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Abstract

Pretraining and multitask learning are widely
used to improve the speech to text translation
performance. In this study, we are interested
in training a speech to text translation model
along with an auxiliary text to text translation
task. We conduct a detailed analysis to un-
derstand the impact of the auxiliary task on
the primary task within the multitask learning
framework. Our analysis confirms that multi-
task learning tends to generate similar decoder
representations from different modalities and
preserve more information from the pretrained
text translation modules. We observe mini-
mal negative transfer effect between the two
tasks and sharing more parameters is helpful
to transfer knowledge from the text task to
the speech task. The analysis also reveals
that the modality representation difference at
the top decoder layers is still not negligible,
and those layers are critical for the transla-
tion quality. Inspired by these findings, we
propose three methods to improve translation
quality. First, a parameter sharing and ini-
tialization strategy is proposed to enhance in-
formation sharing between the tasks. Second,
a novel attention-based regularization is pro-
posed for the encoders and pulls the represen-
tations from different modalities closer. Third,
an online knowledge distillation is proposed
to enhance the knowledge transfer from the
text to the speech task. Our experiments show
that the proposed approach improves transla-
tion performance by more than 2 BLEU over
a strong baseline and achieves state-of-the-
art results on the MUST-C English-German,
English-French and English-Spanish language
pairs.

1 Introduction

End-to-end methods have achieved significant
progress in speech to text translation (ST) and even
surpassed the traditional pipeline-based methods

in some applications (Niehues et al., 2019; Salesky
and Black, 2020). However, the success of end-
to-end methods relies on large amounts of training
data, which is quite expensive to obtain and rela-
tively small in practice. Building ST systems from
pretrained models with multitask learning (MTL)
is widely used to overcome the limited training data
issue (Weiss et al., 2017; Anastasopoulos and Chi-
ang, 2018; Bahar et al., 2019; Indurthi et al., 2020;
Wang et al., 2020b; Li et al., 2020). Nevertheless,
little prior work has been devoted to understanding
the interactions between different tasks. Standley
et al. (2020) conduct an empirical study on com-
puter vision tasks for MTL. They find many “as-
sumptions” for MTL may not be held for specific
applications. For example, “similar” tasks do not
necessarily train better together.

In this study, we focus on training the ST model
along with an auxiliary text to text machine trans-
lation (MT) task. We are interested in the task
interactions with different modalities and in im-
proving the primary ST task with the help from the
auxiliary MT task. The model is initialized with
pretrained modules from automatic speech recog-
nition (ASR) and MT. Two types of analysis are
conducted on the fine-tuned multitask learned mod-
els. The first focuses on the model variation by
comparing fine-tuned models with pretrained mod-
els for different tasks. The second aims to measure
internal representation differences due to different
modalities. The analysis leads to three main find-
ings. First, the analysis confirms that MTL tends to
generate similar model representations for different
input modalities and preserves more information
from the pretrained MT modules. Second, we do
not observe significant negative transfer effect from
the MT task to the corresponding ST task. Sharing
more parameters is helpful to transfer knowledge
to the primary ST task. Finally, the top layers in
the ST decoder are more critical to the translation
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performance and they are also more sensitive to
the modality difference. The model representations
from different modalities demonstrate larger differ-
ence for the top layers in our analysis.

Inspired by these findings, we propose three tech-
niques to enhance the performance of the primary
ST task. First, we propose to maximize parameter
sharing between the ST and MT tasks, i.e. the entire
decoder and the top encoder layers. Those shared
parameters are initialized with the corresponding
MT models. Second, a cross-attentive regulariza-
tion is introduced for the encoders. It minimizes
the L2 distance between two reconstructed encoder
output sequences and encourages the encoder out-
puts from different modalities to be closer to each
other. Finally, an online knowledge distillation
learning is introduced for MTL in order to enhance
knowledge transfer from the MT to the ST task.

Our contributions are summarized as follows:

1. A detailed analysis is conducted on the inter-
action between the primary ST task and the
auxiliary MT task.

2. A parameter sharing and initialization strat-
egy are proposed to encourage information
sharing between tasks.

3. Cross-attentive regularization and online
knowledge distillation are proposed to reduce
the model representation difference between
different modalities and enhance the knowl-
edge transfer from the MT task to the ST task.

