
Knowledge-Enriched Event Causality Identification via Latent Structure
Induction Networks

Pengfei Cao1,2, Xinyu Zuo1,2, Yubo Chen1,2, Kang Liu1,2, Jun Zhao1,2,
Yuguang Chen3 and Weihua Peng3

1National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

3Beijing Baidu Netcom Science Technology Co., Ltd
{pengfei.cao, xinyu.zuo, yubo.chen, kliu, jzhao}@nlpr.ia.ac.cn,

{chenyuguang, pengweihua}@baidu.com

Abstract

Identifying causal relations of events is an im-
portant task in natural language processing
area. However, the task is very challenging,
because event causality is usually expressed in
diverse forms that often lack explicit causal
clues. Existing methods cannot handle well
the problem, especially in the condition of
lacking training data. Nonetheless, humans
can make a correct judgement based on their
background knowledge, including descriptive
knowledge and relational knowledge. Inspired
by it, we propose a novel Latent Structure
Induction Network (LSIN) to incorporate the
external structural knowledge into this task.
Specifically, to make use of the descriptive
knowledge, we devise a Descriptive Graph
Induction module to obtain and encode the
graph-structured descriptive knowledge. To
leverage the relational knowledge, we propose
a Relational Graph Induction module which is
able to automatically learn a reasoning struc-
ture for event causality reasoning. Experi-
mental results on two widely used datasets in-
dicate that our approach significantly outper-
forms previous state-of-the-art methods.

1 Introduction

Event causality identification (ECI) aims to iden-
tify causal relation of events in texts. For exam-
ple, in the sentence “The earthquake generated a
tsunami.”, an ECI model should be able to identify
a causal relationship that holds between the two
mentioned events, i.e., earthquake cause−−−→ tsunami.
ECI is an important task in natural language pro-
cessing (NLP) area and can support many NLP ap-
plications, such as machine reading comprehension
(Berant et al., 2014), process extraction (Thalap-
pillil Scaria et al., 2013) and future event prediction
(Radinsky et al., 2012; Hashimoto et al., 2014).

Identifying event causal relation is inherently
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Figure 1: An example of leveraging the external struc-
tural knowledge for ECI task. The dashed arrow indi-
cates a missing link in the knowledge base.

challenging, because event causality is usually ex-
pressed in diverse forms that often lack explicit
clues indicating its existence. For example in Fig-
ure 1, the sentence has no explicit clue indicat-
ing the causal relation between “global warming”
and “tsunami”. In this scenario, models can re-
sort to a large amount of labeled data to learn di-
verse causal expressions. However, existing ECI
datasets are very small. For example, the largest
dataset EventStoryLine (Caselli and Vossen, 2017)
only contains 258 documents, which is not suffi-
cient to train neural network models (Liu et al.,
2020). Consequently, models cannot thoroughly
understand the text and possibly make a wrong pre-
diction. Nonetheless, humans could make a correct
judgement, because humans have the background
knowledge about the two events. To be more spe-
cific, humans not only know what the two events
are, but also know the connection between them.
Fortunately, existing knowledge bases (KBs) usu-
ally contain the Descriptive Knowledge of events
and Relational Knowledge between events, which
can be regarded as the background knowledge to en-
hance ECI models. In this paper, we focus on how
to incorporate these two kinds of external knowl-
edge into the task.

Descriptive Knowledge: The external knowl-



edge base contains the descriptive or explanatory
information about events, which can be called the
descriptive knowledge of events. It usually consists
of one-hop neighbors of events. This kind of knowl-
edge is able to help the model better understand
what the mentioned event is. For example in Fig-
ure 1, the descriptive knowledge associated with
“global warming” includes (global warming, IsA,
temperature change), (global warming, CreatedBy,
greenhouse gas) and so on. If the model can make
use of such knowledge, it is obvious that the model
can better understand the meaning of the event it-
self than using only the given text. Therefore, incor-
porating the descriptive knowledge is very helpful
for this task. However, when leveraging this kind
of knowledge, we find two critical challenges: (1)
As shown in Figure 1, the descriptive knowledge
forms a sub-graph. How to effectively encode the
graph-structured knowledge is a very challenging
problem; (2) The knowledge base is incomplete
(Wang et al., 2020), which will inevitably cause the
descriptive knowledge of some events cannot be
obtained from the KB. Thus, the model should have
the ability to obtain and encode such knowledge,
even if it does not exist in the KB.

