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Abstract
Hierarchical Text Classification (HTC) is a
challenging task that categorizes a textual de-
scription within a taxonomic hierarchy. Most
of the existing methods focus on modeling the
text. Recently, researchers attempt to model
the class representations with some resources
(e.g., external dictionaries). However, the con-
cept shared among classes which is a kind
of domain-specific and fine-grained informa-
tion has been ignored in previous work. In
this paper, we propose a novel concept-based
label embedding method that can explicitly
represent the concept and model the sharing
mechanism among classes for the hierarchi-
cal text classification. Experimental results on
two widely used datasets prove that the pro-
posed model outperforms several state-of-the-
art methods. We release our complementary
resources (concepts and definitions of classes)
for these two datasets to benefit the research
on HTC.

1 Introduction

Text classification is a classical Natural Language
Processing (NLP) task. In the real world, the text
classification is usually cast as a hierarchical text
classification (HTC) problem, such as patent collec-
tion (Tikk et al., 2005), web content collection (Du-
mais and Chen, 2000) and medical record cod-
ing (Cao et al., 2020). In these scenarios, the HTC
task aims to categorize a textual description within
a set of labels that are organized in a structured
class hierarchy (Silla and Freitas, 2011). Lots of
researchers devote their effort to investigate this
challenging problem. They have proposed vari-
ous HTC solutions, which are usually categorized
into flat (Aly et al., 2019), local (Xu and Geng,
2019), global (Qiu et al., 2011) and combined ap-
proaches (Wehrmann et al., 2018).

In most of the previous HTC work, researchers
mainly focus on modeling the text, the labels are

Figure 1: Concepts shared among classes in WOS.

simply represented as one-hot vectors (Zhu and
Bain, 2017; Wehrmann et al., 2018). Actually, the
one-hot vectors act as IDs without any semantic in-
formation. How to describe a class is also worthy of
discussion. There is some work that embeds labels
into a vector space which contains more semantic
information. Compared with one-hot representa-
tions, label embeddings have advantages in captur-
ing domain-specific information and importing ex-
ternal knowledge. In the field of text classification
(includes the HTC task), researchers propose sev-
eral forms of label embeddings to encode different
kinds of information, such as 1) anchor points (Du
et al., 2019), 2) compatibility between labels and
words (Wang et al., 2018; Huang et al., 2019; Tang
et al., 2015), 3) taxonomic hierarchy (Cao et al.,
2020; Zhou et al., 2020) and 4) external knowl-
edge (Rivas Rojas et al., 2020).

Although the external knowledge has been
proven effective for HTC, it comes from a dictio-
nary or knowledge base that humans constructed
for entity definition, and it doesn’t focus on the
class explanations of a certain HTC task. In this
sense, external knowledge is a type of domain-
independent information. The taxonomic hierarchy
encoding can capture the structural information of
classes, which is a sort of domain-specific infor-
mation for HTC. However, actually it only models
the hypernym-hyponym relations in the class hi-
erarchy. The process is implicit and difficult to
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be interpreted. Besides the structural connections
between classes, we find that the information of
concept shared between adjacent levels of classes
is ignored by previous work. For instance, there is
a parent node named “Sports” in a concrete class hi-
erarchy (Qiu et al., 2011). Its subclasses “Surfing”
and “Swimming” are “water” related sports. The
subclasses “Basketball” and “Football” are “ball”
related sports. The “water” and “ball” are a type
of abstract concept included in the parent class
“Sports” and can be shared by the subclasses. As
shown in Figure 1, we have a similar observation
in WOS (Kowsari et al., 2017), which is a widely
used public dataset (details in our experiments).
The concept “design” of the parent class “Com-
puter Science” is shared by the child classes “Soft
engineering” and “Algorithm design”. The con-
cept “distributed” is shared by “Network security”
and “Distributed computing”. The concept infor-
mation can help to group the classes and measure
the correlation intensity between parent and child
classes. Compared with the information of node
connections in the class hierarchy, the concept is
more semantic and fine-grained, but rarely inves-
tigated. Although Qiu et al. (2011) have noticed
the concept in HTC, they define the concept in a
latent way and the process of represent learning is
also implicit. Additionally, few of previous work
investigates how to extract the concepts or model
the sharing interactions among class nodes.

