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Abstract

Recent years have witnessed various types of
generative models for natural language gener-
ation (NLG), especially RNNs or transformer
based sequence-to-sequence models, as well
as variational autoencoder (VAE) and gener-
ative adversarial network (GAN) based mod-
els. However, flow-based generative models,
which achieve strong performance in image
generation due to their invertibility and exact
density estimation properties, have been less
explored for NLG. In this paper, we propose
a flow-based language generation model by
adapting previous flow generative models to
language generation via continuous input em-
beddings, adapted affine coupling structures,
and a novel architecture for autoregressive text
generation. We also apply our framework
to Sequence-to-Sequence generation, includ-
ing text- and video-based Question Generation
(QG) and Neural Machine Translation (NMT),
and data augmentation for Question Answer-
ing (QA). We use our language flow model
to provide extra input features for QG and
NMT, which achieves improvements over the
strong QG baselines on SQuAD and TVQA
and NMT baseline on WMT16. We also aug-
ment QA data with new context by injecting
noise to the latent features of the language flow
and show this augmentation leads to a large
performance improvement from strong base-
lines on SQuAD and TVQA.1

1 Introduction

Several generative models have been proposed
for language generation, including sequence-to-
sequence models based on RNNs (Luong et al.,
2015) and transformers (Vaswani et al., 2017), as
well as variational autoencoders (VAEs) to gen-
erate diverse texts (Bowman et al., 2016; Jain

1Our code and models are available at: https://
github.com/zinengtang/ContinuousFlowNLG

et al., 2017), plus generative adversarial networks
(GANs) (Yu et al., 2017) to improve intended se-
mantic fidelity. Another line of the generative
model, normalizing flow (Rezende and Mohamed,
2015), is widely explored in computer vision and
representation learning but less explored for NLG
tasks. Flow models have been shown to be capable
of improving probability density estimation, includ-
ing variational inference (Rezende and Mohamed,
2015) and exact density estimation (Dinh et al.,
2015). Generative flow is one type of flow model
and first proposed by Dinh et al. (2015, 2017);
Kingma and Dhariwal (2018). Taking advantage
of its invertible structure, it can perform an exact
density estimation of the input distribution. Thus,
during generation, we can sample from its latent
space and then generate new examples through its
invertible decoder. Generative flow shows strong
performance on image generation, attribute manip-
ulation, and latent space inference (Kingma and
Dhariwal, 2018). Considering these successful
applications, we conjecture that the flow model
should also have strong potential to be adapted for
language generation tasks. Therefore, in this pa-
per, we introduce a continuous language generative
flow model that can deal with discrete language
data in continuous latent space. We propose two
variants, the non-autoregressive and autoregressive
models, and show that they both can perform well
on density estimation tasks.

We follow the architecture of one previous gen-
erative flow model, Glow (Kingma and Dhariwal,
2018), but make adaptions for language genera-
tion tasks. We first employ GloVe word embed-
dings (Pennington et al., 2014) to map the dis-
crete token sequence to a continuous embedding
matrix. Furthermore, we utilize two components:
time-dimension permutation and affine coupling
with RNN or Transformer non-linearity functions,
which allow interaction between words in a se-

https://github.com/zinengtang/ContinuousFlowNLG
https://github.com/zinengtang/ContinuousFlowNLG


4610

quence and better contextualizes language seman-
tics. Overall, these proposed components help gen-
erate texts in a non-autoregressive manner.

However, even though the non-autoregressive
model has attracted a lot of research attention be-
cause of its fast generation speed, it still hardly
surpasses the generation quality of autoregressive
models (Ren et al., 2020). Therefore, to make our
language flow model learn language generation in
a stronger autoregressive manner, we change the
flow model’s affine coupling and permutation to
a uni-directional structure, i.e., each timestep can
only attend to previous timesteps. In this way, we
enable our model to perform text generation autore-
gressively.

Some recent works have developed density es-
timation models targeted on character-level dis-
crete data (DiscreteFlow (Tran et al., 2019)) and
explored using the flow architecture as an extra data
encoder that provides latent features to support non-
autoregressive text generation (FlowSeq (Ma et al.,
2019)). While our work shares some similar char-
acteristics, we explore different directions: (1) Dis-
creteFlow develops a modulus calculation method
to process discrete data. Instead, we use word em-
bedding to transform the discrete input tokens to
continuous features, which is simple yet effective.
(2) FlowSeq essentially leverages the flow architec-
ture in a typical encoder-decoder model to support
non-autoregressive generation, whereas our models
follow the standard generative flow framework and
can directly generate texts via their invertible struc-
ture in both non-autoregressive or autoregressive
manner. (3) Autoregressive flows were previously
developed (Papamakarios et al., 2017; Huang et al.,
2018) for stronger density estimation ability. How-
ever, the autoregressive language flow model we
develop here aims for better text generation quality.
For this, our model is autoregressive in both the for-
ward stage (encoding an input to a latent feature )
and inverse stage (decoding the latent feature to the
input ) with an uni-directional (i.e., the left-to-right
direction) structure,

We evaluate the density estimation ability of
our language flow models as well as their effec-
tiveness for three downstream tasks: (1) sequence-
to-sequence (Seq-to-Seq) generation that includes
question generation (QG) and neural machine trans-
lation (NMT) and (2) data augmentation for Ques-
tion Answering (QA). We test QG and QA data
augmentation on two large-scale QA datasets: (a)

SQuAD (Rajpurkar et al., 2016), a widely ex-
plored textual QA and QG dataset and (b) TVQA
(Lei et al., 2018), a large-scale multimodal video-
dialogue QA task. We test machine translation on
WMT16 (Cettolo et al., 2012), a commonly used
NMT dataset.