4. Our system achieves state of the art results
on the MUST-C English-German (EN-DE),
English-French (EN-FR) and English-Spanish
(EN-ES) language pairs, with 2 or more
BLEU gains over strong baselines.

2 Related Work

Multitask learning aims to improve general-
ization by leveraging domain-specific informa-
tion contained in the training signals of related
tasks (Vandenhende et al., 2020). Compared with
single task, MTL has many advantages, such as
the potential to improve performance by sharing
complementary information or acting as a regu-
larizer. Many previous works focus on learning a
good model for all tasks. Chen et al. (2018) study
the gradients from different tasks and conduct task
dependent gradient normalization to encourage dif-
ferent tasks to learn at similar speed. Maninis et al.

Figure 1: Joint Training framework. The speech to text
translation task is depicted as dark gray line, text to text
translation task is illustrated as light gray line. The pa-
rameters in blue modules are shared between two tasks.

(2019); Liu et al. (2019a); Pfeiffer et al. (2020)
introduce task-dependent components to enhance
individual task performance.

Weiss et al. (2017) explore different multitask
training strategies for ST, and they find the one-
to-many strategy, in which an encoder is shared
between the ST and ASR tasks, is more effective.
Anastasopoulos and Chiang (2018) further extend
it to a triangle structure by concatenating ASR and
ST models. Bahar et al. (2019) compare different
multitask strategies for the ST task, and they con-
firm many-to-one strategy, in which MT and ST are
trained together and the decoder is shared between
two tasks, is effective if extra bitext data is used. In
this work, we carefully study the relation between
co-trained tasks in the many-to-one strategy, and
the analysis results guide us to propose three tech-
niques to learn more from the auxiliary MT task
and enhance the ST performance further.

Model analysis Chatterji et al. (2020) propose crit-
icality analysis to measure the importance of dif-
ferent modules from the trained model. Parameters
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in the selected module or layer are partially rolled
back to the initial values, and the module critical-
ity or importance is measured by the performance
drop after modification. Larger performance drops
indicate a more critical module. Inspired by their
work, we extend it to the analysis on the jointly
trained models with different pretrained modules
and schemes. Raghu et al. (2017); Morcos et al.
(2018) propose to employ canonical correlation to
measure the similarity between different models
given the same input. We extend their work to study
a model with inputs from different modalities.

3 Methods

The proposed ST system is co-trained with the MT
task as depicted in Figure 1. The modules in the
primary ST task are connected with dark gray lines
and the auxiliary MT task is illustrated with light
gray lines. The parameters in the blue modules are
shared between the two tasks. During inference
with speech input, only modules related to the ST
task are used.

The model has two encoders, a text encoder and
a speech encoder, to take text and speech input re-
spectively. The decoder is shared between the two
tasks. To encourage knowledge sharing between
the two tasks, the top encoder layers are also shared.
The parameters of the shared modules are initial-
ized with a pretrained MT model. A novel cross-
attentive regularization is proposed to reduce the
distance between encoder outputs from different
input modalities. We also introduce a novel online
knowledge distillation method where the output
from the auxiliary MT task is used to guide the ST
model training. The cross-attentive regularization
and online knowledge distillation are illustrated
as orange modules in Figure 1 and the details are
presented in the following two subsections.

3.1 Cross-Attentive Regularization

The cross-attentive regularization (CAR) is pro-
posed to increase the similarity between the text
encoder outputs and their corresponding speech
encoder outputs. Hence, the performance of the
more difficult ST task can be improved by learn-
ing from the relatively easier MT task. Encoder
output sequences from different modalities can
not be compared directly since they have different
lengths. In CAR, the two reconstructed sequences
are calculated from the text output sequence via
self-attention or the speech output sequence via

cross attention over the text output sequence. The
two reconstructed sequences have the same length
and the distance is simply measured as the L2 dis-
tance between the two sequences.

Formally, we denote a speech to text translation
training sample as a triplet o = (Xs,xt,y). Xs ∈
Rds×N , xt ∈ RM , and y ∈ RK are the speech
feature input, text token input and target text output
respectively. N , M and K are the corresponding
sequence lengths. Assume Hs = (hs

1,h
s
2, · · ·,hs

N )
and Ht = (ht

1,h
t
2, · · ·,ht

M ), hs
n,h

t
m ∈ Rdh are

outputs from the speech encoder and text encoder
respectively, where dh is the dimension of the out-
put states. A similarity matrix S ∈ RN×M is de-
fined as the cosine distance between the tensors in
the two sequences:

si,j =
(hs

i )
′ · ht

j

||hs
i ||2||ht

j ||2
(1)

where si,j is the ith row and jth column compo-
nent in S. The text encoder outputs Ht are recon-
structed through the speech encoder outputs Hs

and similarity matrix S as below.