Relational Knowledge: The external knowl-
edge base contains connections between events,
which can be referred as the relational knowl-
edge between events. It is usually defined by the
multi-hop path between two events. This kind of
knowledge can provide useful information for event
causality reasoning, especially when the text lacks
causal clues. For example in Figure 1, the relational
knowledge between the two events is “global warm-

ing” Causes−−−−→ “glacier melting”
CapableOf−−−−−−→ “sea-level

rising” AtLocation−−−−−−→ “ocean” AtLocation←−−−−−− “tsunami”.
Apparently, compared with only using text informa-
tion, utilizing the relational knowledge can provide
ample evidence for the model to judge the causality
between “global warming” and “tsunami”. How-
ever, two challenges exist when using the relational
knowledge: (1) The multi-hop path may miss some
potentially useful relations. For example in Figure
1, the fact (sea-level rising, Causes, tsunami) is de-
scribed in the wikipedia page of “sea-level rising”1,
while it is not annotated in the KB; (2) Not all the
knowledge on the path is related to causality, such
as (sea-level rising, AtLocation, ocean). Therefore,
directly reasoning along the multi-hop path struc-

1https://en.wikipedia.org/wiki/Sea_
level_rise

ture may not be optimal. The model should be
able to learn a more reasonable structure for cap-
turing potentially useful information and reducing
the impact of irrelevant knowledge.

In this paper, we propose a novel method termed
as Latent Structure Induction Network (LSIN) to
overcome aforementioned challenges. Specifically,
we devise a Descriptive Graph Induction module to
make use of the descriptive knowledge. The mod-
ule first adopts a hybrid method of retrieval and
generation to obtain the descriptive knowledge, and
then utilizes the information aggregation technique
to encode the graph-structured knowledge. Mean-
while, we propose a Relational Graph Induction
module to leverage the relational knowledge. The
module first treats the reasoning structure as a la-
tent variable and learns it in an end-to-end fashion.
Then, the module performs event causality reason-
ing based on the induced structure. Experimental
results on two widely used datasets demonstrate
that our model substantially outperforms previous
state-of-the-art methods.

Our contributions are summarized as follows:

• We propose a novel Latent Structure Induction
Network (LSIN) to leverage the external struc-
tural knowledge. To our knowledge, we are
the first to use both the descriptive knowledge
and relational knowledge for this task.

• To exploit the descriptive knowledge, we de-
vise a descriptive graph induction module. To
utilize the relational knowledge, we propose a
relational graph induction module.

• Experimental results on two widely used
datasets indicate that our proposed approach
significantly outperforms previous state-of-
the-art methods.

2 Related Work

Event causality identification (ECI) is a very impor-
tant task in natural language processing area, which
has attracted extensive attention in the past few
years. Early studies for the task are feature-based
methods which utilize lexical and syntactic features
(Riaz and Girju, 2013; Gao et al., 2019), explicit
causal patterns (Beamer and Girju, 2009; Do et al.,
2011; Hu et al., 2017), and statistical causal associa-
tions (Riaz and Girju, 2014; Hashimoto et al., 2014;
Hu and Walker, 2017; Hashimoto, 2019) for the
task. With the development of deep learning, neural
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Figure 2: The architecture of our proposed latent structure induction network for event causality identification.

