
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 4111–4124

August 1–6, 2021. ©2021 Association for Computational Linguistics

4111

A Mutual Information Maximization Approach for
the Spurious Solution Problem in Weakly Supervised Question Answering

Zhihong Shao1, Lifeng Shang2, Qun Liu2, Minlie Huang1∗

1The CoAI group, DCST, Tsinghua University, Institute for Artificial Intelligence;
1State Key Lab of Intelligent Technology and Systems;

1Beijing National Research Center for Information Science and Technology;
1Tsinghua University, Beijing 100084, China

2Huawei Noah’s Ark Lab
szh19@mails.tsinghua.edu.cn, aihuang@tsinghua.edu.cn

{shang.lifeng, qun.liu}@huawei.com

Abstract

Weakly supervised question answering usually
has only the final answers as supervision sig-
nals while the correct solutions to derive the
answers are not provided. This setting gives
rise to the spurious solution problem: there
may exist many spurious solutions that coinci-
dentally derive the correct answer, but training
on such solutions can hurt model performance
(e.g., producing wrong solutions or answers).
For example, for discrete reasoning tasks as on
DROP, there may exist many equations to de-
rive a numeric answer, and typically only one
of them is correct. Previous learning meth-
ods mostly filter out spurious solutions with
heuristics or using model confidence, but do
not explicitly exploit the semantic correlations
between a question and its solution. In this pa-
per, to alleviate the spurious solution problem,
we propose to explicitly exploit such seman-
tic correlations by maximizing the mutual in-
formation between question-answer pairs and
predicted solutions. Extensive experiments
on four question answering datasets show that
our method significantly outperforms previous
learning methods in terms of task performance
and is more effective in training models to pro-
duce correct solutions.

1 Introduction

Weakly supervised question answering is a com-
mon setting of question answering (QA) where
only final answers are provided as supervision sig-
nals while the correct solutions to derive them are
not. This setting simplifies data collection, but ex-
poses model learning to the spurious solution prob-
lem: there may exist many spurious ways to derive
the correct answer, and training a model with spu-
rious solutions can hurt model performance (e.g.,
misleading the model to produce unreasonable so-
lutions or wrong answers). As shown in Fig 1,

∗*Corresponding author: Minlie Huang.

Multi-mention Reading Comprehension
Question: In the television series ‘Thunderbirds’, what is Lady Penelope’s surname?

Answer: Creighton Ward

Document(s): Born on 24 December 2039, Lady Penelope is the 26-year old daughter of 

aristocrat Lord Hugh Creighton Ward and his wife, Amelia. The early years of her life were 

spent at Creighton Ward Mansion. … Lady Penelope Creighton Ward is a fictional character 

introduced in the British mid-1960s Supermarionation television series Thunderbirds, … 

Perce is the gardener for the 2000 acre Creighton Ward estate and a friend of Parker. … 

Possible Solution(s):
``Creighton Ward’’ across the document(s), only the third one is correct

Discrete Reasoning over Paragraphs
Question: How many years after the Battle of Powder River did Powerville Montana 

become the first establishment in the county?

Answer: 2

Paragraph: … From September 1-15, 1865, the Powder River Expedition (1865) battled 

Native Americans in the Powder River Battles (1865) near the future site of Broadus. On 
March 17, ①1876, the Battle of Powder River occurred in the south-central part of the 

county, about southwest of Broadus. In June ②1876 six companies of the 7th Cavalry 

Regiment (United States) led by Major Marcus Reno marched along the Powder River … 

On November 1, ③1878, Powderville, Montana became the first establishment in the 

county, … On April 5, 1879, the Mizpah Creek Incidents …

Possible Solution(s):
③1878 - ①1876 ✓
③1878 - ②1876 ✗

Semantic Parsing
Question: Give me the kickoff time of the game that was aired on CBS against the St. Louis 

Cardinals.