Hs→t = Hs · softmax(S) (2)

Ht→t, the reconstruction of Ht from itself, can
be computed similarly via self-attention. CAR is
defined as the L2 distance between the two recon-
struction encoder outputs:

LCAR(θs) =
1

M

∥∥∥Hs→t − sg[Ht→t]
∥∥∥
2

(3)

where sg[·] is the stop-gradient operator and θs are
the ST model parameters. By optimizing the model
with CAR, the speech encoder is encouraged to
learn from more accurate text encoder and gener-
ates similar encoder outputs after reconstruction.
CAR is inspired by the attention mechanism be-
tween the encoder and decoder where the decoder
states are reconstructed through encoder output
states via the attention mechanism.

3.2 Online Knowledge Distillation
Knowledge distillation (KD) is widely used for
model compression (Hinton et al., 2015; Kim
and Rush, 2016) where a smaller student network
is trained to mimic the original teacher network
by minimizing the loss between the student and
teacher outputs. The ST task is considerably more
difficult than the MT task since the speech input
is noisier and more ambiguous than the text input.
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The accuracy of the MT model is usually much
higher than the corresponding ST model. Knowl-
edge distillation from a well trained MT model
to a ST model has been proved to be an effective
way to improve the ST performance (Liu et al.,
2019b; Gaido et al., 2020). In this work, we ex-
tend knowledge distillation to the MTL framework
where both ST and MT are fine-tuned simultane-
ously with shared parameters.

Concretely, we assume an MTL model learns
from a data set D with target vocabulary size
|V |. The training criterion is to minimize nega-
tive log likelihood (NLL) for each example o =
(Xs,xt,y) ∈ D from the training data:

LNLL(θs) = −
D∑
o

K∑
k=1

|V |∑
v=1

δ(yk = v)

log p(yk = v|y<k,X
s, θs) (4)

where δ(·) is the indicator function and p the distri-
bution from the ST model (parameterized by θs).

Assume the probability distribution for yk given
text input xt and MT model θt is q(yk =
v|y<k,x

t, θt), the knowledge distillation loss is
defined as minimizing the cross-entropy with the
MT’s probability distribution

LKD(θs) = −
D∑
o

K∑
k=1

|V |∑
v=1

q(yk = v|y<k,x
t, θt)

log p(yk = v|y<k,X
s, θs) (5)

The overall loss is the combination of cross-
attentive regularization, knowledge distillation loss,
negative log likelihood loss for both ST and MT, as
follows:

L(θs, θt) = αLNLL(θs) + (1− α)LKD(θs)

+λLCAR(θs) + LNLL(θt) (6)

where α and λ are predefined hyper-parameters.

4 Experimental Setup

Experiments are conducted on three MUST-
C (Gangi et al., 2019a) language pairs: EN-DE,
EN-ES and EN-FR. The models are developed and
analyzed on the dev set and the final results are
reported on the tst-COMMON set. We use WMT
parallel data from different years, 2013 for Spanish,
2014 for German, and 2016 for French, as extra
text training corpus for MTL. Case-sensitive deto-
kenized BLEU is reported by SACREBLEU with
default options (Post, 2018).

We use the “T-Md” configuration from (Wang
et al., 2020a) in all experiments. The speech en-
coder has 12 transformer layers while the decoder
is with 6 transformer layers. For the MTL model,
the text encoder has 6 transformer layers. The trans-
former layer has an input embedding size of 512
and middle layer dimension 2048. We share pa-
rameters of all 6 text encoder transformer layers
with the top 6 transformer layers in the speech en-
coder, hence both encoders use the same modules
to generate the encoder outputs.

The Adam optimizer (Kingma and Ba, 2014)
with a learning rate 0.002 is employed in the ex-
periments. Label smoothing and dropout rate are
both set to 0.1. We choose α = 0.8 and λ = 0.02
in Equation 6 through grid search ([0.1, 1.0] for α
and [0.01, 0.05] for λ).