network-based methods have been proposed for the
task and achieved the state-of-the-art performance
(Kruengkrai et al., 2017; Kadowaki et al., 2019;
Liu et al., 2020; Zuo et al., 2020). Liu et al. (2020)
propose a mention masking generalization method
and also consider the external structural knowledge.
The very recent work (Zuo et al., 2020) propose
a data augmentation method to alleviate the data
lacking problem for the task. Regarding datasets
construction, Mirza (2014) annotates the Causal-
TimeBank dataset about event causal relations in
the TempEval-3 corpus. Caselli and Vossen (2017)
construct a dataset called EventStoryLine for event
causality identification. Despite many efforts for
this task, most existing methods typically train the
models on manually labeled data solely, rarely con-
sidering the external structural knowledge. As a
result, these methods cannot handle well the cases
where there is no explicit causal clue.

Although Liu et al. (2020) leverage the descrip-
tive knowledge to enrich event representations, they
directly retrieve the descriptive knowledge from
the KB. Therefore, their method cannot handle
the cases where there is no knowledge about the
event in the KB. In addition, they ignore the re-
lational knowledge between events. By contrast,
our method can not only generate the descriptive
knowledge when it cannot be retrieved from the
KB, but also leverage the relational knowledge. To
our knowledge, we are the first to simultaneously
make use of the descriptive knowledge and rela-
tional knowledge for this task.

3 Methodology

Following previous works (Ning et al., 2018; Liu
et al., 2020), we formulate ECI as a binary clas-

sification problem. For every pair of events in
a sentence, we predict whether a causal relation
holds. Figure 2 schematically visualizes our ap-
proach, which consists of three major components:
(1) Context Encoding (§3.1), which encodes the
input sentence and outputs contextualized repre-
sentations; (2) Descriptive Graph Induction (§3.2),
which first obtains the corresponding descriptive
knowledge for each event, and then encodes the
graph-structured knowledge; (3) Relational Graph
Induction (§3.3), which automatically induces a
reasoning structure and performs causality reason-
ing on the induced structure. We will illustrate each
component in detail.

3.1 Context Encoding

Given a sentence with a pair of events (denoted as
e1 and e2), the context encoding module aims to
extract context features, which takes the sentence
as input and outputs the context representations.
Our context encoder is based on the Transformer
architecture (Vaswani et al., 2017). We adopt the
BERT (Devlin et al., 2019) to encode the input
sentence,2 which has achieved the state-of-the-art
performance for ECI task (Liu et al., 2020; Zuo
et al., 2020). After using BERT encoder to com-
pute the contextual representations of the entire
sentence, we concatenate representations of [CLS],
e1 and e2 as the context representation regarding
to the event pair (e1, e2), namely

F
(e1,e2)
C = h[CLS] ⊕ he1 ⊕ he2 , (1)

2Note that the encoder is not our focus in this paper. In
fact, other models like convolutional neural networks and long
short-term memory networks can also be as encoders.



where ⊕ indicates the concatenation operation.
h[CLS] ∈ Rd, he1 ∈ Rd and he2 ∈ Rd are rep-
resentations of [CLS], e1 and e2, respectively. d is
the output hidden size of BERT model.

3.2 Descriptive Graph Induction
3.2.1 Knowledge Obtaining
Given e1 and e2, we adopt a hybrid method of re-
trieval and generation to obtain their descriptive
knowledge, respectively. The descriptive knowl-
edge forms a sub-graph which is called Descriptive
Graph (denoted as Gd). For this paper, we prefer
CONCEPTNET (Speer et al., 2017) as the external
KB, which contains abundant semantic knowledge
of concepts. We take e1 as an example to illustrate
the knowledge obtaining procedure:

(1) If the descriptive knowledge can be retrieved
from the KB, we adopt the retrieval method. Our
method first grounds e1 to a concept via match-
ing the event mention with the tokens of concepts
in CONCEPTNET. We enhance the matching ap-
proach with some rules, such as soft matching with
lemmatization and filtering of stop words. The
grounded concept is called zero-hop concept. Then,
our method grows zero-hop concept with one-hop
concepts. The zero-hop concept, one-hop concepts
and all relations between them form the descriptive
graph for e1 (denoted as Gd1).

