frame shift, the
two VQ layers investigated in this paper (VQ2
and VQ3) respectively output vectors every 20ms
and 40ms. In general, the VQ units are repeated
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for several consecutive frames. We can decrease
the average length of the symbol sequence U by
employing a lossy form of run-length encoding
(RLE) (see Figure 2) which retains the sequence
of symbol identities but discards duration informa-
tion. Each unit then represents a variable-length
segment. This removes the burden of unit duration
modeling from the I2U model and shifts it onto the
U2S model, which we will show to be crucial.

3.5 Image-to-Unit and Unit-to-Speech

Both the I2U model and the U2S model are
based upon recurrent seq2seq with attention net-
works (Bahdanau et al., 2015). Specifically, we
adopt Show-Attend-and-Tell (SAT) (Xu et al.,
2015) for the I2U model. It has an image encoder
pre-trained for classification, which is language
agnostic and hence should work in any language
within our proposed framework. The decoder on
the other hand is randomly initialized. We train the
SAT model for two stages, where the encoder pa-
rameters are only updated in the second stage. We
distinguish the models from the two stages with
SAT and SAT-FT (finetuned) respectively when
presenting the results. For the U2S model, we
adopt Tacotron2 (Shen et al., 2018) and WaveG-
low (Prenger et al., 2019) for unit-to-spectrogram
and spectrogram-to-waveform generation, respec-
tively. In particular, a pre-trained WaveGlow is
used without fine-tuning.

The I2U model is trained on (I, f(S)) pairs,
which requires pairs of image and speech, while
the U2S model is trained on (f(S), S) pairs, which
can be obtained from arbitrary set of speech.
Both models are trained with the maximum like-
lihood objective (EI,U [logP (U | I)] for I2U and
ES,U [logP (S | U)] for U2S).

4 Experiments

We design experiments to address three questions:
First, how can we measure the performance

of an image-to-speech system? Our system can
fail to produce a good caption if the I2U model fails
to encode linguistic/semantic information into the
unit sequence, or if the U2S model fails to synthe-
size an intelligible waveform given a unit sequence.
To better localize these failure modes, we evaluate
the full I2S system as well as the U2S system in
isolation. We evaluate the U2S system by using it
as a vocoder to synthesize unit sequences inferred
from real speech and soliciting human judgements

in the form of Mean Opinion Score (MOS) and
Side-By-Side (SXS) preference tests (Table 2).

To evaluate the I2S system, we can use any
method that measures the semantic information
contained in the generated speech. We consider
two sets of end-to-end metrics: word-based and
retrieval-based, and one set of proxy unit-based
metrics. Word-based metrics transcribe a gener-
ated spoken caption into text (manually or with an
ASR system) and then measure word-based cap-
tioning metrics against a set of reference captions,
such as BLEU-4 (Papineni et al., 2002) (adjusted n-
gram precision), METEOR (Denkowski and Lavie,
2014) (uni-gram F-score considering word-to-word
alignment), ROUGE (Lin, 2004) (n-gram recall),
CIDEr (Vedantam et al., 2015) (TF-IDF weighted
n-gram cosine similarity), and SPICE (Anderson
et al., 2016) (F-score of semantic propositions in
scene graphs). This enables comparison between
image-to-speech systems with a text “upperbound”,
but is not applicable to unwritten languages.

Retrieval-based metrics include image-to-speech
and speech-to-image retrieval (Harwath et al.,
2020), which require a separately trained cross-
modal retrieval model for evaluation. Such metrics
are text-free, but they cannot measure other aspects
of language generation such as syntactic correct-
ness (partially captured by BLEU-4) and scope of
the learned vocabulary. Lastly, unit-based metrics
are similar to text-based, but replace words with
units when computing n-gram statistics. However,
systems built on different units are not directly com-
parable, and second, can be inflated if duration is
modeled using unit repetition.