Answer: 1:00

Table Header: | week | date | opponent | result | kickoff[a] | game site | tv | attendance | …

Possible Solution(s):
SELECT (kickoff[a]) WHERE tv=CBS AND opponent=St. Louis Cardinals ✓
SELECT (kickoff[a]) WHERE opponent=St. Louis Cardinals ✗

Figure 1: Examples from three weakly supervised QA
tasks, i.e., multi-mention reading comprehension, dis-
crete reasoning, and semantic parsing. Spans in dark
gray and green denote semantic correlations between a
question and its solution, while spans in orange are spu-
rious information and should not be used in a solution.

for multi-mention reading comprehension, many
mentions of an answer in the document(s) are irrel-
evant to the question; for discrete reasoning tasks
or text2SQL tasks, an answer can be produced by
the equations or SQL queries that do not correctly
match the question in logic.

Some previous works heuristically selected one
possible solution per question for training, e.g.,
the first answer span in the document (Joshi et al.,
2017; Tay et al., 2018; Talmor and Berant, 2019);
some treated all possible solutions equally and
maximized the sum of their likelihood (maximum
marginal likelihood, or MML) (Swayamdipta et al.,
2018; Clark and Gardner, 2018; Lee et al., 2019);
many others selected solutions according to model
confidence (Liang et al., 2018; Min et al., 2019),
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i.e., the likelihood of the solutions being derived
by the model. A drawback of these methods is that
they do not explicitly consider the mutual semantic
correlations between a question and its solution
when selecting solutions for training.

Intuitively speaking, a question often contains
vital clues about how to derive the answer, and a
wrong solution together with its context often fails
to align well with the question. Take the discrete
reasoning case in Fig 1 as an example. To answer
the question, we need to know the start year of the
Battle of Powder River, which is answered by the
first 1876; the second 1876 is irrelevant as it is the
year of an event that happened during the battle.

To exploit the semantic correlations between a
question and its solution, we propose to maximize
the mutual information between question-answer
pairs and model-predicted solutions. As demon-
strated by Min et al. (2019), for many QA tasks, it
is feasible to precompute a modestly-sized, task-
specific set of possible solutions containing the
correct one. Therefore, we focus on handling the
spurious solution problem under this circumstance.
Specifically, we pair a task-specific model with
a question reconstructor and repeat the following
training cycle (Fig 2): (1) sample a solution from
the solution set according to model confidence,
train the question reconstructor to reconstruct the
question from that solution, and then (2) train the
task-specific model on the most likely solution
according to the question reconstructor. During
training, the question reconstructor guides the task-
specific model to predict those solutions consistent
with the questions. For the question reconstructor,
we devise an effective and unified way to encode
solutions in different tasks, so that solutions with
subtle differences (e.g., different spans with the
same surface form) can be easily discriminated.

Our contributions are as follows: (1) We propose
a mutual information maximization approach for
the spurious solution problem in weakly supervised
QA, which exploits the semantic correlations be-
tween a question and its solution; (2) We conducted
extensive experiments on four QA datasets. Our ap-
proach significantly outperforms strong baselines
in terms of task performance and is more effective
in training models to produce correct solutions.

2 Related Work

Question answering has raised prevalent attention
and has achieved great progress these years. A lot

of challenging datasets have been constructed to
advance models’ reasoning abilities, such as (1)
reading comprehension datasets with extractive an-
swer spans (Joshi et al., 2017; Dhingra et al., 2017),
with free-form answers (Kociský et al., 2018), for
multi-hop reasoning (Yang et al., 2018), or for dis-
crete reasoning over paragraphs (Dua et al., 2019),
and (2) datasets for semantic parsing (Pasupat and
Liang, 2015; Zhong et al., 2017; Yu et al., 2018).
Under the weakly supervised setting, the specific
solutions to derive the final answers (e.g., the cor-
rect location of an answer text, or the correct logic
executing an answer) are not provided. This setting
is worth exploration as it simplifies annotation and
makes it easier to collect large-scale corpora. How-
ever, this setting introduces the spurious solution
problem, and thus complicates model learning.