(2) If the descriptive knowledge cannot be re-
trieved from the KB, we adopt the generation
method. Our method employs the pre-trained
model, COMET (Bosselut et al., 2019), which is
originally proposed for the knowledge base com-
pletion. Specifically, COMET is obtained by fine-
tuning GPT (Radford et al., 2018) on CONCEPT-
NET. The input of COMET is the head event and
candidate relation, and the output is the tail event.
The relation types are the same as the ones used in
Bosselut et al. (2019). By leveraging COMET, we
can generate the descriptive graph Gd1 for e1.

In the same way, we can also construct the de-
scriptive graph Gd2 for e2.

3.2.2 Knowledge Encoding
Graph neural networks have been widely used to en-
code graph-structured data (Lin et al., 2019; Yang
et al., 2019), as they are able to effectively col-
lect relevant evidence based on an information ag-
gregation scheme. In addition, many works show
that relational graph convolutional networks (R-
GCNs) (Schlichtkrull et al., 2018) usually over-
parameterize the model and cannot effectively uti-

lize multi-hop relational information (Zhang et al.,
2018; Lin et al., 2019). We thus apply GCNs (Kipf
and Welling, 2017) to encode the related descrip-
tive knowledge of e1 and e2.

Formally, given a descriptive graph Gd (i.e., Gd1

or Gd2) with nd nodes (i.e., concepts), which can
be represented with an nd × nd adjacency matrix
Ad. If there is a connection between node i and
node j, the Ad

ij is set to 1. For the node i at the l-th
layer, the convolution computation can be defined
as follows:

u
(l)
i = ρ(

nd∑
j=1

Ad
ijW

(l)
u u

(l−1)
j + b(l)u ), (2)

where W (l)
u and b

(l)
u are the weight matrix and bias

vector for the l-th layer, respectively. ρ is an activa-
tion function (e.g., ReLU). u(0)

i ∈ Rd is the initial
representation of the i-th node obtained by the pre-
trained model (i.e., BERT). To consider context
information when encoding descriptive knowledge,
we use the he1 and he2 obtained in Section 3.1 as
the initial representations of events.

After the knowledge encoding, the representa-
tions of e1 and e2 in descriptive graphs are denoted
as ue1 and ue2 , respectively. We concatenate them
as the descriptive knowledge representation:

F
(e1,e2)
D = ue1 ⊕ ue2 . (3)

3.3 Relational Graph Induction

3.3.1 Multi-Hop Path Obtaining
Given e1 and e2, our model first retrieves the multi-
hop path between the two events from CONCEPT-
NET. We refer to the multi-hop path as Relational
Path. Since shorter connections between two con-
cepts could mean stronger relevance (Lin et al.,
2019), our model exploits the shortest path between
the two events as the relational path. We represent
the CONCEPTNET as a graph, and then use Net-
workX toolkit3 to get the shortest path between
the two events. When there are multiple shortest
paths, we randomly select one path for avoiding
information redundancy.

3.3.2 Structure Induction
To capture potentially useful information and re-
duce the impact of irrelevant knowledge on the re-
lational path, our model treats the reasoning struc-
ture as a latent variable and induces it with the

3https://networkx.org

https://networkx.org


input of the relational path, which can be shown
in Figure 2. We call the induced reasoning struc-
ture as Relational Graph (denoted as Gr). The
structure induction module is built based on the
structured attention (Kim et al., 2017). We use a
variant of Kirchhoff’s Matrix-Tree Theorem (Koo
et al., 2007; Nan et al., 2020) to learn the graph
structure.