Second, what properties must learned units
have to be a drop-in replacement for text? The
most essential differences between text and speech
are the amount of information encoded and the se-
quence lengths. Beyond text, speech also encodes
prosody, speaker, environment information and the
duration for each phone, all of which are minimally
correlated with the conditioned images. We hypoth-
esize that learned speech units should discard such
information in order to seamlessly connect the I2U
and U2S modules. To verify it, we pay particular
attention to the variations of the learned units in
frame rate (VQ2/VQ3), encoding of duration in-
formation (RLE or not), and robustness to domain
shift (WVQ/VQ3). Units are run-length encoded
by default. Table 2a shows the properties of the
units before run-length encoding.
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Third, how should language generation mod-
els be evaluated more generally? We examine
evaluation of the I2S model using beam search-
based decoding as well as sampling-based decod-
ing. We find that because evaluation metrics that
are reliant on beam search-based decoding only
evaluate the mode of a model’s posterior, they do
not reflect the ability of a model to generate diverse
linguistic content. Furthermore, we show that it is
possible for a model’s posterior mode to be linguis-
tically meaningless, and yet meaningful language
can still be generated with sampling-based decod-
ing. Towards this end, we introduce a novel multi-
hypothesis evaluation metric (M-SPICE), which
uses sampling-based decoding (instead of beam
search) to generate a set of captions. We can then
compute the overall coverage of this caption set
against a reference; see Section 4.4 for details.

4.1 Evaluating the U2S Model
We construct a Tacotron-2 model for each of the
three unit types on the LJSpeech audio data by
transcribing each LJSpeech utterances into an unit
sequence, then train the U2S model from the RLE-
ed unit sequence and spectrogram pairs. We eval-
uate the naturalness of the speech produced by
each model on held-out data, both in-domain using
LJSpeech and out-of-domain (OOD) using Spoken-
COCO.1 Amazon Mechanical Turk (AMT) work-
ers performed Side-by-Side preference tests (SXS)
and naturalness evaluation based on mean opinion
scores (MOS) on a scale from 1 to 5 for each U2S
model, which we display in Table 2. Although VQ2
was preferred for in-domain synthesis on LJSpeech,
VQ3 achieved the highest scores and least degrada-
tion (-0.387) on the out-of-domain SpokenCOCO,
indicating that out of the three units VQ3 has the
strongest robustness to domain shift.

4.2 Incorporating the I2U Model
We trained an SAT model on SpokenCOCO for
each of the three RLE-ed units, as well as VQ3
units without RLE. We also compare to text charac-
ters and words; the full hyperparameter and train-
ing details for all models are provided in Section
B in the appendix, but in general we kept these
as constant as possible when comparing different
linguistic representations.

Before connecting the U2S model, we noticed
that all RLE speech unit models except the one

1In-domainess is defined with respect to the U2S training
data (LJSpeech) not the S2U training data (PlacesAudio).

Unit
ABX Frame MOS
Error Rate LJSpeech SpokenCOCO

VQ3 14.52% 40ms 3.723 ± 0.039 3.336 ± 0.044
VQ2 12.51% 20ms 3.932 ± 0.036 2.961 ± 0.045
WVQ 24.87% 40ms 3.658 ± 0.040 2.896 ± 0.053

(a) Properties of the units and MOS of the U2S models trained
on these units with 95% confidence interval. ABX errors are
computed on the ZeroSpeech 2020 English test set.

Unit LJSpeech SpokenCOCO
A B A Same B A Same B

VQ3 VQ2 23.9 31.5 44.6 40.4 32.5 27.5
VQ3 WVQ 36.6 37.1 26.3 58.3 21.8 19.9

(b) SXS preference (%) of the U2S models.

Table 2: Subjective evaluation of U2S models trained
on LJSpeech and re-synthesize units inferred from
LJSpeech or SpokenCOCO recordings.

Symbol Image-to-Unit Output

Decoded with Beam Search (beam size=5)
VQ3 263 32 208 5 336 100 717 803 256 803 815 144 120

144 654 936 48 417 272 417 362 766 825 284 614...
VQ2 (71 791)*N (until reaching max decoder length)
WVQ (181 232)*N (until reaching max decoder length)
VQ3 \ RLE 263 (32)*N (until reaching max decoder length)

Decoded with Top-k Sampling Search (k=5)
VQ3 263 208 467 717 288 426 986 72 44 341 151 801 1022

27 320 426 288 66 570 683 351 313 910 820...
VQ2 (71 791)*4 175 51 139 359 173 599 307 419 133 621

85 165 315 883 175 191 71 791 71 48 511 765...
WVQ (181 232)*5 181 225 124 232 181 232 225 232 181 225

124 225 232 181 252 169 211 147 89 67 156...
VQ3 \ RLE 263 (32)*15 208 208 5 5 336 100 803 256 560 417 870

870 870 968 910 250 543 820 587 909 909...