Input speech is represented as 80D log mel-
filterbank coefficients computed every 10ms with a
25ms window. Global channel mean and variance
normalization is applied. The SpecAugment (Park
et al., 2019) data augmentation with the LB pol-
icy is applied in all experiments. The input text
tokens are converted into their corresponding pro-
nunciation form as phoneme sequences (Tang et al.,
2021; Renduchintala et al., 2018). The grapheme to
phoneme conversion is done through the “g2p en”
python package (Lee and Kim, 2018). The leading
phoneme in a word is appended with an extra “ ”
to mark word boundaries. In total, the vocabulary
size for the input phonemes is 134. The target vo-
cabulary consists of 10k “unigram” subword units
learned by SentencePiece (Kudo and Richardson,
2018) with full character coverage of all training
text data.

All ST or jointly trained models are initialized
with pretrained ASR and MT modules. The ASR
model is trained on the same English speech train-
ing data from MUST-C with the “T-Md” configura-
tion too. The pretrained MT models are trained for
each language pair with the aforementioned WMT
data. The MT encoder and decoder configurations
are the same as the text encoder and decoder in the
MTL model mentioned above.

The models are fine-tuned to 100 epochs using
8 V100 GPUs for approximate one day. The batch
size is 10,000 frames for speech to text translation
samples and 10,000 tokens for parallel text samples
per GPU. The model parameters are updated every
4 batches. Speech training samples and text input
samples are used to update the model alternatively.



4256

Model Encoder
Configuration Speech Text Shared

ST ASR None None
JT ASR MT None

JT-S-ASR ASR MT ASR
JT-S-MT ASR MT MT

Table 1: Model initialization schemes

The models are trained with FAIRSEQ (Ott et al.,
2019; Wang et al., 2020a). The last 10 checkpoints
are averaged for inference with beam size 5. 1.

5 MTL Analysis

5.1 Model Variation
We extend Chatterji et al. (2020)’s work to analyze
a MTL model. We initialize models with differ-
ent pretrained modules and fine-tune them for ST
and MT tasks within the MTL framework. The
pretrained modules come from ASR and MT tasks.

Criticality analysis is conducted on the ST model
after the MTL fine-tuning step. The parameters
in the selected modules are interpolated with cor-
responding parameters in the pretrained modules.
MUST-C EN-DE dev set is used for BLEU com-
putation. With different interpolation ratios, we
obtain different BLEU scores. The BLEU differ-
ence comes from two sources. The first one comes
from the selected module itself. If the module is im-
portant and sensitive, very small perturbation could
result in a nontrivial BLEU difference as (Chatterji
et al., 2020). Another source of difference is that if
the selected module changes significantly to adapt
to the ST task, rewinding the parameters back to
the initial task may lead to a substantial decrease
in BLEU. We attempt to quantify the extent of the
degradation from the second source, which can
be indicative of the model variation from the pre-
trained task to the ST task. This is accomplished
by comparing the BLEU differences for the same
module but using different initialization and train-
ing schemes.

Table 1 lists models initialized with different
pretrained modules. “ST” designates a ST model
trained with the single ST task, “JT” corresponds
to a ST model trained with the primary ST task and
auxiliary MT task together. “JT-S-ASR” and “JT-
S-MT” are another two jointly trained models but

1The source code will be released at
https://github.com/pytorch/fairseq/tree/master/examples/speech
text joint to text

(a) ST Enc. (b) ST Dec.

Figure 2: Criticality analysis for the “ST” model.

with the top encoder layers shared as described in
section 4. The difference between the two models
is how we initialized the shared encoder layers,
either from the pretrained ASR model for “JT-S-
ASR” or from the pretrained MT model for “JT-S-
MT”.
ST Figure 2 shows the analysis for the “ST”
model. The x-axis is the interpolation ratio and
“1.0” means the pretrained parameters are used.
The y-axis is the relative change in BLEU com-
pared with the well-trained ST model. It is clear
that higher layers are more critical to the per-
formance. Around 5 BLEU decrease is observed
on the top encoder layer (11) and top decoder
layer (5) during the criticality tests. The follow-
ing analysis will compare with Figure 2 and we can
separate the aforementioned second source from
the first one.
JT Figure 3 presents the analysis for the “JT”
model. The jointly trained model shows smaller
degradation compared with “ST” for the decoder
layers. This indicates that training the ST and
MT tasks together helps to preserve more infor-
mation from the original MT decoder and par-
tially remedies the catastrophic forgetting (Mc-
Closkey and Cohen, 1989) during the fine-
tuning phase. On the other hand, after rolling pa-
rameters back to the initial ASR model, the jointly
trained model shows a larger degradation for the
encoder layers. This means that the speech encoder
in the jointly trained model has deviated far away
from the speech encoder in the initial ASR task.
We conclude that the shared decoder is subject to
more constraints since it is optimized toward both
MT and ST tasks while the speech encoder has to
undergo larger changes in order to align with the
text encoder, although there is no parameter sharing
between two encoders.
JT-S-ASR and JT-S-MT Results for models with
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(a) JT Enc. (b) JT Dec.