To further exploit the information of concept
for HTC, we propose a novel concept-based label
embedding method which can explicitly represent
the concepts and model the sharing mechanism
among classes. More specifically, we first construct
a hierarchical attention-based framework which is
proved to be effective by Wehrmann et al. (2018)
and Huang et al. (2019). There is one concept-
based classifier for each level. The prior level clas-
sification result (i.e. predicted soft label embed-
ding) is fed into the next level. A label embed-
ding attention mechanism is utilized to measure the
compatibility between texts and classes. Then we
design a concept sharing module in our model. It
firstly extracts the concepts explicitly in the corpus
and represents them in the form of embeddings.
Inspired by the CapsNet (Sabour et al., 2017), we
employ the dynamic routing mechanism. The itera-
tive routing helps to share the information from the
lower level to the higher level with the agreement
in CapsNet. Taking into account the characters

of HTC, we modify the dynamic routing mecha-
nism for modeling the concepts sharing interactions
among classes. In detail, we calculate the agree-
ment between concepts and classes. An external
knowledge source is taken as an initial reference
of the child classes. Different from the full connec-
tions in CapsNet, we build routing only between
the class and its own child classes to utilize the
structured class hierarchy of HTC. Then the rout-
ing coefficients are iteratively refined by measuring
the agreement between the parent class concepts
embeddings and the child class embeddings. In this
way, the module models the concept sharing pro-
cess and outputs a novel label representation which
is constructed by the concepts of parent classes.
Finally, our hierarchical network adopts such label
embeddings to represent the input document with
an attention mechanism and makes a classification.

In summary, our major contributions include:

• This paper investigates the concept in HTC
problem, which is a type of domain-specific
information ignored by previous work. We
summarize several kinds of existing label em-
beddings and propose a novel label represen-
tation: concept-based label embedding.

• We propose a hierarchical network to extract
the concepts and model the sharing process
via a modified dynamic routing algorithm. To
our best knowledge, this is the first work that
explores the concepts of the HTC problem in
an explicit and interpretable way.

• The experimental results on two widely used
datasets empirically demonstrate the effective
performance of the proposed model.

• We complement the public datasets
WOS (Kowsari et al., 2017) and DBpe-
dia (Sinha et al., 2018) by exacting the
hierarchy concept and annotating the classes
with the definitions from Wikipedia. We
release these complementary resources and
the code of the proposed model for further
use by the community1.

2 Model

In this section, we detailedly introduce our model
CLED (Figure 2). It is designed for hierarchi-
cal text classification with Concept-based Label

1https://github.com/wxpkanon/
CLEDforHTC.git

https://github.com/wxpkanon/CLEDforHTC.git
https://github.com/wxpkanon/CLEDforHTC.git
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Figure 2: Illustration of our Concept-based Label Embedding via Dynamic routing (CLED) for HTC.

Embeddings via a modified Dynamic routing mech-
anism. Firstly, we construct a hierarchical attention-
based framework. Then a concept sharing module
is designed for extracting concepts and modeling
the sharing mechanism among classes. The module
learns a novel label representation with concepts.
Finally, the model takes the concept-based label
embeddings to categorize a textual description.

2.1 Hierarchical Attention-based Framework
In recent years, the hierarchical neural network has
been proven effective for the HTC task by much
work (Sinha et al., 2018; Wehrmann et al., 2018;
Huang et al., 2019). We adopt it as the framework
of our model.

Text Encoder We first map each document
d = (w1, w2, ..., w|d|) into a low dimensional
word embedding space and denote it as X =
(x1,x2, ...,x|d|). A CNN layer is used for extract-
ing n-gram features. Then a bidirectional GRU
layer extracts contextual features and represents
the document as S = (s1, s2, ..., s|d|).