Table 3: Exemplar output from SAT models.

trained on VQ3 units failed during beam search
decoding on the test images (WVQ consistently
failed, while VQ2 sometimes succeeded); rather
than producing a diverse sequence of output units,
the decoder would generally get stuck in a loop
until the maximum decoding length was reached.
This also happened using VQ3 units without RLE,
indicating that the decoder could not model unit
duration. Example outputs are provided in Table 3.
We hypothesize that the reason the VQ2 and WVQ
units failed is due to their lack of invariance to
domain shift, as evidenced by their decay in nat-
uralness when used for OOD synthesis as shown
in Table 2. This may cause the entropy of the unit
distribution conditioned on an image to be higher
as each phoneme may be represented by multiple
units, and therefore the I2U model suffers from
the same looping issues as the unconditional lan-
guage model of text, as observed in (Holtzman
et al., 2018; Fan et al., 2018; Holtzman et al., 2020;
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model U
MSCOCO Flickr8k

B-4 M R C S B-4 M R C S

Xu et al. (2015) word 0.243 0.239 - - - 0.213 0.203 - - -
Lu et al. (2017) word 0.327 0.260 0.540 1.042 - - - - - -

Wang et al. (2020b) N/A - - - - - 0.035 0.113 0.232 0.080 -

SAT
word 0.315 0.253 0.533 0.984 0.185 0.216 0.207 0.469 0.550 0.149
char 0.289 0.239 0.512 0.879 0.172 0.190 0.190 0.441 0.476 0.136
VQ3 0.186 0.186 0.446 0.584 0.127 0.116 0.141 0.390 0.232 0.091

SAT-FT
word 0.339 0.265 0.551 1.062 0.196 0.225 0.215 0.483 0.584 0.155
char 0.323 0.256 0.536 1.002 0.187 0.191 0.196 0.450 0.519 0.143
VQ3 0.233 0.212 0.478 0.732 0.149 0.125 0.145 0.391 0.245 0.095

Table 4: Word-based caption evaluation using BLEU-4, METEOR, ROUGE, CIDEr, and SPICE. ASR is used
to transcribe the spoken captions generated by the proposed VQ3 model into text for evaluation. The beam size
∈ {1, 3, 5, 8, 10} was chosen for each model to maximize SPICE. Our word-based SAT models outperform (Xu
et al., 2015) because we use a stronger image encoder (ResNet-101).

symbol Word-based Unit-based Retrieval-based

B-4 M R C S B-4 M R C Image to Speech Speech to Image
R@1 R@5 R@10 R@1 R@5 R@10

SAT-FT Model, Decoded with Beam Search
VQ3 0.233 0.212 0.478 0.732 0.149 0.261 0.198 0.334 0.211 0.240 0.603 0.766 0.265 0.611 0.765

SAT Model, Decoded with Beam Search
VQ3 0.186 0.186 0.446 0.584 0.127 0.274 0.196 0.328 0.215 0.157 0.451 0.623 0.158 0.450 0.611
VQ2 0.068 0.138 0.343 0.262 0.084 0.172 0.132 0.178 0.027 0.09 0.289 0.426 0.093 0.283 0.420
WVQ 0.010 0.069 0.286 0.009 0.011 0.020 0.048 0.081 0.000 0.000 0.005 0.010 0.001 0.006 0.011

VQ3 \ RLE 0.000 0.002 0.001 0.000 0.001 0.163 0.168 0.218 0.000 0.000 0.003 0.007 0.001 0.006 0.011

Table 5: Comparison of the three sets of metrics on different units and models trained on MSCOCO.

Kulikov et al., 2019; Welleck et al., 2020).
To evaluate the full Image-to-Speech model, we

first train an ASR system on the re-synthesized
SpokenCOCO captions using the VQ3 Tacotron-2
model. This enables us to estimate a word-level
transcription of the spoken captions produced by
our system. In order to verify that the synthesized
captions are intelligible to humans and the ASR
system did not simply learn to recognize artifacts
of the synthesized speech, we asked AMT work-
ers to transcribe into words a set of 500 captions
generated by our I2U→U2S system and also evalu-
ated their naturalness. Three workers transcribed
and three workers rated each caption, allowing
us to compute an MOS score (3.615±0.038), a
word error rate (WER) between the 3 human tran-
scriptions (9.40%), as well as an average WER be-
tween the human and ASR-produced transcriptions
(13.97%). This confirms that our system produces
reasonably natural speech and ASR is sufficiently
accurate for transcribing synthesized speech.