Most existing approaches for this learning chal-
lenge include heuristically selecting one possible
solution per question for training (Joshi et al., 2017;
Tay et al., 2018; Talmor and Berant, 2019), training
on all possible solutions with MML (Swayamdipta
et al., 2018; Clark and Gardner, 2018; Lee et al.,
2019; Wang et al., 2019), reinforcement learning
(Liang et al., 2017, 2018), and hard EM (Min et al.,
2019; Chen et al., 2020). All these approaches
either use heuristics to select possibly reasonable
solutions, rely on model architectures to bias to-
wards correct solutions, or use model confidence
to filter out spurious solutions in a soft or hard
way. They do not explicitly exploit the semantic
correlations between a question and its solution.

Most relevantly, Cheng and Lapata (2018) fo-
cused on text2SQL tasks; they modeled SQL
queries as the latent variables for question gen-
eration, and maximized the evidence lower bound
of log likelihood of questions. A few works treated
solution prediction and question generation as dual
tasks and introduced dual learning losses to reg-
ularize learning under the fully-supervised or the
semi-supervised setting (Tang et al., 2017; Cao
et al., 2019; Ye et al., 2019). In dual learning,
a model generates intermediate outputs (e.g., the
task-specific model predicts solutions from a ques-
tion) while the dual model gives feedback signals
(e.g., the question reconstructor computes the like-
lihood of the question conditioned on predicted
solutions). This method is featured in three aspects.
First, both models need training on fully-annotated
data so that they can produce reasonable intermedi-
ate outputs. Second, the intermediate outputs can
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introduce noise during learning as they are sam-
pled from models but not restricted to solutions
with correct answer or valid questions. Third, this
method typically updates both models with rein-
forcement learning while the rewards provided by a
dual model can be unstable or of high variance. By
contrast, we focus on the spurious solution prob-
lem under the weakly supervised setting and pro-
pose a mutual information maximization approach.
Solutions used for training are restricted to those
with correct answer. What’s more, though a task-
specific model and a question reconstructor interact
with each other, they do not use the likelihood from
each other as rewards, which can stabilize learning.

3 Method

3.1 Task Definition

For a QA task, each instance is a tuple 〈d, q, a〉,
where q denotes a question, a is the answer, and d is
reference information such as documents for read-
ing comprehension, or table headers for semantic
parsing. A solution z is a task-specific derivation
of the answer, e.g., a particular span in a document,
an equation, or a SQL query (as shown in Fig 1).
Let f(·) be the task-specific function that maps a
solution to its execution result, e.g., by returning a
particular span, solving an equation, or executing
a SQL query. Our goal is to train a task-specific
model Pθ(z|d, q) that takes 〈d, q〉 as input and pre-
dicts a solution z satisfying f(z) = a.

Under the weakly supervised setting, only the
answer a is provided for training while the ground-
truth solution z̄ is not. We denote the set of possible
solutions as Z = {z|f(z) = a}. In cases where
the search space of solution is large, we can usually
approximate Z so that it contains the ground-truth
solution z̄ with a high probability (Min et al., 2019;
Wang et al., 2019). Note that Z is task-specific,
which will be instantiated in section 4.

During training, we pair the task-specific model
Pθ(z|d, q) with a question reconstructor Pφ(q|d, z)
and maximize the mutual information between 〈q,
a〉 and z. During test, given 〈d, q〉, we use the task-
specific model to predict a solution and return the
execution result.

3.2 Learning Method

Given an instance 〈d, q, a〉, the solution set Z usu-
ally contains only one solution that best fits the
instance while the rest are spurious. We propose to
exploit the semantic correlations between a ques-

A Case of Discrete Reasoning over Paragraphs
Question q = “How many years after the Battle of Powder River did Powerville Montana 

become the first establishment in the county?”

Answer a = “2”

Paragraph d = “… On March 17, ①1876, the Battle of Powder River occurred in the south-

central part of the county ... In June ②1876 six companies of … On November 1, ③1878, 

Powderville, Montana became the first establishment in the county…”

Solution Set Z = { z1 = ③1878 - ①1876 , z2 = ③1878 - ②1876 }
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Figure 2: Illustration of the learning method.

tion and its solution to alleviate the spurious solu-
tion problem via mutual information maximization.