For density estimation, we compare the negative
likelihoods of our models against a baseline LSTM
model. For QG, we use the non-autoregressive flow
model to provide extra input features for a stan-
dard encoder-decoder text generation model. We
show that it can significantly improve a baseline
QG model for both SQuAD and TVQA on both
automatic and human evaluation metrics. Aided by
our flow model, we achieve strong improvements
over a transformer baseline in the neural machine
translation experiment. In addition to improving
language generation quality, we also use the pro-
posed autoregressive flow model for data augmen-
tation. For this, we focus on generating diverse
textual contexts for QA tasks. In particular, we in-
ject noise into the latent features of our flow models
(encoded from ground-truth contexts) and then gen-
erate new contexts from the noise-injected features.
Experiments show that the generated contexts can
be either a varied expression of the same subject
or paraphrasing the original context, but, mostly
keep the answerability of the original question (see
examples in Table 3). Combined with data augmen-
tation strategies (data filtering and training schema),
we achieve statistically significant improvements
on both SQuAD and TVQA over strong baselines.

Overall, we have two contributions: (1) we
propose two continuous language generative flow
model variants that have better density estimation
abilities than an LSTM baseline model, and can
perform non-autoregressive and autoregressive gen-
eration respectively; (2) Our language flow model
largely improves QG, NMT, and data augmentation
for QA tasks.

2 Language Generative Flow

In this section, we first review the generative flow
model proposed in previous works (Dinh et al.,
2015; Kingma and Dhariwal, 2018). Then, follow-
ing it, we propose two variants of our continuous
language generative flow model.

2.1 Background: Generative Flow

Flow-based generative models transform simple
latent distributions, p(z), into a complex data dis-
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tribution (language text in our case), p(x), through
a chain of invertible transformations.

We first designate a true data distribution p(x)
and a model pθ(x) with parameters θ to parame-
terize the true distribution p(x). The latent space
inference is then defined as:

xi ∼ p(x) (1)

zi = fθ(xi) (2)

where xi is a data point from the true data distribu-
tion and zi the latent features. This encoding x to z
procedure is usually referred as the forward stage.

The transformation fθ is designed to be invertible
and bijective. In previous flow-based generative
models (Dinh et al., 2015, 2017; Kingma and Dhari-
wal, 2018), the generative process (or referred as
the inverse stage) is defined as:

zi ∼ pθ(z) (3)

xi = gθ(zi) = f−1θ (zi) (4)

where zi is a sample from the latent space distribu-
tion, such as a standard Gaussian distribution.

The flow mapping fθ is composed of a chain of
transformations: f = f1 ◦ f2 ◦ · · · ◦ fK with each
representing one flow step. Then, the log-likelihood
can be written as:

log pθ(x) = log pθ(z) +

K∑
j=1

log

∣∣∣∣det( dhj

dhj−1

)∣∣∣∣
(5)

where hj is the output of each flow step. The
value log |det(dhj/dhj−1)| is namely the log-
determinant: the log of the absolute value of the
determinant of the Jacobian matrix (dhj/dhj−1).
This value is the change in log-density from hj−1
to hj under transformation fj . This equation is
namely the change of variable formula.

The objective for density estimation is formu-
lated as:

L(D) = 1

N

N∑
i=1

− log pθ (x̃i)−M log d (6)

x̃i = xi + u (7)

where u is usually sampled from a Gaussian distri-
bution, N the number of samples in a batch, and d
(= 128) the discretization level of the data and M
the dimension of xi.2

2The change of variable formula, Eq.5, treats the data
space as unbounded. However, the data we use is usually
within range -1.0 to 1.0 and parameter d (the discretization)
can reduce the impact of boundary effects according to Dinh
et al. (2017).

Figure 1: Affine Coupling illustration. The inputs z0
is split into two halves into z1 and z2 along hidden di-
mension and obtain the outputs ẑ1 and ẑ2 which will
be concatenated. And it is similar for the reverse stage.
Note that the × operation is element-wise product.

Each flow step in the generative flow model in-
cludes three parts: Normalization, Permutation,
and Affine coupling.
(1) Normalization is designed to scale each output
to stabilize training. We follow Glow (Kingma and
Dhariwal, 2018) to use actnorm.
(2) Permutation makes sure after multiple flow
steps, each channel can sufficiently affect other
dimensions. The Glow model (Kingma and Dhari-
wal, 2018) proposes to use a (trainable) invertible
1 × 1 convolution. It is essentially a flexible gen-
eralization of a permutation operation. We follow
Glow and also use its LU decomposition to reduce
determinant computation cost. Different from all
previous work, we apply 1× 1 convolution on the
time dimension rather than the hidden dimension.
This is because language data is sequential and
temporal. This change is crucial to the proposed
flow model’s performance, which will be shown in
ablation studies (Table 4).
(3) Affine coupling is designed to incorporate com-
plex nonlinear mapping but still keep invertibility
(see Figure 1).

z1, z2 = Split(z0, dim : time) (8)

s, t = Split(NN(z1),dim : hidden) (9)

ẑ2 = σ(s+ α)� (t+ z2) (10)

where NN refers to nonlinear function, σ is sig-
moid activation. α is a hyperparameter that pre-
vents small value (around 0) from resulting in large
negative value by log. Note that, in the first equa-
tion, Glow (Kingma and Dhariwal, 2018) splits
along the hidden dimension. However, we split
along time dimension (first introduced in FlowSeq
(Ma et al., 2019)) which has the same motivation
as the permutation module.
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Figure 2: Non-autoregressive Language Flow model
with Multi-Scale architecture.