Table 4 summarizes our results on MSCOCO
and Flickr8k using beam search. We compare with
the literature for bottom-up text captioning (row
1-2) and text-free end-to-end image-to-speech syn-
thesis (row 3). We train the decoder of an SAT
model while keeping the image encoder fixed (row

4-6), in addition to fine-tuning the encoder (row
7-9). Despite having no access to text, the SAT-
FT speech captioning model trained on VQ3 units
achieves a BLEU-4 score of .233 with beam search
decoding on MSCOCO. This is very close to the
.243 achieved by the original SAT word-based cap-
tioning model. Figure 1 shows that the generated
captions are fluent and reflect the implicit learning
of some syntactic rules. It is evident that the pro-
posed model is capable of generating fluent and
meaningful image captions.

Results comparing four unit representations on
all three sets of metrics are shown in Table 5. First
of all, by comparing word-based and unit-based
evaluations, we do note that the relative ranking
among VQ3, VQ2, and WVQ is consistent across
BLEU-4, METEOR, and ROUGE for SAT models,
however, VQ3 \ RLE achieves abnormally high
scores on these metrics despite producing trivial
captions for all images as shown in Table 3. This
is because unit “32” has learned to represent non-
speech frames such as silence, which frequently
occurs at both the beginning and end of utterances.
Without RLE, consecutive strings of “32” units
are extremely common in both the candidate and
reference captions, which inflates the scores of this
model. The exception here is the CIDEr metric,
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Figure 3: MSCOCO test SPICE scores of various units and decoding methods. VQ3\RLE denotes VQ3 units
without RLE. Top-k sampling considers only the k-most probable units at each step.

which incorporates TF-IDF weighting that tends to
de-emphasize these kinds of uninformative patterns.
Nonetheless, when comparing SAT and SAT-FT
with VQ3 units, CIDEr does not rank them the
same as word-based metrics.

Regarding retrieval-based evaluation, despite the
fact that the ResDAVEnet model was only trained
on the original, human-spoken captions for the
MSCOCO images, it works very well for the fully
synthetic captions. The speech and image retrieval
scores for 1k human-spoken validation captions
are 0.867 and 0.828 R@10, respectively, while
the SAT-FT VQ3 model achieves 0.766 and 0.765
R@10. This indicates that this image-to-speech
model is able to infer the salient semantic con-
tent of an input image, generate a unit sequence
that captures that content, and generate speech that
is sufficiently natural sounding for the ResDAV-
Enet model to recover that semantic information.
Several of the other image-to-speech models also
achieve respectable retrieval performance, and the
overall ranking of the models mirrors that which we
found when using word-based evaluation metrics.

4.3 From Mode to Distribution: Evaluating
Captions Generated via Sampling

The results in the previous section only evaluate
beam search decoding with the I2U model, and do
not fully reveal the posterior over captions for an
input image, or whether the unit representations
that failed with beam search would work well with
other methods. To probe this, we evaluate the mod-
els using sampling-based caption generation. Fig-
ure 3 shows the SPICE scores on SpokenCOCO
using beam search and two sampling-based meth-
ods. VQ3 still performs the best of all unit types
with both beam search and sampled decoding. VQ2
can sometimes generate captions with beam search
when the beam is kept small, but as the beam grows
it begins to loop and the scores become very low.

Figure 4: Vocabulary size learned by the proposed I2S
model (on MSCOCO)

Figure 5: M-SPICE on MSCOCO. Black dashed lines
show the highest value for beam search when n=1.

We see that all unit types can generate reasonable
captions when decoding via sampling. Moreover,
we discovered that 1) ResDAVEnet-VQ units con-
sistently outperform the WaveNet-VQ units, sug-
gesting that they better capture sub-word structure,
and 2) VQ3 \ RLE achieves better scores than VQ2
when using a larger temperature or k for top-k.