Figure 3: Criticality analysis for the “JT” model.

(a) JT-S-ASR Enc. (b) JT-S-ASR Dec.

Figure 4: Criticality analysis for the “JT-S-ASR”
model. The shared encoder layers are initialized with
the layers from the ASR encoder.

the top encoder layers shared are presented in Fig-
ure 4 and 5. In “JT-S-MT”, the top 6 shared en-
coder layers are initialized with the pretrained MT
encoder. We illustrate their BLEU difference trajec-
tories with dotted lines in Figure 5 (a) so they can
be easily distinguished from other layers initialized
from the ASR encoder.

The BLEU difference for the top encoder layer is
down from 20.2 to 17.6 when the parameters are re-
placed with the ones in the pretrained ASR encoder.
It is further reduced to 10.0 if the shared layers are
initialized with MT encoder layers. The BLEU
differences in the decoder layers are mixed. The
performance of “JT-S-ASR” degrades quickly in
the criticality test for the top decoder layer, while
“JT-S-MT performs similarly in the test as “JT”
decoder. We argue that the top layers in the fine-
tuned ST encoder might be closer to the MT en-
coder than the ASR encoder. It preserves more
information from the MT task by sharing more
parameters between two tasks and initializing
them with pretrained MT modules. This is a de-
sirable property since we want to transfer more
knowledge from the text corpus to the ST task.

(a) JT-S-MT Enc. (b) JT-S-MT Dec.

Figure 5: Criticality analysis for the “JT-S-MT” model.
The shared encoder layers are initialized with the layers
from the MT encoder.

Figure 6: Comparison of decoder layers correlation co-
efficients between text and speech input (“JT-S-MT”).

5.2 Modality Variation
The jointly trained model takes input from two
modalities, i.e. text or speech, and we are inter-
ested in the model internal representation differ-
ence for paired inputs. Given text target y, we
extract the decoder hidden state representations for
the corresponding text input xt and speech input
Xs. The decoder representation difference solely
comes from different input modalities. The differ-
ence is quantified by the correlation coefficient over
all samples evaluated between two input modali-
ties:

rs,t(l, d) =
σst(l, d)

σs(l, d)σt(l, d)
(7)

where σz(l, d), z ∈ [s, t] is the standard deviations
of decoder hidden states at layer l for component
d in all samples, and σst(l, d) is the corresponding
covariance. The layer-wise correlation coefficient
is the average of all components:

rs,t(l) =
1

D

∑
d

rs,t(l, d) (8)

Figure 6 depicts the correlation coefficient be-
tween speech input and text input for each decoder
layer in the model “JT-S-MT”. The x-axis is the
number of training epochs and the y-axis represents
the correlation coefficient for each layer. There



4258

Data corpus #pars(m) DE ES FR
Gangi et al. (2019b) 30 17.7 20.9 26.5
Inaguma et al. (2020) - 22.9 28.0 32.7
Pino et al. (2020) 435 25.2 - 34.5
ST 76 21.5 28.1 33.8
JT 76 24.1 29.0 35.1
JT Proposed 76 26.8 31.0 37.4

Table 2: BLEU on three language pairs in the MuST-C
tst-COMMON datasets.

are two observations. First, the correlation coef-
ficients become larger and close to “1.0” as train-
ing converges. Second, the higher the layer, the
smaller the correlation coefficient. We hypothe-
size that the inputs to the lower layers are domi-
nated by the decoder text embeddings, which are
the same for both modalities, and the inputs to the
higher layers would contain more information from
the encoder outputs, which result in the decoder
internal representation differences. The analysis
shows a well trained MTL decoder has similar
representations for paired text and speech in-
put. However, the top decoder layers still have
nontrivial representation differences due to dif-
ferent modalities.