2.2 Non-Autoregressive Language Flow

We first present our non-autoregressive language
flow which is based on the architecture introduced
above. Besides the permutation/affine coupling
structures changes introduced above, we use RNNs
or Transformer as the nonlinear mapping, propose
to use continuous input embedding, and introduce
multi-scale architecture.

Affine Coupling. We use a multihead self-
attention module in transformer (Vaswani et al.,
2017) or alternatively RNNs (a one-layer bidirec-
tional LSTM (Schuster and Paliwal, 1997)) in the
coupling layer by replacing the non-linear mapping
of affine coupling, NN (see Eq.9).

Continuous Input Embedding. The language
flow model we propose operates on continuous
inputs, which means the inputs are not discrete
tokens but continuous word embeddings. We im-
plement it through GloVe embeddings (Pennington
et al., 2014). Therefore, the density estimation is
performed for the distribution p(x), where x is the
word embeddings of language tokens. Note that
the word embeddings are frozen. In the inverse
stage, we compute the cosine similarity between
the embedding matrix and decoder output as the
token generation probability distribution, so that
all tokens can be generated in parallel, i.e., non-
autoregressively.

Multi-Scale Architecture. Following Dinh et al.
(2017), we use a multi-scale architecture (see Fig-
ure 2) that contains multiple blocks while each
block containing several flow steps. In our work,
we denote the number of flow steps as K, and the
number of blocks as L that each contains K flow
steps. We denote the input shape as (batch size b, se-
quence length s, hidden dimension h). At the start
of each block, the tensor is reshaped from (b, s, h)
to (b, s2 , 2h), so the model can capture more local
features; and at the end of each block (except the

Normalization

AC-Cell AC-Cell AC-Cell
NN

.... ....

.... ....

Uni-directional Permutation

AC-Cell

Figure 3: Autoregressive Language Generative Flow
model. The whole autoregressive flow model contains
multiple K steps. This figure illustrates one flow step
from zk to zk+1.

last block), the latent feature is split into halves via
channel dimension with one as the output, zl, and
the other as the input of the next block. If we have
3 blocks, we will have three latent outputs, zl. Past
works (Dinh et al., 2017; Kingma and Dhariwal,
2018; Ma et al., 2019) reshape in this manner for
all blocks. However, we do not reshape in the first
block but apply the same for the following blocks,
which allows the model to better process the origi-
nal input text with intact sentence structure.

2.3 Autoregressive Language Flow

The model we developed in the previous subsection
can properly operate on continuous word embed-
dings, have exact density estimation, and perform
non-autoregressive generation, however, it lacks
the autoregressive structure that is commonly used
for text generation. Previous works have shown
autoregressive generation usually performs bet-
ter than non-autoregressive generation (Ren et al.,
2020). Thus, we develop an autoregressive model
that can generate text from left to right in the in-
verse stage. To achieve this, we change affine cou-
pling and permutation in the flow step to be uni-
directional, i.e., each timestep can only attend to
timesteps that precede it. However, we have to
remove the multi-scale architecture to fulfill the
autoregressive requirement. See sample outputs
in Table 1 for comparison to those from the non-
autoregressive model.

Uni-directional Permutation. Since the permu-
tation in each flow step designed in our non-
autoregressive flow model is bidirectional, we mask
the 1× 1 convolution to a lower triangular matrix.
Therefore, each token can only attend to previous
tokens in the permutation, i.e., uni-directional per-
mutation.
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Non-Autoregressive Samples Autoregressive Samples

what does house way when when that little he when the even? what does wilson probably do after drawing?
what did richard know when he she else there the what did jamie want after charlie forget her immediately
what does nelson going when he she when he what that to? what is brian aware
what did richard know when he she else there the what did caleb say after he went out?
what does nelson going when he she when he what that to? what does phoebe think?

Table 1: Data samples generated by our flow models. We sample from a Gaussian distribution and generate
questions by our non-autoregressive or autoregressive flow decoders. Models are trained on TVQA questions.

Figure 4: The two figures illustrate the ha and hb func-
tions of the autoregressive affine coupling in one flow
step.

Uni-directional Affine Coupling. We then in-
troduce an autoregressive version of affine cou-
pling, shown by the AC-cell in Figure 3. For
each flow step, we denote the input sequence as
ẑ
(0):(T )
k+1 = [ẑ

(0)
k+1, ..., ẑ

(T )
k+1], and then the autore-

gressive coupling is defined as:

r(t−1) = NN([c(t−1); z
(t−1)
k+1 ]) (11)

c(t) = ha(r
(t−1), ẑ

(t)
k+1) (12)

z
(t)
k+1 = hb(r

(t−1), c(t)) (13)

We recurrently obtain the outputs, [z(1)k+1, ..., z
(T )
k+1].