Our objective is to obtain the optimal task-
specific model θ∗ that maximizes the following
conditional mutual information:
θ∗ = argmax

θ
Iθ(〈q, a〉; z|d)

= argmax
θ
H(〈q, a〉|d)−Hθ(〈q, a〉|d, z)

= argmax
θ
−Hθ(〈q, a〉|d, z)

= argmax
θ
EP (d,q,a)EPθ(z|d,q,a) logPθ(q, a|d, z)

(1)

where Iθ(〈q, a〉; z|d) denotes conditional mu-
tual information between 〈q, a〉 and z over
P (d, q, a)Pθ(z|d, q, a). H(·|·) is conditional en-
tropy of random variable(s). P (d, q, a) is the prob-
ability of an instance from the training distribution.
Pθ(z|d, q, a) is the posterior prediction probabil-
ity of z (∈ Z) which is the prediction probability
Pθ(z|d, q) normalized over Z:

Pθ(z|d, q, a) =

{ Pθ(z|d,q)∑
z
′∈Z

Pθ(z
′ |d,q)

z ∈ Z

0 z /∈ Z
(2)

Note that computing Pθ(q, a|d, z) is intractable.
We therefore introduce a question reconstruc-
tor Pφ(q|d, z) and approximate Pθ(q, a|d, z) with
I(f(z) = a)Pφ(q|d, z) where I(·) denotes indica-
tor function. Eq. 1 now becomes:

θ∗ = argmax
θ
L1 + L2

L1 = EP (d,q,a)EPθ(z|d,q,a) logPφ(q|d, z)

L2 = EP (d,q,a)EPθ(z|d,q,a) log
Pθ(q, a|d, z)
Pφ(q|d, z)

(3)

To optimize Eq. 3 is to repeat the following training
cycle, which is analogous to the EM algorithm:

1. Minimize L2 w.r.t. the question reconstructor
φ to draw Pφ(q|d, z) close to Pθ(q, a|d, z), by
sampling a solution z

′ ∈ Z according to its
posterior prediction probability Pθ(z|d, q, a)
(see Eq. 2) and maximizing logPφ(q|d, z′).



4114

Bart Encoder
<s> a b <sol> op1 <span> op2 </s>

Refers to

Reference Infomation Solution
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Figure 3: Solution encoding. (a) For BART encoder
inputs, 〈s〉 and 〈/s〉 denote start and end of input se-
quence, respectively. 〈sol〉 denotes start of solution.
〈span〉 is the placeholder of the referred span in ref-
erence information (e.g., the second ab in this figure.
(b) For attention mask, gray circles block attention.
〈span〉 retrieves the contextual representation(s) of the
referred span by only attending to the referred span. ref-
erence information and the solution (except for the to-
ken 〈span〉) are kept from attending to each other.

2. Maximize L1 w.r.t. the task-specific model
θ. L1 can be seen as a reinforcement learn-
ing objective with logPφ(q|d, z) being the
reward function. During training, the re-
ward function is dynamically changing and
may be of high variance. As we can com-
pute the reward for all z ∈ Z, we therefore
adopt a greedy but more stable update method,
i.e., to maximize logPθ(z

′′ |d, q) where z
′′

=
arg maxz∈Z logPφ(q|d, z) is the best solu-
tion according to the question reconstructor.

We illustrate the above training cycle in Fig 2.

3.3 Question Reconstructor
The question reconstructor Pφ(q|d, z) takes refer-
ence information d and a solution z as input, and
reconstructs the question q. We use BARTbase, a
pre-trained Seq2Seq model, as the question recon-
structor so that semantic correlations between ques-
tions and solutions can be better captured.