We estimated the vocabulary size of the SAT-FT
model with VQ3 by counting the number of unique
recognized words produced at least 3 times when
captioning the SpokenCOCO test images. These
numbers are shown for the model under the vari-
ous decoding methods in Figure 4. The number of
captions per image is denoted by n, where top can-
didates are used for beam search and i.i.d. samples
are drawn for sampling. Sampling-based decoding
reveals a larger vocabulary size than beam search,
and the number of words learned by our models
(≥ 212) is far greater than the number of words
learned by the ResDAVEnet-VQ model (approx.
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Speaker Gender Region B4 M S

U2S trained on LJSpeech
- F - 0.233 0.212 0.149

U2S trained on VCTK
p247 M Scottish 0.234 0.211 0.148
p231 F English 0.233 0.210 0.146
p294 F American 0.236 0.212 0.148
p345 M American 0.234 0.209 0.144
p307 F Canadian 0.234 0.211 0.148

Table 6: Results of disentangled voice control via syn-
thesizing the same units with a single and a multi
speaker U2S model. Units are decoded using beam
search from the SAT-FT VQ3 MSCOCO model.

279) in (Harwath et al., 2020). We hypothesize
that training a model to generate spoken captions
encourages it to learn many more words than only
being trained to retrieve images from captions. We
also hypothesize that because beam search attempts
to find the mode of the posterior over captions, it
tends to produce a smaller set of words and does
not reveal the breadth of the model distribution.

4.4 New Diversity-Aware Metric: M-SPICE

The previous section showed that even when the
SPICE scores were comparable, sampling-based
decoding revealed a much larger model vocabulary
than beam search, especially when multiple cap-
tions are generated for each image. This highlights
a limitation of SPICE in measuring the diversity.
Formally speaking, SPICE computes an F-score
between two bags of semantic propositions T (S)
and T (c) parsed from a set of references S = {si}i
and a hypothesis c, where T (c) denotes a bag of
propositions extracted from a scene graph parsed
c, and we can compute that for multiple sentences
with T (S) = ∪i(T (si)).

To extend SPICE for scoring multiple hypothe-
ses C = {cj}Jj=1, one can compute an average
SPICE: 1

J

∑
j F1(T (S), T (cj)), or use the ora-

cle SPICE proposed in Vijayakumar et al. (2018):
maxjF1(T (S), T (cj)). However, these metrics
fail to capture the diversity among hypotheses.
Consider two hypothesis set, C1 = {c11, c12} and
C2 = {c21, c22}, where T (c11) = T (c12) = T (c21) =
{(girl), (table), (girl, sit-at, table)}, T (c22) = {(girl),
(girl, young)}, and T (S) = {(girl), (table), (girl,
young), (girl, sit-at, table)}.

To address the deficiencies of the existing met-
rics, we propose a new metric named multi-
candidate SPICE (M-SPICE), which takes the
union of the candidate propositions and computes

the F-score against the reference propositions:
F1(T (S),∪jT (cj)). M-SPICE assigns a higher
score if the set captures diverse and correct proposi-
tions, and it is obvious that the score ofC2 is higher
than C1 as desired.Figure 5 shows the M-SPICE
scores of our SAT-FT model using VQ3 units on
SpokenCOCO. When evaluating over multiple cap-
tions (n > 1), using the beam search hypotheses
increases the score less than sampling.

4.5 Disentangled Voice Control for
Image-to-Speech Synthesis

We examine to what extent the VQ3 units are
portable across different speakers by training a U2S
model on the VCTK dataset that additionally takes
a speaker ID as input. The resulting model is able
to generate speech with the voice of any VCTK
speaker. We evaluate the captions produced by this
system on SpokenCOCO for 5 speakers in Table 6.
To compute these scores we transcribe the cap-
tions generated by each model into text using the
ASR system we describe in Section 4.2, which was
solely trained on re-synthesized SpokenCOCO cap-
tions using the LJSpeech U2S model. The scores
in Table 6 indicate not only that the I2U model can
be easily integrated with U2S models representing
a diverse set of speakers, but also that the LJSpeech
ASR system works very well on the speech synthe-
sized from the VCTK models.

5 Conclusion

In this paper, we presented the first model capa-
ble of generating fluent spoken captions of images
without relying on text, which almost matches the
performance of early text-based image captioning
models. Our comprehensive experiments demon-
strated that learned units need to be robust, of low
framerate, and encoding little or none duration in-
formation to be a drop-in replacement for text. We
also identified the caveats of mode-based evalua-
tion and proposed a new metric to address seman-
tic diversity. As part of this work, a novel dataset
of over 600k spoken captions for the MSCOCO
dataset is introduced, which we will make publicly
available to the research community.