Note that z(0)k+1 = ẑ
(0)
k+1, so the computation starts

from z
(1)
k+1. When computing z

(1)
k+1, we cannot get

c(0), so we set it to be zero. ha and ha are both
affine coupling structured, as shown in Figure 4.
NN is either RNN or transformer.

In the inverse stage, to obtain ẑk+1 , we start
from ẑ

(0)
k+1 = z

(0)
k+1 and c(0):

r(t−1) = NN([c(t−1); ẑ
(t−1)
k+1 ]) (14)

c(t) = h−1b (r(t−1), z
(t)
k+1) (15)

ẑ
(t)
k+1 = h−1a (r(t−1), c(t)) (16)

Since both decoded tokens z(t) and context c(t)

only depend on previous tokens z(0):(t−1), we can
perform autoregressive decoding and beam search

with cosine similarity as the probability distribution
of output tokens.

Autoregressive Flow Step. The changes of affine
coupling and permutation to uni-directional allow
the flow step to be autoregressive. And the whole
autoregressive flow model will contain K such flow
steps. At each flow step, the log-determinant is the
summation of the log-determinant of all time steps:

log p(zk+1) =
∑
t

log p(z
(t)
k+1) (17)

=
∑
t

log p(z
(t)
k ) + log

∣∣∣∣∣det
(
dz

(t)
k+1

dz
(t)
k

)∣∣∣∣∣ (18)

3 Language Generation with Flow

We next apply our flow model to several down-
stream tasks. Despite the flow’s rigid model struc-
ture, it has a strong potential in density estimation
due to its complex transformation of inputs into a
continuous latent space. We aim to use this prop-
erty to improve standard encoder-decoder text gen-
eration models. Moreover, as the flow model has a
strong ability in generating diverse text, we show
that it has the capability for data augmentation to
improve QA tasks.

3.1 Downstream Datasets

SQuAD. SQuAD is a textual question answer-
ing dataset containing 100,000+ questions/answers
with corresponding short articles as context. We
use it to evaluate both question generation and data
augmentation (by generating new articles) for ques-
tion answering.

TVQA. TVQA is a large-scale video QA dataset
based on 6 TV shows. It consists of 152,545 QA
pairs from 21,793 video clips with subtitle text.
We use it to evaluate both question generation and
data augmentation (by generating new subtitles) for
question answering.
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Sample Ratio Sample Pair 1 Sample Pair 2

Sentence1 where did sheldon and beverley go after they came up stairs? what did rachel do before chandler said something wasn’t true?

0.6 where did sheldon and joey go after they came up? what did rachel do before chandler said something wasn’t out?
0.5 where was rachel when joey said after , guys around huh? what did house do before chandler when she was walking out?
0.4 where was rachel when joey said no guys around huh? what did house do to chandler when she was walking out?

Sentence2 where was rachel when joey said, no guys around, huh? what did house say to sam when she was walking out the door?

Table 2: Interpolation results. We sample two pairs of questions from TVQA. For each pair, we perform interpola-
tion of their latent vectors learned by our autoregressive flow model with different mix ratios (0.4, 0.5, 0.6)

WMT16 (RO-EN). WMT16 (RO-EN) is a ma-
chine translation dataset between English and Ro-
manian with around 610k sentence pairs. We use
it for our machine translation experiment and only
test for the Romanian to English direction.

3.2 Seq-to-Seq Generation with Flow

Similar to FlowSeq (Ma et al., 2019), we use flow
as an extra module on top of a typical encoder-
decoder language generation model and test on
Question Generation (QG) and neural machine
translation (NMT). As the flow model has the abil-
ity for exact density estimation, it provides the ex-
act density components of context information and
we assume that it provides a better hidden represen-
tation of context and thus helps with language gen-
eration. It can also be viewed as a self-supervised
learning method that can provide new features for
downstream tasks.

Concretely, while the original QG model3 is for-
mulated as ui = E(xi), q̂i = G(ui); the new QG
model with flow is formulated as:

ui = E(xi), q̂i = G(hatt(ui, zi)) (19)

where E refers to encoder and G decoder. zi refers
to latent features of the non-autoregressive flow
model. hatt is essentially a MLP with sigmoid
activation.

The loss function has two parts:

Lgen =
1

N

N∑
i=1

− log p(qi) (20)

L = λLnll + Lgen (21)

where qi represents the target questions and λ is a
hyperparameter for NLL loss (Eq. 6)

3We replicate Zhang and Bansal (2019)’s standard encoder-
decoder attention QG model with BERT features as input
embeddings.

3.3 Context Generation for Data
Augmentation

Context Generation. We propose to use flow to
generate diverse contexts for data augmentation as
both TVQA and SQuAd are question answering
tasks with textual context. We generate new context
(video subtitles for TVQA; articles for SQuAD) by
injecting noise to the hidden vector of the original
context, zi, and reconstructing it to new sentences,
x̂i. Note that, we can also do the same thing for
questions, however, we find that changing one word
in the question will dramatically change its mean-
ing, so we limit this augmentation to the context
and keep the original question unchanged.

The generation process is formulated as:

zi = fθ(xi) (22)

x̂i = f−1θ (zi + z0) (23)

where fθ refers to the flow model and xi the input
text and zi the latent space. The transformation is
performed by simply sampling a Gaussian noise
z0, add it to zi, and reconstruct the new context x̂i

in the reverse stage. In this task, we use the autore-
gressive flow model as this variant is designed for
text generation. We also use the non-autoregressive
flow model additionally leveraged by an additional
autoregressive decoder, as an alternative approach.