Label Embedding Attention To measure the
compatibility between labels and texts, we adopt
the label embedding attention mechanism. Given a
structured class hierarchy, we denote the label em-
beddings of the i-th level as C = (c1, c2, ..., c|li|),
where |li| is the number of classes in the i-th
level. Then we calculate the cosine similarity

matrix G ∈ R|d|×|li| between words and labels
via gkj = (s>k cj)/(‖sk‖ ‖cj‖) for the i-th level.
Inspired by Wang et al. (2018) and Wang et al.
(2019), we adopt convolutional filters F to mea-
sure the correlations rp between the p-th phrase
of length 2k + 1 and the classes at i-th level,
rp = ReLU(F ⊗Gp−k:p+k + b), where b ∈ R|li|.
We denote the largest correlation value of the p-
th phrase with regard to the labels of i-th level
as tp = max-pooling(rp). Then we get the label-
to-text attention score α ∈ R|d| by normalizing
t ∈ R|d| with the SoftMax function. Finally, the
document representation datt can be obtained by
averaging the word embeddings, weighted by label-
to-text attention score: datt =

∑|d|
k αksk.

2.2 Concept Sharing Module (CSM)

Most of researchers focus on measuring the corre-
lations of classes by modeling the structured class
hierarchy. In fact, they only get the information of
graphic connections. By contrast, the concepts are
more semantic, fine-grained and interpretable, but
have been ignored. To further exploit the concepts,
we design a concept module to explicitly model the
mechanism of sharing concepts among classes and
measure the intensity of interactions.

Concepts Encoder Given the corpus of class c,
we extract the keywords from the documents and
take top-n ranked keywords as the concepts of class
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Algorithm 1 Pseudo Code of Concepts Sharing via Dynamic Routing

Input: all the classes c and their concepts e in level l; all the classes in level (l + 1)
Output: cCL

j : the concept-based label embedding of the class in level (l + 1);
1: for each concept i of a class c in level l and each of its child class j in level (l + 1): bij ← 0;
2: for r iterations do
3: for each concept i of class c in level l: βi ← softmax(bi); .softmax computes Eq. 1
4: for each child class j of class c in level (l + 1): vj ←

∑
i βijei;

5: for each child class j of class c in level (l + 1): cCL
j ← squash(vj) .squash computes Eq. 4

6: for each concept i of class c in level l and each of its child class j in level (l + 1): bij ← bij+ei·cCL
j

7: end for
8: return cCL

j

c. In the WOS dataset, every document is already
annotated with several keywords. So we rank the
keywords by term frequency within each class. For
the DBpedia dataset, there is no annotated keyword
available. We carry out the Chi-square (χ2) sta-
tistical test, which has been widely accepted as
a statistical hypothesis test to evaluate the depen-
dency between words and classes (Barnard, 1992;
Palomino et al., 2009; Kuang and Davison, 2017).
The words are ranked by the χ2 values. Having ex-
tracted concepts for each class, we represent them
with word embeddings.

To further encode the concepts, we exploit two
different ways and make a comparison in experi-
ments. A simple and efficient way is to feed the
concept embeddings into the sharing networks di-
rectly. Alternatively, we try the k-means clustering
algorithm (Hartigan and Wong, 1979) in considera-
tion of the similarity between concepts, then get the
embeddings of cluster centers. The outputs (word
embeddings or cluster centers) of concepts encoder
are denoted as Ec = (e1, e2, ..., en) for class c.

Concepts Sharing via Dynamic Routing For
the HTC task, we find that there are concepts of
parent classes shared by their child classes. The
semantically related classes share some concepts in
common. The concepts describe a class in different
views. We adopt the dynamic routing mechanism
in the CapsNet (Sabour et al., 2017), which is effec-
tive for sharing the information from lower levels to
higher levels. Considering the characters of HTC,
we modify it to explicitly model the interactions
among classes and quantitatively measure the in-
tensity.

To utilize the taxonomic hierarchy, we build rout-
ing only between the class and its own child classes,
which is different from the full connections in Cap-
sNet. We take the coupling coefficients between

concepts of a parent class and all its child classes
as the intensities of the sharing interactions. The
intensity (coupling coefficient) βij sums to 1 and is
determined by a “routing softmax”. The logit bij is
the log prior probability that concept i of a parent
class should be shared to its child class j in level
ln.