Formally, the nodes of relational graph are the
concepts on the relational path. The initialized
representation of each node is obtained via the pre-
trained model (i.e., BERT). The representation of
the i-th node is denoted as mi ∈ Rd. We first cal-
culate the pair-wise unnormalized attention score
sij between the i-th node and the j-th node:

sij = (tanh(Wpmi))
TWb(tanh(Wcmj)), (4)

where Wp and Wc are weights matrixes. Wb are
the weights for the bilinear transformation. Next,
we compute the root score sri which represents the
unnormalized probability of the i-th node to be
selected as the root node of the structure:

sri = Wrmi, (5)

where Wr ∈ R1×d is the weight for linear transfor-
mation. Suppose the graph Gr has nr nodes, we
first assign non-negative weights P ∈ Rnr×nr to
the edges of the induced relational graph:

Pij =

{
0, if i = j

exp(sij), otherwise,
(6)

where Pij is the weight of the edge between the
i-th and the j-th node. Then, following Koo
et al. (2007), we define the Laplacian matrix
L ∈ Rnr×nr of Gr, and its variant L̂ ∈ Rnr×nr ,
respectively:

Lij =

{∑nr
k=1Pkj , if i = j

−Pij , otherwise,
(7)

L̂ij =

{
exp(sri ), if i = 1

Lij , otherwise.
(8)

We use Ar
ij to denote the marginal probability of

the edge between the i-th node and the j-th node,
which can be computed as follows:

Ar
ij = (1− δ1,j)Pij [L̂

−1]ij

− (1− δi,1)Pij [L̂
−1]ji,

(9)

where δ is the Kronecker delta (Koo et al., 2007)
and ·−1 denotes matrix inversion. Ar can be re-
garded as a weighted adjacency matrix of the graph
Gr. Finally, Ar is fed into the iterative refinement
for event causality reasoning.

3.3.3 Iterative Refinement
After obtaining the relational graph structure, we
perform event causality reasoning on the induced
structure. To better capture potential reasoning
clues, we adopt the densely connected graph con-
volutional networks (DCGCNs) (Guo et al., 2019),
which allows training a deeper reasoning model.
The convolution computation of each layer is:

v
(l)
i = ρ(

nr∑
j=1

Ar
ijW

(l)
v g

(l)
j + b(l)v ), (10)

where g
(l)
j is the concatenation of the initial node

representation and the node representations pro-
duced in layers 1, . . . , l − 1, namely g

(l)
j = mj ⊕

v
(1)
j ⊕ · · · ⊕ v

(l−1)
j .

The induced structure at once is relatively shal-
low (Liu et al., 2019; Nan et al., 2020) and may
not be optimal for causality reasoning. Therefore,
we iteratively refine the induced structure to learn
a more informative structure. We stack N blocks
(each block is structure induction and DCGCNs
reasoning) of this module to induce the structure
N times. Intuitively, as the structure gets more
refined, the structure is more reasonable.

After the iterative refinement, the representa-
tions of e1 and e2 are denoted as ve1 and ve2 , re-
spectively. We concatenate them as the relational
knowledge representation:

F
(e1,e2)
R = ve1 ⊕ ve2 . (11)

3.4 Model Prediction and Training
We concatenate the context representation, descrip-
tive knowledge representation and relational knowl-
edge representation as the final representation:

Fe1,e2 = F
(e1,e2)
C ⊕ F

(e1,e2)
D ⊕ F

(e1,e2)
R . (12)

To make the final prediction, we perform a binary
classification by taking Fe1,e2 as input:

pe1,e2 = softmax(WsFe1,e2 + bs). (13)

For training, we adopt cross entropy as the loss
function:

J(Θ) = −
∑
s∈D

∑
ei,ej∈Es

ei 6=ej

yei,ej log(pei,ej ),
(14)



where Θ denotes the model parameters. s denotes
a sentence in the training set D. Es is the set of
events in sentence s. yei,ej is a one-hot vector
representing the gold label between ei and ej .