While the standard RNN-based language model
does not have an explicit global sentence repre-
sentation, our flow model is similar to Bowman
et al. (2016)’s VAE framework that encodes the
sentence into a continuous hidden vector, p(z|x).
And sampling around the hidden vector can natu-
rally be viewed as injecting noise without changing
key information. Therefore, we do not aim for
paraphrasing the original context because the flow
model can reconstruct different information from
random noise injection in latent space. Notably,
this method has the risk of changing the context’s
meaning and making the question unanswerable,
however, empirically, we find that as long as we
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Original Generated
TVQA Generated Subtitle Example 1: varied expression of the subject.

A: boy do i feel bad! oh yeah. very bad. B: oh my god ! why are you doing this again ?
B: chandler what are you doing? chandler! oh my god! A: i don’t feel bad .
B: you’re smoking again? B: why are you still smoking again?
A: well actually yesterday i was smoking again. today i’m
smoking still.

A: i was just smoking again after i first started smoking again.

SQuAD Generated Article Example 1: paraphrasing.

while a computer may be viewed as running one gigantic
program stored in its main memory, in some systems it is
necessary to give the appearance of running several programs
simultaneously. this is achieved by multitasking i.e. having
the computer switch rapidly between running each program
in turn.

the main memory of the gigantic computer is running the
gigantic computer program. in some systems, it is necessary
to have the computer switch rapidly between each program
achieved by multitasking.

Table 3: Sample context generation results: we show two examples that are filtered as positive. Via a long and
a short TVQA example, we show that our model is not entirely paraphrasing the original dialogue but changing
content while keeping the central theme unchanged; via a SQuAD example, we show that our model can paraphrase
complex semantics.

keep the noise small enough, the generation will be
either paraphrases or different expressions of the
same subject without affecting the answerability.

Data Filtering. To better utilize the generated
data, we design a data filter as filtering out the low-
quality generated text is useful in helping improve
the data augmentation (Zhang and Bansal, 2019).
We use pretrained QA baseline models (see Table 8
Baseline TVQA+ and Table 9 Baseline BERT) to
filter out the low-quality context. The generated
context will be filtered out if the model performs
worse on predicting correct answers when original
context is replaced by its generated counterpart.

4 Experimental Setup

We follow Zhang and Bansal (2019) to split the
development set of SQuADv1.1 (Rajpurkar et al.,
2016) into two halves and show the result on the
test split. We generally follow previous work on
evaluation metrics. For density estimation, we use
negative log-likelihood (NLL) for comparison and
bits per dimension to regularize the negative log-
likelihood loss, formulated as L

M log(2) , where M
represents the dimension of input. We evaluate QG
by BLEU4 (Papineni et al., 2002), Meteor (Lavie
and Agarwal, 2007), Rouge-L (Lin, 2004), and
Amazon MTurk human evaluation. We use the
BLEU score to evaluate NMT. We use accuracy
to evaluate the TVQA QA model and EM (exact
match) and F1 score to evaluate the SQuAD QA
model.

We replicate Zhang and Bansal (2019)’s base-
line QG model. We use the STAGE model with

Model TVQA Subtitle SQuAD Article

Bi-LSTM -7.31 -1.27

Att-C 0.68 -2.01
RNN-C 0.50 -0.37

Att-S -8.02 -17.12
RNN-S -8.35 -17.17

Att-AR -9.62 -17.12
RNN-AR -9.63 -17.26

Table 4: The NLL results of flow models and an LSTM
baseline on the validation split of TVQA subtitles and
test split of SQuAD articles. The difference between
C (e.g., Att-C) and S (e.g., Att-S) is whether the affine
coupling/permutation is based on channel-dim (C) or
time-dim (S). AR means autoregressive architecture.
Att- refers to transformer nonlinear mapping, and RNN-
refers to RNN nonlinear mapping.

GloVe embeddings developed by Lei et al. (2020)
as the TVQA QA baseline and use BERT as the
SQuAD QA baseline. See appendix A for more
experiment/reproducibility details.

5 Results

5.1 Negative Log-Likelihood Results

First of all, to evaluate the density estimation abil-
ity, we compare the negative log-likelihood (NLL,
Eq.6)4 of our different flow models on the con-
text data of SQuAD and TVQA against a base-
line model (a 3-layer bidirectional LSTM-RNN
model with hidden size 300). As shown in Table 4,
the flow model of time-dim coupling/permutation

4Note that since our p(x) is over continuous word embed-
dings, so it is the probability density of a continuous variable
which is not bounded by [0,1].
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generally outperforms the baseline LSTM model.
The flow model of time-dim coupling/permutation
largely outperforms the flow model of channel-
dim coupling/permutation. We also test our au-
toregressive model to check its density estimation
ability, and we find it performs well and even some-
times slightly better than the non-autoregressive
model. Note that we do not claim the autore-
gressive model is better at density estimation than
the non-autoregressive version, instead, we aim
to show that it can perform reasonably with the
proposed autoregressive adaptation.