βij =
exp(bij)∑|ln|
k exp(bik)

(1)

The logit bij is iteratively refined by adding with
the agreement.

bij ← bij + ei · cCL
j (2)

The agreement is the scalar product between the
concept embedding ei and the concept-based label
embedding (CL) of the child class cCL

j . The vj
is the intermediate label embedding of the child
class, which is generated by weighting over all the
concepts of its parent class.

vj =
∑
i

βijei (3)

As Sabour et al. (2017) do in the CapsNet, we
also use a non-linear “squashing” function which
is effective in our experiments.

cCL
j =

‖vj‖2

1 + ‖vj‖2
vj
‖vj‖

(4)

Finally, we get the concept-based label embedding
for class cj by modeling the sharing mechanism.
The new generated label embedding cCL

j is con-
structed with several concepts ei in different views
and affected in different intensities βij . Compared
with randomly initializing cCL

j , an external knowl-
edge source is taken as an initial reference which
is more effective in experiments. The procedures
are illustrated in Algorithm 1.
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2.3 Classification
We build a classifier for each class level. Let ŷli
denote the predictions of the classes in i-th level.

ŷli = softmax(Wom+ bo) (5)

m = ReLU(Wm[dEK
att;d

CL
att;d

PRE
att ] + bm) (6)

where Wo, bo,Wm, bm are learnable parame-
ters and [; ] is the vector concatenating operator.
The dEK

att and dCL
att are document representations

weighted respectively by the label-to-text atten-
tion scores via external knowledge (EK) initial-
ized label embeddings and concepts-based label
embeddings (CL). To utilize the predictions in the
(i-1)-th level, we feed the document represent dPRE

att

into the i-th level classifier. dPRE
att is weighted by

the attention scores of the predicted soft label em-
bedding cP. dPRE

att =
∑|d|

k αksk, where αk =

(s>k c
P)/(‖sk‖

∥∥cP
∥∥), cP =

∑|li−1|
j ŷ

li−1

j cEK
j and

cEK
j is the label embedding represented by averag-

ing word embeddings of class definition in external
knowledge (EK encoder in Figure 2). We calculate
the loss of classifier in i-th level as follows:

Lli = 1

N

N∑
n=1

CE(ylin , ŷ
li
n ) (7)

where ylin is the one-hot vector of ground truth label
in the i-th level for document n and CE(·, ·) is the
cross entropy between two probability vectors. We
optimize the model parameters by minimize the
overall loss function:

L =
H∑
i=1

Lli (8)

where H is the total number of levels in the struc-
tured class hierarchy.

3 Experiments

3.1 Datasets
We evaluate our model on two widely used hierar-
chical text classification datasets: Web of Science
(WOS; Kowsari et al. (2017)) and DBpedia (Sinha
et al., 2018). The former includes published papers
available from the Web of Science (Reuters, 2012).
The latter is curated by Sinha et al. (2018) from
DBpedia2. The general information of datasets

2https://wiki.dbpedia.org/

WOS DBpedia
# Classes in level 1 7 9
# Classes in level 2 134 70
# Classes in level 3 NA 219
# Documents 46,985 342,782
Train 28,479 278,408
Val 3,000 30,000
Test 15,506 34,374

Table 1: Statistics of WOS and DBpedia

is shown in Table 1. We complement these two
datasets by extracting the hierarchy concepts and
annotating the classes with the definitions from
Wikipedia3.