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our proposed method on two widely
used datasets, including EventStoryLine (Caselli
and Vossen, 2017) and Causal-TimeBank (Mirza
et al., 2014). For EventStoryLine, the dataset con-
tains 258 documents, 5,334 events in total, and
1,770 of 7,805 event pairs are causally related. For
Causal-TimeBank, the dataset contains 184 docu-
ments, 6,813 events, and 318 of 7,608 event pairs
are causally related. We conduct the 5-fold and 10-
fold cross-validation on the EventStoryLine dataset
and Causal-TimeBank dataset respectively, same
as previous methods to ensure fairness. Following
previous works (Choubey and Huang, 2017; Gao
et al., 2019), we adopt Precision (P), Recall (R) and
F1-score (F1) as evaluation metrics.

4.2 Parameter Settings

In our implementations, our method uses the Hug-
gingFace’s Transformers library4 to implement the
uncased BERT base model, which has 12-layers,
768-hidden, and 12-heads. The learning rate is ini-
tialized as 2e-5 with a linear decay. We use the
Adam algorithm (Kingma and Ba, 2015) to opti-
mize model parameters. The batch size is set to 20.
The number of induction blocks (i.e., N ) is set to
2. The dropout of GCN is set to 0.3. Due to the
sparseness of positive examples, we adopt a neg-
ative sampling strategy for training. The negative
sampling rate is 0.6 and 0.7 for the EventStoryLine
and Causal-TimeBank, respectively. We utilize
CONCEPTNET 5.0 as the external knowledge base.

4.3 Baselines

We compare the proposed approach LSIN with pre-
vious state-of-the-art methods:

Feature-based methods: (1) Mirza and Tonelli
(2014), which proposes a data driven method with
causal signals for the task; (2) Mirza (2014), which
employs a verb rule based model with data filter-
ing and causal signals enhancement; (3) Choubey
and Huang (2017), which proposes a sequence
model exploring complex handcrafted features for

4https://github.com/huggingface/
transformers

Methods P(%) R(%) F1(%)

BERT 36.9 56.0 44.5

Cheng and Miyao (2017) 34.0 41.5 37.4
Choubey and Huang (2017) 32.7 44.9 37.8
Gao et al. (2019) 37.4 55.8 44.7
KnowDis (Zuo et al., 2020) 39.7 66.5 49.7
KMMG (Liu et al., 2020) 41.9 62.5 50.1

LSIN (Ours) 47.9 58.1 52.5∗

Table 1: Experimental results on the EventStoryLine
dataset. Bold denotes best results. * denotes a signifi-
cance test with p=0.05.

Methods P(%) R(%) F1(%)

BERT 38.8 44.1 41.3

Mirza and Tonelli (2014) 67.3 22.6 33.9
Mirza (2014) 69.0 31.5 43.2
KMMG (Liu et al., 2020) 36.6 55.6 44.1
KnowDis (Zuo et al., 2020) 42.3 60.5 49.8

LSIN (Ours) 51.5 56.2 53.7∗

Table 2: Experimental results on the Causal-TimeBank
dataset. Bold denotes best results. * denotes a signifi-
cance test with p=0.05.

the task; (4) Gao et al. (2019), which utilizes a
logistic regression classifier with the integer linear
programming to model causal structure for the task.

Neural network-based methods: (1) Cheng
and Miyao (2017), which proposes a dependency
path based bidirectional long short-term memory
network (BiLSTM) that models the context be-
tween two event mentions for causal relation iden-
tification; (2) KMMG (Liu et al., 2020), which pro-
poses a mention masking generalization method
and also utilizes the external knowledge; (3)
KnowDis (Zuo et al., 2020), which proposes a
knowledge enhanced distant data augmentation
method to alleviate data lacking problem.