Future work should investigate applying the pro-
posed method to additional languages, devising
improved speech unit representations, and jointly
training the speech unit model with the I2S model.
This would offer the opportunity to explore new
analysis-by-synthesis training objectives.
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A Visually-Grounded Speech Datasets

Table A1 displays details of the three visually-
grounded speech datasets used in this paper. When
computing duration statistics, we exclude utter-
ances longer than 15s for SpokenCOCO and
Flickr8k Audio, and 40s for Places Audio, because
we found that those utterances resulted from in-
correct operation of the data collection interface
(e.g., workers forgot to stop recording). When com-
puting vocabulary sizes and word statistics, text
transcripts are normalized by lower-casing all the
alphabets and removing characters that are neither
alphabets nor digits.

For the SpokenCOCO data collection on Ama-
zon Mechanical Turk, we displayed the text of a
MSCOCO caption to a user and asked them to
record themselves reading the caption out loud.
For quality control, we ran a speech recognition
system in the background and estimated the word-
level transcription for each recording. We com-
puted the word error rate of the ASR output against
the text that the user was prompted to read, and
only accepted the caption if the word error rate
was under 30%. In the case that the word error
rate was higher, the user was asked to re-record
their speech. We paid the users $0.015 per cap-
tion recorded, which in conjunction with the 20%
overhead charged by Amazon resulted in a total
collection cost of $10,898.91.

SpokenCOCO
Flickr8k Places
Audio Audio

#Utts 605495 40000 400000
#Spks 2353 183 2683
#Imgs 123287 8000 400000
#Utts-per-img 5 5 1
Utt duration µ 4.12s 4.33s 8.37s
Utt duration σ 1.31s 1.33s 4.53s
#Words/utt 10.45 10.81 19.29
#Words/sec. 2.41 2.63 2.31
Duration 742hr 46hr 936hr
Vocab Size 19683 8718 41217
Type scripted scripted unscritped

Table A1: Statistics and properties of the three
visually-grounded speech datasets used in the paper.

B Detailed Experimental Setups

In this section, we provide details about data pre-
processing, model architecture, and training hy-
perparameters for each module used in this paper.
The same setups are used for all unit types unless
otherwise stated.

B.1 Image-to-Unit Model

Data Images are reshaped to 256×256×3 ma-
trices and are per-channel normalized with µ =
[0.485, 0.456, 0.406] and σ =[0.229, 0.224, 0.225].
During training, unit sequences are truncated or
padded to the target length shown in Table A2. The
target lengths are determined such that there are
less than 10% sequences truncated while still al-
lowing a reasonable batch size to be used. Units
that occurred less than five times are excluded. Se-
quences are not truncated during evaluation. We
follow the data splits used in (Harwath et al., 2020)
for Places, and (Karpathy and Fei-Fei, 2015) for
Flickr8k and SpokenCOCO (the “Karpathy split”).

Word Char VQ3 VQ2 WVQ VQ3 \ RLE

Target Length 18 70 100 200 110 160
Sequence Truncated (%) 1.12 1.74 6.90 9.37 7.80 6.35
Batch Size (SAT) 80 60 40 40 40 40
Batch Size (SAT-FT) 32 32 20 - - -

Table A2: Configuration for each type of units used in
the Image-to-Unit model.

Model We adopt an open-source re-
implementation2 of Show, Attend, and Tell (Xu
et al., 2015) (SAT) with soft attention, which
replaces the original CNN encoder with a
ResNet-101 pre-trained on ImageNet for image
classification. The last two layers of the ResNet are
removed (a pooling and a fully-connected layer)
such that the encoder produces a 14×14×2048
feature map for each image.

Training Adam (Kingma and Ba, 2015) with
a learning rate of 10−4 is used for optimizing
both stages (SAT and SAT-FT). The training objec-
tive is maximum likelihood combined with a dou-
bly stochastic attention regularization introduced
in (Xu et al., 2015) with a weight of 1. Dropout is
applied to the input of decoder softmax layer with
a probability of 0.5 during training. Gradients are
clipped at 5 for each dimension. The first stage is
trained for at most 30 epochs, and the best check-
point from which is used to initialize the second

2Link to the SAT implementation on Github

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
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Figure A1: Utterance duration histograms for the three visually-grounded speech datasets.