5.2 Seq-to-Seq Generation Results

Question Generation. Through the ablation
studies shown in Table 5 and Table 6, we demon-
strate that the proposed flow-aided QG model sig-
nificantly improves the QG performance. The sta-
tistical significances for all metric improvements
(BLEU4, Rouge-L, Meteor) are p < 0.001 for both
TVQA QG and SQuAD QG.5 We also conduct a
human evaluation. We random sample 200 exam-
ples6, and we present the participants two questions
per example generated by two different models and
let them judge which question is better in terms of
answerability and overall quality. See more human
evaluation details in Appendix A.3. We compare
our flow model to the pure encoder-decoder base-
line as well as the FlowSeq model (Ma et al., 2019)
in human evaluation. As shown in the last rows in
Table 5 and Table 6, humans favor our model more
than the baseline in both tasks, which indicates our
flow model indeed provides useful latent features
for better generation. Plus, our model also always
outperforms FlowSeq. We conjecture that it is be-
cause FlowSeq is non-autoregressive whereas our
QG model is autoregressive.

Neural Machine Translation. We also test the
effectiveness of our approach on a neural machine
translation (NMT) task. We first replicate Lee et al.
(2018)’s transformer autoregressive model baseline,
and then we add our flow architecture on top of it.
As shown in Table 7, our proposed flow-aided MT
model can improve the machine translation perfor-
mance over the strong transformer baseline on the
WMT16 (Cettolo et al., 2012) Romanian to English
translation task. See A.7 for more details. We hope

5Statistical significance is computed using the bootstrap
test (Efron and Tibshirani, 1994).

6We exclude those examples where the two models gener-
ate identical questions.

Models BLEU4 Rouge-L Meteor

FlowSeq 12.19 41.02 18.51

QG baseline 10.68 39.58 17.38
+ Lang-Flow 12.55 41.32 18.68
+ LSTM-Flow 11.48 40.49 17.94

Models Lang-Flow Baseline Tie

Human Eval 1 89 54 57

Models Lang-Flow FlowSeq Tie

Human Eval 2 98 50 52

Table 5: TVQA-QG Evaluation: comparison between
FlowSeq (Ma et al., 2019), a BERT QG baseline, Flow
aided QG model (Lang-Flow), and simple density es-
timation model (3-layer LSTM) aided QG baseline
model (LSTM-Flow) on TVQA QG validation split.

Models BLEU4 Rouge-L Meteor

FlowSeq 14.95 44.83 19.69

QG baseline 18.08 46.68 21.86
+ Lang-Flow 19.21 47.62 22.38
+ LSTM-Flow 18.93 47.27 21.97

Models Lang-Flow Baseline Tie

Human Eval 3 76 63 61

Models Lang-Flow FlowSeq Tie

Human Eval 4 96 69 35

Table 6: SQuAD-QG Evaluation: comparison between
FlowSeq (Ma et al., 2019), a BERT QG baseline, Flow
aided QG baseline model (Lang-Flow) and simple den-
sity estimation model (3-layer LSTM) aided QG base-
line model (LSTM-Flow) on the SQuAD-QG test split.

that these promising initial NMT results will also
encourage the community to use continuous flow
models for other NMT and NLG tasks.

5.3 QA Data Augmentation Results

As shown in Table 8 and Table 9, using the aug-
mented data generated by our Language Flow
model (refers to our autoregressive language flow
model), we achieve significant performance im-
provements over strong baselines on both TVQA
QA (Lei et al., 2020) (p < 0.0001) and SQuAD
QA (Rajpurkar et al., 2016) (p < 0.0005) for both
EM and F1. Furthermore, when we add an LSTM
autoregressive decoder to our non-autoregressive
encoder (referred to as Language Flow+) and use it
to perform data augmentation, we observe even
slightly better results. This may indicate the
stronger encoding ability of our non-autoregressive
model due to its multi-scale architecture. Mean-
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Models BLEU

Transformer Baseline 30.27
+Lang-Flow 30.87

Table 7: MT results on WMT16 RO-EN dev split.

Models Valid-Accuracy

Baseline TVQA+ 69.42
+ Context (Back-Translation) 69.52
+ Context (Paraphrasing) 69.98
+ Context (Language Flow) 70.45
+ Context (Language Flow+) 70.86

Table 8: QA results on TVQA dev split. Language
Flow refers to the autoregressive language flow we pro-
pose, and Language Flow+ refers to the model with a
non-autoregressive flow model encoder plus an LSTM
autoregressive decoder.

while, we compare to two other data augmentation
techniques: paraphrasing (Niu and Bansal, 2018)
and back-translation (Sennrich et al., 2016). Note
that for a fair comparison, we apply the same data
filter and training schema for all data augmentation
methods. It can be seen that both methods perform
worse than our Language Flow or Language Flow+
models.

6 Discussion

We show some sample questions generated by our
non-autoregressive and autoregressive flow mod-
els in Table 1. The autoregressive samples are
better organized and grammatically sound, while
non-autoregressive generation fails at the latter
part of the sentence. It might because the non-
autoregressive structure has a weaker ability to
model the temporal dependency during generation,
which is consistent with the observations from pre-
vious works (Ren et al., 2020). To show that our
model generates samples from a continuous space,
we generate interpolation samples from our autore-
gressive flow model shown in Table 2. Those sam-
ples are mostly grammatically sound and correctly
reflect the intermediate content of the two interpo-
lated sentences.