6 Experimental Results

6.1 Main Results

The main ST results are presented in Table 2. The
first three rows are results from the literature. “ST”
and “JT” are models initialized as Table 1 and stud-
ied in section 5. The last row (“JT Proposed”)
presents results from the proposed system, in which
the top encoder layers and decoder are shared, and
the models are optimized following Equation 6.
The second column (“pars(m)”) lists the number of
parameters used during inference. From Table 2,
our “ST” baseline is comparable to the previously
reported results except (Pino et al., 2020), who use
a much larger model and additional weakly super-
vised speech training data. As expected, the vanilla
joint training baseline (“JT”) outperforms the “ST”
baseline with the help of extra bitext training data.
Finally, the proposed joint training model (“JT Pro-
posed”) achieves 2.0∼2.7 BLEU gains over the
strong joint training baseline (“JT”).

6.2 Ablation

Table 3 breaks down the performance gains into in-
dividual components/changes. Sharing encoder lay-
ers improves the quality for all three language pairs

EN-DE EN-ES EN-FR
JT 24.1 29.0 35.1
JT-S-ASR 24.4 29.4 35.4
JT-S-MT 24.7 29.7 35.3

+ CAR 25.0 30.4 36.2
+ CAR + KD 26.8 31.0 37.4

Table 3: Ablation study.

(a) JT Proposed Enc. (b) JT Proposed Dec.

Figure 7: Criticality analysis for “JT Proposed”.

(“JT” v.s. “JT-S-ASR”). Initializing the shared en-
coder layers with pretrained MT modules leads to
BLEU increase for two of the three evaluated trans-
lation pairs (“JT-S-ASR” v.s. “JT-S-MT”). For
EN-FR, the degradation is minimal (-0.1 BLEU).
Overall, sharing top encoder layers can increase
BLEU by 0.2∼0.7 (“JT-S-MT” v.s. “JT”). CAR
further improves the translation by another 0.3∼0.9
BLEU. The best results are achieved by applying
the shared top encoder layers, CAR and online KD
together. They are about 2.9+ BLEU better than
the single task based system (“ST”) and achieve 2+
BLEU increase on top of the strong vanilla joint
training system(“JT”).

Figure 7 demonstrates the model variation for
the proposed system on the MUST-C EN-DE dev
set. Compared with Figure 5, the decoder shows
less degradation during the criticality test and it
shows CAR and online KD help to preserve more
information from the MT task. Figure 8 shows
the corresponding correlation coefficients between
paired text and speech input from the top decoder

Figure 8: Correlation coefficient for the top decoder
layers (epoch 100).
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Model BLEU
JT-S-MT 24.7

JT-S-MT + Adapter 24.7
JT-S-MT + Dedicated Attention 24.2

Table 4: BLEU score for models with task dependent
components

layer from different model configurations. It also
confirms that the proposed methods, i.e., shared
top encoder layers, CAR and online KD, all reduce
the modality difference substantially.

6.3 Task Dependent Components

In MLT, many works (Maninis et al., 2019; Liu
et al., 2019a; Zhang et al., 2020; Pfeiffer et al.,
2020) employ task-dependent components to allevi-
ate the negative transfer effect. In Table 4, we com-
pare the “JT-S-MT” model with two variants using
different task-dependent components. The first one
(“JT-S-MT + Adapter”) (Bapna et al., 2019) adds
an extra adapter module on the top of the speech
encoder. Hence, the speech encoder outputs, which
are generated from shared encoder layers, are fur-
ther processed to reduce the difference between
speech input and text input. The adapter module
consists of a linear layer and layer normalization
layer. The second variant (“JT-S-MT + Dedicated
Attention”) (Blackwood et al., 2018) introduces
dedicated decoder modules for different tasks. At-
tention layers between encoder and decoder, and
the layer normalization modules are not shared be-
tween the ST and MT tasks. It gives the decoder
more flexibility to handle information from differ-
ent modalities.

The results show the extra adapter layer doesn’t
bring gain while the task dependent attention mod-
ule actually makes the performance worse. It indi-
cates that the negative transfer effect is not signifi-
cant in this study and adding extra task-dependent
components might not be necessary.