Figure A2: M-SPICE F-score (same as Figure 5) and recall on the SpokenCOCO test set with different candidate
proposal methods.

stage trained for at most another 20 epochs. Mod-
els are selected based on the unit BLEU-4 score
on the validation set. Using two NVIDIA TITAN
X Pascal GPUs with data parallel training, each
epoch takes about 2.8 hours for VQ3 units and 5.3
hours for VQ2 units.

B.2 Unit-to-Speech Model
Data RLE-ed unit sequences are used as input for
all systems (VQ3 and VQ3 \ RLE systems share
the same U2S model). The native audio sample
rates in LJSpeech and VCTK are 22050Hz and
48kHz, respectively. For consistency and compati-
bility with the spectrogram-to-waveform model,
we down-sample those in VCTK to 22050Hz.
Following Tacotron2, we compute a 80 dimen-
sional Mel spectrogram for each audio file with
a 256-sample (11.6ms) frame hop, a 1024-sample
(46.4ms) frame size, and a Hann window function.
Utterances longer than 8 seconds are discarded dur-
ing training to accommodate for the GPU memory
constraints. We follow the data splits provided
at https://github.com/NVIDIA/tacotron2 for

LJSpeech. For the multi-speaker VCTK dataset,
we randomly sample 2.5% of the utterances from
each speaker for validation.

Model We use an re-implementation3 of
Tacotron2 (Shen et al., 2018) for U2S models. For
single-speaker models trained on LJSpeech, the ex-
act same hyperparameters and model architecture
are used as (Shen et al., 2018). For multi-speaker
models trained on VCTK, we create an additional
speaker embedding table of 256 dimensions for all
speakers and control the speaker identity through
these speaker embeddings. Speaker embeddings
are injected at two places in the decoder: first
in concatenation with the original input to the
decoder LSTM, and second in concatenation with
the output of the decoder LSTM, right before
predicting the stop token and the spectra of a
frame. A pre-trained4 WaveGlow (Prenger et al.,
2019) vocoder is used for all U2S models, which
demonstrates the universality of vocoder models

3https://github.com/NVIDIA/tacotron2
4https://github.com/NVIDIA/waveglow

https://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA/waveglow
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Metric symbol Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.7)
t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

BLEU-4

VQ3 0.052 0.097 0.132 0.137 0.084 0.108 0.120 0.109 0.119 0.124
VQ2 0.039 0.058 0.068 0.066 0.059 0.068 0.069 0.064 0.070 0.071
WVQ 0.033 0.047 0.025 0.012 0.056 0.050 0.037 0.052 0.042 0.025

VQ3 \ RLE 0.049 0.075 0.035 0.000 0.070 0.087 0.092 0.082 0.094 0.093

METEOR

VQ3 0.124 0.151 0.168 0.165 0.147 0.160 0.166 0.159 0.165 0.168
VQ2 0.115 0.134 0.146 0.140 0.134 0.142 0.147 0.140 0.144 0.147
WVQ 0.096 0.106 0.078 0.069 0.112 0.104 0.088 0.105 0.094 0.080

VQ3 \ RLE 0.119 0.135 0.055 0.002 0.136 0.146 0.148 0.141 0.144 0.141

ROUGE-L

VQ3 0.303 0.358 0.403 0.416 0.346 0.371 0.386 0.373 0.386 0.397
VQ2 0.293 0.330 0.351 0.345 0.325 0.345 0.351 0.340 0.348 0.355
WVQ 0.270 0.297 0.287 0.287 0.312 0.309 0.292 0.309 0.295 0.276

VQ3 \ RLE 0.295 0.330 0.152 0.001 0.328 0.349 0.355 0.340 0.348 0.350

CIDEr

VQ3 0.195 0.345 0.461 0.451 0.312 0.383 0.424 0.395 0.431 0.444
VQ2 0.143 0.231 0.272 0.267 0.220 0.260 0.277 0.251 0.270 0.278
WVQ 0.095 0.150 0.044 0.009 0.180 0.145 0.082 0.154 0.116 0.055

VQ3 \ RLE 0.182 0.277 0.130 0.000 0.260 0.316 0.340 0.304 0.328 0.332

SPICE

VQ3 0.063 0.093 0.111 0.114 0.086 0.100 0.108 0.100 0.106 0.109
VQ2 0.052 0.074 0.086 0.087 0.073 0.082 0.085 0.079 0.084 0.087
WVQ 0.035 0.046 0.019 0.011 0.051 0.042 0.026 0.043 0.034 0.020

VQ3 \ RLE 0.060 0.078 0.034 0.001 0.077 0.087 0.091 0.083 0.088 0.086

Table A3: Results of SAT models trained on MSCOCO and decoded with various sampling methods.

n
Beam Search Sampling (t: temperature; k: top-k)
beam size=? (t, k) = (?, All) (t, k) = (1.0, ?) (t, k) = (0.7, ?)