While variational autoencoder has the issue of
ignoring latent space (Li et al., 2019), our models
do not suffer from this issue. We introduced two
types of language generation models in the paper:
(1) the autoregressive flow model (used in data
augmentation tasks) and (2) the model that uses
flow latent features as extra input (e.g., for QG
tasks). Our autoregressive flow model’s decoder is

Models EM F1

Baseline BERT 81.34 88.76
+ Context (Back-Translation) 81.02 88.79
+ Context (Paraphrasing) 81.65 88.92
+ Context (Language Flow) 82.28 89.22
+ Context (Language Flow+) 82.49 89.44

Table 9: QA results on SQuAD test split. The aug-
mented data (new articles) significantly improves a
strong SQuAD QA baseline.

the inverted version of its encoder with the same
weights, so it ensures the decoder uses the latent
features. When we use flow latent features as extra
inputs, it significantly improves QA performance
(Table 5 and Table 6), which implies the latent
features are usefully involved in generation.

7 Conclusion

We have proposed a language generative flow
model with non-autoregressive and autoregres-
sive variants. The non-autoregressive flow model
achieves strong performance on density estima-
tion and helps improve question generation and
machine translation by providing additional use-
ful latent features to the decoder. Moreover, the
autoregressive variant largely improves question
answering by generating new contexts with noise
injection.
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Appendix

A Experimental Setup

In this section, we introduce our experiment set-
tings ranging from datasets usage, flow implemen-
tation details, question generation model, and data
augmentation settings. We use a fixed seed 2020
for PyTorch random seed.

A.1 Software/Hardware Usage
We use PyTorch 1.5 (Paszke et al., 2017) to build
our model. We use Nvidia GeForce RTX 2080ti
and Intel CPU (Intel(R) Xeon(R) Silver 4114 CPU
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@ 2.20GHz) built on Ubuntu 16.01 for each train-
ing or inference process.

A.2 Datasets

We use SQuADv1.1 (Rajpurkar et al., 2016)7 and
TVQA (Lei et al., 2018)8 to perform our experi-
ments, since SQuAD is a widely explored QA and
QG dataset, and TVQA is a video-based multi-
modal dataset with rich dialogue context. There-
fore, question generation, context generation, and
language density estimation, and data augmenta-
tion can be well performed and evaluated compre-
hensively on these two datasets and tasks.

TVQA consists of 152,545 QA pairs from
21,793 clips, spanning over 460 hours of video.
The subtitles in TVQA dataset has time-stamp an-
notations of localized clip in the full subtitle clip.
The localized clip is the relevant interval of a clip
for question answering. In both the video ques-
tion generation task and the context generation task
for data augmentation, we use localized subtitles.
The TVQA context features are dialogues or video
subtitles; hence data augmentation on this dataset
should consider an additional frame-level dimen-
sion.

SQuAD has over 100,000 questions and 23,215
paragraphs for the 536 articles covering a wide
range of topics. We follow Zhang and Bansal
(2019) to split the development set of SQuADv1.1
(Rajpurkar et al., 2016) into two splits and show
the result on the second split.

A.3 Preprocessing

We tokenize the data to be used for both GLoVe em-
bedding and BERT features extraction, and we add
the start of sentence token and the end of sentence
token for every input.

A.4 Evaluation Metrics

We generally follow previous work on evaluation
metrics across density estimation, question genera-
tion, and question answering augmentation.
Flow Model. For flow density estimation, we fol-
low previous work (Kingma and Dhariwal, 2018;
Dinh et al., 2017) to use negative log-likelihood for
comparison.
Question Generation Model. We evaluate the
generation quality by BLEU4 (Papineni et al.,

7Online link for SQuAD: rajpurkar.github.io/
SQuAD-explorer/explore/1.1/dev/

8Online link for TVQA: tvqa.cs.unc.edu/

2002), Meteor (Lavie and Agarwal, 2007), and
Rouge-L (Lin, 2004) to provide an insight into the
performance of our model. We also use Amazon
Turk human evaluation that compares the baseline
generation and the proposed model generation by
proving a suitable QA context. For SQuAD QG,
we present the article context, question pairs, and
the answer for the users to select their preference
in terms of answerability and overall quality of the
question pair. For TVQA QG, we present the video
clip, subtitle context, question pairs, and answer
candidates for the users to select their preference
in terms of answerability and overall quality of the
questions pair.

Machine Translation Model. We evaluate the
generation quality by BLEU (Papineni et al., 2002)
to provide an insight into the performance of our
model.

Data Augmentation Model. We use accuracy
scores to evaluate TVQA QA model, and follow
previous work (Rajpurkar et al., 2016) to use EM
(exact match) and F1 score to evaluate SQuAD QA
model.

A.5 Flow Implementation Details

The experiment on base flow models does not in-
volve extensive hyperparameter search trials since
flow models follow the principle: the deeper, the
better. We use small-sized flow models across dif-
ferent versions of (K=8, L=3, parameter number:
128M for transformer module and 196M for RNN
module) flow models for ablation study. The au-
toregressive flow model has K=24, L=1 with ap-
proximately the same parameter number, 130M, by
changing the nonlinear functions complexity for a
fair comparison.

Based on the sequence length distribution of the
dataset, we designate the maximum fixed flow se-
quence length for TVQA-subtitles as 64, SQuAD-
paragraphs as 256. We set L=3 or 4 for all experi-
ments while changing the number of flow steps K
with a multiple of 8. While it follows that the more
K, the better, setting L to a reasonable value is es-
sential as each block will reduce sequence length
by half. Therefore, L is set according to the length
of the input.