4.4 Overall Results

Since some baselines are evaluated either on the
EventStoryLine dataset or the Causal-TimeBank
dataset, the baselines used for the two datasets are
different. Table 1 and Table 2 show the results on
the EventStoryLine and Causal-TimeBank, respec-
tively. From the tables, we can observe that:

(1) Our method outperforms all the baselines
by a large margin on the two datasets. For ex-
ample, compared with the state-of-the-art model
KnowDis (Zuo et al., 2020), our method LSIN

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Methods P(%) R(%) F1(%)

BERT 36.9 56.0 44.5
BERT+DK 41.8 51.9 46.3
BERT+RK 46.1 55.4 50.3
BERT+DK+RK 47.9 58.1 52.5

Table 3: Experimental results by using different kinds
of knowledge on the EventStoryLine dataset. “DK”
and “RK” refer to “descriptive knowledge” and “rela-
tional knowledge”, respectively.

achieves 2.8% and 3.9% improvements of F1-score
on the EventStoryLine and Causal-TimeBank, re-
spectively. It indicates that our proposed method is
very effective for this task.

(2) Compared with the state-of-the-art model
KMMG (Liu et al., 2020), our method achieves
6.0% improvements in terms of Precision score on
the EventStoryLine. The reason may be that our
method utilizes the relational knowledge between
events for causality reasoning, which can improve
the confidence of event causality prediction.

(3) Our method improves upon the BERT model
by 8.0% and 12.4% in terms of F1-score on the
two datasets, respectively. This suggests that only
using the annotated training data is not enough to
tackle the task. Moreover, it also indicates that our
method is able to effectively leverage the external
structural knowledge for ECI task.

(4) The BERT model achieves comparable per-
formance with complex feature-based methods
such as Gao et al. (2019) on the EventStoryLine
dataset, which indicates that the BERT is able to
extract useful text features for the task.

4.5 Effectiveness of External Structural
Knowledge

We validate the effectiveness of external structural
knowledge for this task. Based on the BERT model,
we leverage the descriptive knowledge via descrip-
tive graph induction module, and the relational
knowledge via relational graph induction module.
The results are shown in Table 3. We have two
important observations:

(1) Based on the BERT model, incorporating
these two kinds of knowledge can both improve per-
formance. Moreover, simultaneously using these
two kinds of knowledge can further improve the
performance. It indicates that the external struc-
tural knowledge is very effective for this task.

(2) The performance improvement of using the

Methods P(%) R(%) F1(%)

Liu et al. (2020) 44.5 39.3 41.8
DGI-Retrieval 40.0 46.1 42.8
DGI-Generation 39.3 51.3 44.5
DGI-Hybrid 41.8 51.9 46.3

Table 4: Comparison between the different methods for
using the descriptive knowledge on the EventStoryLine
dataset. “DGI” refer to “descriptive graph induction”.

relational knowledge is more obvious than that of
using the descriptive knowledge, achieving 4.0%
improvements in terms of F1-score. We guess that
the relational knowledge can provide more clues
for event causality reasoning.

4.6 Effectiveness of Descriptive Graph
Induction

To verify the effectiveness of descriptive graph
induction module, we compare our method with
the state-of-the-art model (Liu et al., 2020). Liu
et al. (2020) first retrieve the descriptive knowl-
edge, and then transfer the knowledge into a se-
quence. Finally, they adopt the BERT to encode
the knowledge. The results are listed in Table 4.
In the table, “DGI-Retrieval”, “DGI-Generation”
and “DGI-Hybrid” denote obtaining the descrip-
tive knowledge via retrieval, generation and hybrid
method, respectively. Overall, we can observe that:

(1) The DGI-Hybrid model significantly outper-
forms Liu et al. (2020), achieving 4.5% improve-
ments of F1-score. Moreover, even if we use the
same retrieval method as Liu et al. (2020), our
model still achieves better result. It indicates the
descriptive graph induction module can better take
advantage of the descriptive knowledge.

(2) Compared with Liu et al. (2020), the DGI-
Hybrid model achieves great improvements in
terms of Recall score (i.e., improving 12.6%). The
reason is that our method can automatically gener-
ate the descriptive knowledge, when the knowledge
cannot be retrieved from the KB.