A solution typically consists of task-specific op-
eration token(s) (e.g., COUNT for discrete reason-
ing or semantic parsing), literal(s) (e.g., numeric
constants for discrete reasoning or semantic pars-
ing), or span(s) from a question or reference infor-
mation (e.g., for most QA tasks). It is problematic

to just feed the concatenation of d and the surface
form of z to the BART encoder; otherwise, differ-
ent spans with the same surface form can no longer
be discriminated as their contextual semantics are
lost. To effectively encode d and z, we devise a
unified solution encoding as in Fig 3 which is ap-
plicable to solutions of various types. Specifically,
we leave most of the surface form of z unchanged,
except that we replace any span from reference
information with a placeholder 〈span〉. The rep-
resentation of 〈span〉 is computed by forcing it to
only attend to the contextual representation(s) of
the referred span. To obtain disentangled and ro-
bust representations of reference information and
a solution, we keep reference information and the
solution (except for the token 〈span〉) from attend-
ing to each other. Intuitively speaking, semantics
of reference information should not be affected by
a solution, and the representations of a solution
should largely determined by its internal logic.

3.4 Solution Set
While our learning method and question reconstruc-
tor are task-agnostic, solutions are usually task-
specific. Precomputing solution sets needs formal
definitions of solutions which define the search
space of solutions. A possible search method is to
exhaustively enumerate all solutions that produce
the correct answer. We will introduce the defini-
tions of solutions for different tasks in section 4.

4 Experiments

Datasets
# Examples |Z|

Train Dev Test Avg Median
Multi-mention Reading Comprehension

Quasar-T 37,012 3,000 3,000 8.1 4
WebQuestions 3,778 - 2,032 52.1 36

Discrete Reasoning over Paragraphs
DROP 69,669 7,740 9,535 5.1 2

Semantic Parsing
WikiSQL 56,355 8,421 15,878 315.4 4

Table 1: Statistics of the datasets we used. Statistics of
the size of solution set |Z| are computed on Train sets.

Following Min et al. (2019), we conducted exper-
iments on three QA tasks, namely multi-mention
reading comprehension, discrete reasoning over
paragraphs, and semantic parsing. This section in-
troduces baselines, the definitions of solutions in
different tasks, how the solution set can be precom-
puted, and our experimental results. Statistics of
the datasets we used are presented in Table 1.



4115

For convenience, we denote reference informa-
tion as d = [d1, d2, ..., d|d|] and denote a question
as q = [q1, q2, ..., q|q|] where di and qj are a token
of d and q respectively. A span from reference
information and a question span is represented as
(s, e)d and (s, e)q respectively, where s and e are
start and end index of the span respectively.

4.1 Baselines
First Only (Joshi et al., 2017) which trains a
reading comprehension model by maximizing
logPθ(z|d, q) where z is the first answer span in d.
MML (Min et al., 2019) which maximizes
log

∑
z∈Z Pθ(z|d, q).

HardEM (Min et al., 2019) which maximizes
logmaxz∈ZPθ(z|d, q).
HardEM-thres (Chen et al., 2020): a variant of
HardEM that optimizes only on confident solu-
tions, i.e., to maximize maxz∈ZI(Pθ(z|d, q) >
γ) logPθ(z|d, q) where γ is an exponentially de-
caying threshold. γ is initialized such that a model
is trained on no less than half of training data at the
first epoch. We halve γ after each epoch.
VAE (Cheng and Lapata, 2018): a method that
views a solution as the latent variable for question
generation and adopts the training objective of Vari-
ational Auto-Encoder (VAE) (Kingma and Welling,
2014) to regularize the task-specific model. The
overall training objective is given by:

θ∗, φ∗ = argmax
θ,φ
L(θ, φ)

L(θ, φ) = Lmle(θ) + λLvae(θ, φ)

=
∑
z∈B

logPθ(z|d, q) + λEPθ(z|d,q) log
Pφ(q|d, z)
Pθ(z|d, q)

where θ denotes a task-specific model and φ is
our question reconstructor. Lmle(θ) is the total
log likelihood of the set of model-predicted so-
lutions (denoted by B) which derive the correct
answer. Lvae(θ, φ) is the evidence lower bound of
the log likelihood of questions. λ is the coefficient
of Lvae(θ, φ). This method needs pre-training both
θ and φ before optimizing the overall objective
L(θ, φ). Notably, model θ optimizes on Lvae(θ, φ)
via reinforcement learning. We tried stabilizing
training by reducing the variance of rewards and
setting a small λ.