3.2 Metrics and Parameter Settings

As the state-of-the-art methods do, we take the ac-
curacy of each level and the overall accuracy as met-
rics. Hyper-parameters are tuned on a validation set
by grid search. We take Stanford’s publicly avail-
able GloVe 300-dimensional embeddings trained
on 42 billion tokens from Common Crawl (Pen-
nington et al., 2014) as initialization for word em-
beddings. The number of filters in CNN is 128
and the region size is {2, 3}. The number of hid-
den units in bi-GRU is 150. We set the maximum
length of token inputs as 512. The rate of dropout
is 0.5. The number of routing iterations is 3. We
compare two different inputs of the sharing net-
works: 1) top 30 ranked concepts of each parent
class as inputs; 2) 40 cluster centers generated by
the k-means clustering algorithm on 1k concepts
for each parent class. We train the parameters by
the Adam Optimizer (Kingma and Ba, 2014) with
an initial learning rate of 1e-3 and a batch size of
128.

3.3 Baselines

HDLTex Kowsari et al. (2017) prove that the hi-
erarchical deep learning networks outperform the
conventional approaches (Naı̈ve Bayes or SVM).

HNATC Sinha et al. (2018) propose a Hierarchi-
cal Neural Attention-based Text Classifier. They
build one classifier for each level and concatenate
the predicted category embedding at (i-1)-th level
with each of the encoder’s outputs to calculate at-
tention scores for i-th level.

3https://www.wikipedia.org/

https://wiki.dbpedia.org/
https://www.wikipedia.org/
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Model
WOS DBpedia

l1 l2 Overall l1 l2 l3 Overall
HDLTex 90.45 84.66 76.58 99.26 97.18 95.50 92.10
HNATC 89.32 82.42 77.46 99.21 96.03 95.32 93.72
HARNN 91.90 61.63 61.29 99.37 95.69 95.71 93.25
A-PNC-B - - 79.92 - - - 95.26
HiAGM-TP-LSTM 90.54 80.59 79.30 99.44 97.22 95.32 95.03
HiAGM-TP-GCN 90.78 80.79 79.34 99.43 97.18 95.29 94.85
HiAGM-LA-LSTM 90.20 80.09 78.28 99.40 97.14 95.12 94.64
HiAGM-LA-GCN 90.41 80.06 78.23 99.45 97.08 94.95 94.48
CLED 93.40 85.69 84.36 99.41 97.30 95.53 95.28
CLEDcluster 93.34 86.19 85.13 99.46 97.36 95.64 95.39

Table 2: Experimental results (accuracy, %) of our proposed model CLED and state-of-the-art methods. We
evaluate the test set with the best model on the validation set. We run our model 5 times with different seeds
and report the mean metrics. Improvements are statistically significant with p<0.01 based on the t-test. Note that
Rivas Rojas et al. (2020) only report the overall accuracy for A-PNC-B.

HARNN Huang et al. (2019) propose a model
called Hierarchical Attention-based Recurrent Neu-
ral Network with one classifier for each class level.
They focus on modeling the dependencies among
class levels and the text-label compatibility.

A-PNC-B Rivas Rojas et al. (2020) define the
HTC as a sequence-to-sequence problem and pro-
pose a synthetic task of bottom-up-classification.
They represent classes with external dictionaries.
Their best combined strategy is Auxiliary task +
Parent Node Conditioning (PNC) + Beam search.

HiAGM Zhou et al. (2020) propose a hierarchy-
aware global model. They employ Tree-LSTM and
hierarchy-GCN as the hierarchy encoder. Text fea-
ture Propagation (TP) and Label Attention (LA)
are utilized for measuring the label-word compati-
bility. There are four HiAGM variants: TP-LSTM,
TP-GCN, LA-LSTM, and LA-GCN.

3.4 Compared with State-of-the-art Methods
To illustrate the practical significance of our pro-
posed model, we make comparisons with several
competitive state-of-the-art methods. The results
of experiments conducted on the public datasets
are shown in Table 2. Most of the state-of-the-art
methods referred to in Section 3.3 adopt a hier-
archical attention-based network as their models’
framework. Within their models, the hierarchical
framework is effective in utilizing the classification
results of the previous levels for the next levels.
The label embedding attention mechanism helps
to import external knowledge sources and the tax-
onomic hierarchy. On both of the two datasets,

the state-of-the-art methods obtain competitive per-
formance. With a similar framework, our model
focuses on the concept-based label embedding and
outperforms the other methods on both level and
overall accuracy. The results indicate the effec-
tiveness of the concepts among classes which have
been ignored by previous work. The concept-based
label embedding models related classes by the shar-
ing mechanism with common concepts (visualiza-
tions in Section 3.6). The ablation comparisons are
shown in Section 3.5.