4.7 Effectiveness of Relational Graph
Induction

To validate the effectiveness of the relational graph
induction module, we compare our method with
other three baselines. The three baselines are illus-
trated as follows:

(1) LSTM-based Reasoning, which regards the
relational path as a sequence and employs LSTM



Methods P(%) R(%) F1(%)

LSTM-based 43.0 54.5 48.1
Fixed Graph-based 43.1 56.5 48.9
Attention-based 46.3 55.0 50.3

LSIN (Ours) 47.9 58.1 52.5

Table 5: Comparison between the different methods for
leveraging the relational knowledge on the EventStory-
Line dataset.

Figure 3: F1-score for different number of refinements
(i.e., N ) on the EventStoryLine dataset and Causal-
TimeBank dataset, respectively. The number of refine-
ments is ranging from 1 to 5.

to encode it; (2) Fixed Graph-based Reasoning,
which regards the relational path as a graph. Its
nodes are concepts on the path and edges only exist
between adjacent concepts; (3) Attention-based
Reasoning, which uses the self-attention to encode
the relational path for modeling the dependencies
between arbitrary two concepts.

The results are shown in Table 5. From the re-
sults, we can observe that:

(1) Our method LSIN outperforms the three
methods by a large margin. For example, com-
pared with LSTM-based reasoning method, our
method achieves 4.4% improvements of F1-score.
This empirically confirms using induced relational
graph structure is more effective than directly using
the relational path for causality reasoning.

(2) Compared with Fixed Graph-based reasoning
method, our method achieves 3.6% improvements
of F1-score. It indicates that our method is able to
effectively capture the potentially useful informa-
tion and reduce the impact of irrelevant knowledge
on the relational path.

Examples BERT LSIN

a) Indonesia earthquake: over 200
injured in Aceh province . . .

7 3

b) The fights erupted in Flatbush, and
46 were arrested at Wednesday . . .

7 3

Table 6: Results of case study where bold denotes the
two event pair. 3 and 7 denote a correct and incorrect
prediction, respectively.

4.8 Impact of the Number of Refinements

We investigate the effect of the refinement on the
overall performance. We plot the overall F1-score
varying with the number of refinements in Figure
3. From the figure, we can observe that:

(1) Our method LSIN yields the best perfor-
mance in the second refinement. Compared with
the first induction, the second refinement achieves
1.1% improvements of F1-score on the EventSto-
ryLine dataset. This indicates that the proposed
LSIN is able to induce more reasonable reasoning
structures by iterative refinement.

(2) When the number of refinements is too large,
the performance on the two datasets stops increas-
ing or even decreases due to over-fitting.

4.9 Case Study

We conduct case study to further verify the effec-
tiveness of our method. Table 6 shows several
cases showing the outputs of BERT and our method
LSIN. From the results, we can observe that the
BERT model cannot handle the cases where there is
no causal clue. By contrast, our method can make
correct predictions by leveraging the external struc-
tural knowledge. For the second example in Table
6, although the text has no clue indicating the exis-
tence of causality between “fights” and “arrested”,
there is the relational knowledge between the two
events in the KB, namely “fight” HasSubevent−−−−−−−−→ “hurt
someone else” HasSubevent−−−−−−−−→ “get arrested”. Our
method can make use of the relational knowledge to
make a correct prediction. The two examples qual-
itatively demonstrate our method can effectively
leverage the external knowledge for ECI task.

5 Conclusion

In this paper, we propose a novel latent structure
induction network (LSIN) to leverage the external
structural knowledge for ECI task. To make use
of the descriptive knowledge, we devise a descrip-



tive graph induction module to obtain and encode
the graph-structured descriptive knowledge. To
utilize the relational knowledge, we propose a re-
lational graph induction module to induce a more
reasonable reasoning structure for causality rea-
soning. Experimental results on two widely used
datasets indicate that our approach substantially
outperforms previous state-of-the-art methods.
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