6.4 Impact on the MT Task

As shown in Table 2, training ST models with an
auxiliary MT task improves the translation quality
substantially. It may be interesting to examine the
impact on the auxiliary task itself. We evaluate the
MT model jointly trained with the ST task. Results
are shown in Table 5. “ST (JT Proposed)” in the
first row corresponds to the best results obtained
for the ST task. The detailed experimental setup is
described in Appendix A. For reference, we also

EN-DE EN-ES EN-FR
ST (JT Proposed) 26.8 31.0 37.4
MT (Gangi et al., 2019a) 28.1 34.2 42.2
MT 25.4 27.7 33.5
MT (Tuned) 29.6 34.3 41.4
MT (JT) 28.9 33.9 41.6
MT (JT Proposed) 30.5 34.7 42.3

Table 5: Comparison between ST and MT.

include the MT evaluation results from MUST-
C (Gangi et al., 2019a) in the second row. All MT
models (in the last 4 rows) take phoneme sequences
as input instead of SentencePiece.

“MT” (row 3) shows the results from pretrained
MT models on WMT. In the “MT (Tuned)” row,
the MT models pretrained on WMT are fine-tuned
on the MUST-C datasets. The large improvements
clearly show a domain mismatch between WMT
and MUST-C. The MT models trained with WMT
data are improved after fine-tuning, and they are
comparable with the ones reported in (Gangi et al.,
2019a), though the input token is in pronunciation
form, which is more ambiguous than the corre-
sponding SentencePiece unit.

“MT (JT)” and “MT (JT Proposed)” are results
from the co-trained MT models in “JT” and “JT
Proposed” respectively. After fine-tuning using
both MuST-C (speech and text) and WMT (text
only) training data, the auxiliary MT models per-
form better than the corresponding ST models. The
proposed techniques further improve the co-trained
MT models by 0.7∼1.6 BLEU. While this is a sur-
prising result, we note that the dedicated MT mod-
els may be improved with better hyperparameter
tuning. In conclusion, the results show the pro-
posed methods are effective to unify two tasks into
one model with minimal negative transfer effect.

7 Conclusions

In this study, we focus on understanding the inter-
actions between the ST and MT tasks under the
MTL framework, and on boosting the performance
of the primary ST model with the auxiliary MT
task. Two types of analysis on model variation
and modality variation, are conducted on the MTL
models. The analysis demonstrates MTL helps to
preserve information from the MT task and gen-
erates similar model representations for different
modalities. We observe a minimal negative transfer
effect between the two tasks. Sharing more parame-
ters can further boost the information transfer from
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the MT task to the ST model. The analysis also
reveals that the model representation difference due
to modality difference is nontrivial, especially for
the top decoder layers, which are critical for the
translation performance. Inspired by the findings,
we propose three techniques to increase knowledge
transfer from the MT task to the ST task. These
techniques include parameter sharing and initial-
ization strategy to improve the information sharing
between tasks, CAR and online KD to encourage
the ST system to learn more from the auxiliary MT
task and then generate similar model representa-
tions from different modalities. Our results show
that the proposed methods improve translation per-
formance and achieve state-of–the-art results on
three MUST-C language pairs.
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A Appendix

The detailed experimental setup for “MT” and
“MT(Tuned)” in Table 5 are described as below.

We trained MT models for each language pair
in “EN-DE”, “EN-ES”, and “EN-FR”. The train-
ing data is from WMT from different years, 2013
for “EN-ES”, 2014 for “EN-DE” and 2016 for “EN-
FR”. We use “transformer wmt en de” architecture
from Fairseq. The models are with embedding size
512 and feed-forward layer dimension 2048. Both
encoder and decoder are with 6 transformer layers.
The input is phoneme sequence and output is Sen-
tencePiece sequence. The vocabularies are shared
with the corresponding speech to text translation
models. The models are optimized with Adam with
learning rate equal to 0.001. Beside experiments
in Table 5, the trained MT models are used to ini-
tialize the jointly trained models.

We further fine-tuned the “MT” models trained
from WMT data to MUST-C data sets using source
transcripts and target translation labels. No speech
data is used. Similar to the “MT” models, Adam
optimizer with learning rate equal to 0.001 is used.
The models are fine-tuned on the corresponding
MUST-C data sets for 15 epochs and the check-
points from the last 5 epochs are averaged for eval-
uation.
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