The experimental results of the two variants of
our model are also shown in Table 2. Compared
with directly feeding the concepts into the shar-
ing networks (CLED), the variant CLEDcluster per-
forms slightly better. It indicates that cluster cen-
ters generated by the k-means algorithm are more
informative and effective.

3.5 Ablation Experiments
To investigate the effectiveness of different parts
in our model, we carry out ablation studies. The
experiment results are shown in Table 3.

Effectiveness of Concept-based Label Embed-
ding By comparing the results of CLED and the
model without the learnt concept-based label em-
bedding (w/o CL), we further confirm that the con-
cepts shared among classes help to improve the
performance.

Effectiveness of Dynamic Routing We remove
the dynamic routing networks from the model
CLED. Because there is no dynamic routing to
share the concepts from the parent classes to their
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Model
WOS DBpedia

l1 l2 Overall l1 l2 l3 Overall
CLED 93.40 85.69 84.36 99.41 97.30 95.53 95.28
w/o CL 93.35 85.36 84.10 99.40 97.22 95.40 95.15
w/o EK 93.27 85.29 84.04 99.39 97.23 95.47 95.19
w/o PRE 93.34 85.33 84.03 99.39 97.18 95.35 95.05
w/o reference in CSM 93.30 85.45 84.17 99.40 97.18 95.45 95.15
w/o DR 93.29 85.41 84.23 99.36 97.23 95.38 95.12

Table 3: Ablation studies for different parts in our model.

child classes, it is an intuitive way to represent the
label embeddings by averaging the word embed-
dings of the child classes’ concepts. Specifically,
there are top-30 ranked concepts for each parent
class to share with their child classes. So for the
model without dynamic routing (w/o DR), we rep-
resent the child class label embedding with the
top-30 ranked concepts of each child class. Al-
though the concepts of child classes are more fine-
grained and informative than the concepts of parent
classes, the model CLED with the dynamic rout-
ing networks to share the concepts among classes
performs better. It indicates that modeling the shar-
ing mechanism and learning to represent the child
classes with common concepts are more effective.

Effectiveness of External Knowledge We take
an external knowledge source as the initial refer-
ence of child classes in the concepts sharing mod-
ule. When we remove the reference (w/o reference
in CSM), the results are slightly worse on accuracy.
It demonstrates that the external knowledge makes
an efficient reference for the concept sharing.

Similar to the state-of-the-art methods, the ex-
ternal knowledge is also used individually as the
representation of each class in our model. It helps
to measure the compatibility between labels and
texts via the attention mechanism. When we fully
remove the external knowledge and initialize the
label embeddings randomly (w/o EK), the perfor-
mances are slightly worse than that with external
knowledge (CLED). It indicates the effectiveness
of external knowledge. Besides, the experiment
which removes the predicted soft label embedding
(w/o PRE) proves that, it is effective to utilize the
predictions of previous level.

3.6 Visualizations of Concepts Sharing

In this paper, we explicitly investigate the concept
sharing process. A concept sharing module is de-
signed to model the mechanism of sharing concepts

among classes and measure the intensity of interac-
tions. The heat map of the learnt dynamic routing
scores between the concepts of class “Computer
Science” and its child classes is illustrated in Fig-
ure 3. The color changes from white to blue while
the score increases. The score indicates the inten-
sity between the concept and class in the sharing
process. In Figure 3, we find that the concept “de-
sign” is shared by the classes “Soft engineering”
and “Algorithm design”. The concept “distributed”
is shared by the classes “Network security” and
“Distributed computing”. The concept is shared by
related classes.