1 3 5 8 10 1.0 0.7 0.4 0.1 10 5 3 10 5 3

1 551 479 447 421 411 1447 978 689 561 1058 908 770 694 663 670
2 - 572 523 502 474 2100 1367 917 696 1522 1289 1025 907 867 851
3 - 693 620 585 562 2550 1644 1075 803 1855 1515 1222 1069 1003 973
5 - - 681 625 617 3239 2111 1305 938 2367 1861 1511 1266 1209 1155

10 - - - - 700 4311 2876 1664 1155 3176 2512 1954 1618 1552 1437

Table A4: The vocabulary size of the VQ3 SAT-FT model as estimated by various decoding approaches. The
numbers in this table display the specific values of the curves depicted in Figure 4.

and how little acoustic properties of interest are
affected by them.

Training A batch size of 64 are used for all sys-
tems. Adam (Kingma and Ba, 2015) with an initial
learning rate of 10−3 is used to minimize the mean
square error from spectrogram prediction and the
binary cross entropy from stop token prediction
combined. L2 regularization for the parameters
with a weight of 10−6 is applied, and the L2 norm
of the gradients are clipped at 1. Models are trained
for 500 epochs on LJSpeech and 250 epochs on
VCTK, and selected based on the validation loss.
Empirically, each training epoch on LJSpeech takes
about 12 minutes using two NVIDIA Titan X Pas-
cal GPUs for both VQ2 and VQ3 models.

C Full Results of Decoding via Sampling

Table A3 presents the word-based evaluation re-
sults of decoding via sampling for all 5 metrics,
supplementing Figure 3 in the main paper that only
presents the SPICE results. We see that ranking
between symbols are generally consistent among

all those metrics, except the ranking between WVQ
and VQ3 \ RLE when sampling with a temperature
of 0.4. This is a relatively low-score regime when
both model are transiting from generating trivial
caption (t = 0.1) to non-trivial captions (t = 0.7).

D Full Results of Learned Vocabulary
Size

In Table A4, we display the numerical results de-
picted graphically in Figure 4.

E More Image-to-Speech Samples

Table A5 shows captions sampled from the VQ3
model trained on MSCOCO. Here, we note that
the sampled captions exhibit diversity both their
content and linguistic style. We observe that the
captioning model has learned to produce captions
that correctly use quantifiers and conjugate verbs
(“a couple of cows walking” vs. “a cow is stand-
ing”). The model also disentangles object identity
from attributes such as color “red fire hydrant” vs.
“yellow fire hydrant” vs. “green fire hydrant”).
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Image Generated Spoken Captions / Transcripts (SAT-FT, VQ3, Sampling (t, k) = (0.4, 3))
trial 1 trial 2 trial 3

the airplane is parked on
the field

a plane is parked in the
grass near a white and

white airplane

a small airplane that is
standing in a field

a surfer riding a wave in
the water

the man is riding the wave
in the water

a surfer is riding a wave
on a wave

the bus parked on the side
of the road

a large red bus is stopped
in the road

a bus is parked on the road

a couple of cows walking
in a field

a couple of cows in a
grassy field

a couple of cows walking
in a grassy field

a cow is standing in a
store

a brown cow walking
down the side of a street

a brown and white cow
standing in a line

a red fire hydrant is sitting
on the side of the street

a red fire hydrant sitting
on a sidewalk in a

concrete

a red fire hydrant sitting
on the side of a road

a yellow fire hydrant in
the middle of the side of a

road

a yellow fire hydrant is
sitting in the park

a yellow fire hydrant in a
line on the side of a street

a fire hydrant on a
sidewalk in the middle

a green fire hydrant on the
side of the road

a fire hydrant with a curb
on the side of the street

Table A5: Samples. More at https://wnhsu.github.io/image-to-speech-demo/2_vq3_sample_

diversity_sat-ft_model

https://wnhsu.github.io/image-to-speech-demo/2_vq3_sample_diversity_sat-ft_model
https://wnhsu.github.io/image-to-speech-demo/2_vq3_sample_diversity_sat-ft_model