The discretization, d, in the negative log-
likelihood loss function (Eq.6) is set to 2n, where
n=6. Noise, u, is set as Gaussian sample with
α = 1

2m , where m=6. We follow previous
work (Kingma and Dhariwal, 2018) to use bits per

rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/
rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/
tvqa.cs.unc.edu/
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dimension to regularize the negative log-likelihood
loss, formulated as L

(M log(2)) , where M represents
the dimension of input.

We use a learning rate between 1e-4 and 1e-
5, specifically 5e-5, to achieve stable and faster
convergence (with Adam optimizer (Kingma and
Ba, 2015), beta1=0.9, beta2=0.999). With prior
knowledge of Adam optimizer, we perform 5 trials
to test learning rate (1e-3, 5e-4. 1e-4. 5e-5, 1e-5)
to find the fastest convergence rate.

The average training time is 50 epochs for a
(k=8 L=3 parameter number: 128M for transformer
module and 196M for RNN module) flow model,
as each epoch takes 20 minutes. Inference for one
sample takes around 0.01s.

The density estimation by the LSTM model we
use for baseline comparison in NLL and QG mod-
els is designed to be well defined as a density es-
timation model. Flow density estimation models
with no invertibility are not well-defined. There-
fore, we mimic a model structure that the transfor-
mation is through only non-singular matrix weight
to obtain an arithmetically invertible model.

A.6 Question Generation Implementation
Details

The experiment on question generation models
does not involve extensive hyperparameter search
trials, as the proposed model has stable conver-
gence under varied circumstances. We take the last
latent space output of the flow model as the features
used for the QG model decoder or attention map.

We use (K=16, L=3 parameter number: 256M
parameters for transformer module) flow models
with transformer modules without autoregressive
decoding for all the QG experiments. The loss
weight of λ1 is set 1.0; the weight will not sig-
nificantly affect the result as long as it is set to a
reasonably large value. We use gradient descent
with momentum optimizer (momentum = 0.8, lr =
1e-3) for both base model and flow model. With
prior knowledge of the SGD optimizer, we perform
four trials to test the learning rate (1e-2, 5e-3. 1e-3.
5e-4) to find the fastest convergence rate and stable
training.

We employ Zhang and Bansal (2019)’s baseline
QG model, which is a robust encoder-decoder at-
tention generation network with a maxout pointer
network and self-gated attention (Zhao et al., 2018)
for both tasks.9 We use pretrained BERT (Devlin

9Maxout pointer is not used in the TVQA QG model since

et al., 2019) hidden features with 768 dimensions
by a small uncased BERT model to replace GLoVe
embedding to make the baseline stronger to show
that the flow model can still improve well on a
strong baseline.

The average training time is 20 epochs for the
joint training of the QG model and the (k=16 L=3)
flow model, as each epoch takes 50 minutes. Infer-
ence for one sample takes around 0.03s.

A.7 Machine Translation Implementation
Details

For the machine translation dataset WMT16, the
source and target languages share the same set of
subword embeddings. The maximum text length is
set to 64 and we filter out all data that is above this
range. We use (K=4, L=3 with transformer module)
non-autoregressive flow models with transformer
modules for all the data augmentation experiments.
We use Adam optimizer (Kingma and Ba, 2015)
with beta1=0.9, beta2=0.999, and a learning rate
5e-5 for flow model training.

A.8 Data Augmentation Implementation
Details

The experiment on context generation models gen-
erally follows empirical hyperparameter settings.

We use (K=32, L=4 parameter number: 512M
parameters for transformer module) autoregressive
flow models with transformer modules for all the
data augmentation experiments. We use Adam op-
timizer (Kingma and Ba, 2015) with beta1=0.9,
beta2=0.999, and a learning rate 5e-5 for flow
model training and an empirically stable learning
rate 3e-4 for attention decoder training. We set z0
to a Gaussian noise sample with mean 0.0 and vari-
ance 1.0 during training and variance 0.5 during
inference. For inference variance tuning, we start
from variance 1.0 and gradually decrease by 0.1
until 0.1 to manually check which setting has gen-
erated samples with reliable quality and diversity
suitable for robust data augmentation.

The average training time is 100 epochs for the
(k=32 L=4 parameter number: 512M) augmenta-
tion flow model, as each epoch takes 30 minutes.
Inference for one sample takes around 0.5s.
Base QA model. We use model, backbone + Attn.
Sup. + Temp. Sup. + local (STAGE) with GloVe
embeddings, developed in TVQA+ dataset (Lei
et al., 2020) as the QA baseline for TVQA data

the number of words out of vocabulary is small.
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augmentation model. We use the BERT baseline
(Devlin et al., 2019) for SQuAD QA (Rajpurkar
et al., 2016); this BERT Baseline is pretrained and
uncased with 768 base dimension and finetuned on
the SQuAD dataset. These two models are also
used as data filters.
Data Augmentation Strategies. The training
schemes are crucial for context generation since the
TVQA model has heavy dependence on the subti-
tles and SQuAD model on the paragraphs: similar
to Zhang and Bansal (2019)’s strategies, we obtain
approximately ten times the amount of augmented
data than the original amount, and filter them to
obtain approximately 40% of augmented data to
be used for training. We set a probability, 0.5, for
replacing the original data with newly generated
filtered data for each batch in training. For TVQA
data augmentation, we generate localized subtitles
and replace the corresponding part in non-localized
full-subtitles. For SQuAD data augmentation, We
generate trunks of paragraphs that do not contain
answers to replace the corresponding trunks in the
original paragraphs.