We use t-SNE (Van der Maaten and Hinton,
2008) to visualize the concept embeddings of class
“Computer Science” and the concept-based label
embeddings of its child classes on a 2D map in
Figure 4. The label embedding (red triangle) is
constructed with the embeddings of concepts (blue
dot). As shown, the class “Software engineering”
is surrounded by the concepts “optimization” and
“design”. “Network security” is surrounded by
“cloud”, “machine” and “security”. The class is
described by several concepts in different views.

The visualizations in Figure 3 and 4 indicate
that we successfully model the concept sharing
mechanism in a semantic and explicit way.

4 Related Work

Hierarchical text classification with label em-
beddings Recently, researchers try to adopt the
label embeddings in the hierarchical text classi-
fication task. Huang et al. (2019) propose hier-
archical attention-based recurrent neural network
(HARNN) by adopting label embeddings. Mao
et al. (2019) propose to learn a label assignment
policy via deep reinforcement learning with label
embeddings. Peng et al. (2019) propose hierarchi-
cal taxonomy-aware and attentional graph RCNNs
with label embeddings. Rivas Rojas et al. (2020)
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Figure 3: Dynamic routing scores between the con-
cepts of class “Computer Science” (Y-axis) and its
child classes (X-axis).

define the HTC task as a sequence-to-sequence
problem. Their label embedding is defined by ex-
ternal knowledge. For modeling label dependen-
cies, Zhou et al. (2020) formulate the hierarchy
as a directed graph and introduce hierarchy-aware
structure encoders. Cao et al. (2020) and Chen et al.
(2020a) exploit the hyperbolic representation for
labels by encoding the taxonomic hierarchy.

Hierarchical text classification besides label em-
beddings According to the motivation of this
work, we separate previous work with label embed-
dings from the HTC task and present it in the above
paragraph. Besides, existing work is usually cate-
gorized into flat, local and global approaches (Silla
and Freitas, 2011). The flat classification approach
completely ignores the class hierarchy and only pre-
dicts classes at the leaf nodes (Aly et al., 2019). The
local classification approaches could be grouped as
a local classifier per node (LCN), a local classifier
per parent node (LCPN) and a local classifier per
level (LCL). The LCN approach train one binary
classifier for each node of the hierarchy (Fagni and
Sebastiani, 2007). Banerjee et al. (2019) apply
transfer learning in LCN by fine-tuning the parent
classifier for the child class. For the LCPN, a multi-
class classifier for each parent node is trained to
distinguish between its child nodes (Wu et al., 2005;
Dumais and Chen, 2000). Xu and Geng (2019) in-
vestigate the correlation among labels by the label

Figure 4: t-SNE plot of the concept embeddings of the
class “Computer Science” and the concept-based label
embeddings of its child classes.

distribution as an LCPN approach. The LCL ap-
proach consists of training one multi-class classifier
for each class level (Kowsari et al., 2017; Shimura
et al., 2018). Zhu and Bain (2017) introduce a B-
CNN model which outputs predictions correspond-
ing to the hierarchical structure. Chen et al. (2020b)
propose a multi-level learning to rank model with
multi-level hinge loss margins. The global ap-
proach learns a global classification model about
the whole class hierarchy (Cai and Hofmann, 2004;
Gopal and Yang, 2013; Wing and Baldridge, 2014;
Karn et al., 2017). Qiu et al. (2011) exploit the la-
tent nodes in the taxonomic hierarchy with a global
approach. For the need for a large amount of train-
ing data, a weakly-supervised global HTC method
is proposed by Meng et al. (2019). Meta-learning
is adopted by Wu et al. (2019) for HTC in a global
way. In addition, there is some work combined with
both local and global approach (Wehrmann et al.,
2018). A local flat tree classifier is introduced by
Peng et al. (2018) which utilizes the graph-CNN.

5 Conclusion

In this paper, we investigate the concept which is
a kind of domain-specific and fine-grained infor-
mation for the hierarchical text classification. We
propose a novel concept-based label embedding
model. Compared with several competitive state-
of-the-art methods, the experimental results on two
widely used datasets prove the effectiveness of our
proposed model. The visualization of the concepts
and the learnt concept-based label embeddings re-
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veal the high interpretability of our model.
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