4.2 Multi-Mention Reading Comprehension
Multi-mention reading comprehension is a natural
feature of many QA tasks. Given a document d
and a question q, a task-specific model is required

to locate the answer text a which is usually men-
tioned many times in the document(s). A solution
is defined as a document span. The solution set Z
is computed by finding exact match of a:

Z = {z = (s, e)d|[ds, ..., de] = a}

We experimented on two open domain QA
datasets, i.e., Quasar-T (Dhingra et al., 2017)
and WebQuestions (Berant et al., 2013). For
Quasar-T, we retrieved 50 reference sentences from
ClueWeb09 for each question; for WebQuestions,
we used the 2016-12-21 dump of Wikipedia as
the knowledge source and retrieved 50 reference
paragraphs for each question using a Lucene index
system. We used the same BERTbase (Devlin et al.,
2019) reading comprehension model and data pre-
processing from (Min et al., 2019).

Quasar-T WebQuestions
Dev Test Test

EM F1 EM F1 EM F1
First Only 36.0 43.9 35.6 42.8 16.7 22.6

MML 40.1 47.4 39.1 46.5 18.4 25.0
HardEM 41.5 49.1 40.7 47.7 18.0 24.2

HardEM-thres 42.8 50.2 41.9 49.4 19.0 25.3
Ours 44.7‡ 52.6‡ 44.0‡ 51.5‡ 20.4‡ 27.2‡

Table 2: Evaluation on multi-mention reading compre-
hension datasets. Numbers marked with ‡ are signifi-
cantly better than the others (t-test, p-value < 0.05).

Results: Our method outperforms all baselines on
both datasets (Table 2). The improvements can be
attributed to the effectiveness of solution encod-
ing, as solutions for this task are typically different
spans with the same surface form, e.g., in Qusart-T,
all z ∈ Z share the same surface form.

4.3 Discrete Reasoning over Paragraphs
Some reading comprehension tasks pose the chal-
lenge of comprehensive analysis of texts by requir-
ing discrete reasoning (e.g., arithmetic calculation,
sorting, and counting) (Dua et al., 2019). In this
task, given a paragraph d and a question q, an an-
swer a can be one of the four types: numeric value,
a paragraph span or a question span, a sequence
of paragraph spans, and a date from the paragraph.
The definitions of z depend on answer types (Table
4). These solutions can be searched by following
Chen et al. (2020). Note that some solutions in-
volve numbers in d. We treated those numbers as
spans while reconstructing q from z.

We experimented on DROP (Dua et al., 2019).
As the original test set is hidden, for convenience of
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Overall Test Number (61.97%) Span (31.47%) Spans (4.99%) Date (1.57%)
EM F1 EM F1 EM F1 EM F1 EM F1

MML 58.99‡ 62.30‡ 55.38 55.58 69.96 75.51 39.29 66.01 42.57 49.05
HardEM 68.52‡ 71.88‡ 68.40 68.70 73.50 79.25 44.79 69.63 49.32 56.87

HardEM-thres 69.06 72.35‡ 69.05 69.39 74.61 79.79 39.50 66.38 52.67 58.75
VAE 32.34‡ 36.28‡ 51.65 52.35 0.37 10.01 0.00 8.89 0.00 4.11
Ours 69.35 72.92 69.96 70.27 73.38 79.32 42.86 70.42 48.67 57.47

Table 3: Evaluation on DROP. We used the public development set of DROP as our test set. We also provide
performance breakdown of different question types on our test set. Results on the overall test set marked with ‡

are significantly worse than the best one (t-test, p-value < 0.05).

Numeric Answers

Arithmetic
z =n1[, o1, n2[, o2, n3]],

s.t. o1, o2 ∈ {+,−},
n1, n2, n3 ∈ Nd ∪ S

Sorting
z =o{nk}k≥1,

s.t. o ∈ {max,min}, nk ∈ Nd
Counting z =|{(sk, ek)d}k≥1|

Non-numeric Answers

Span(s) z = {(sk, ek)t}k≥1, s.t. t ∈ {d, q}

Sorting z =o{kv〈(sk, ek)d, nk〉}k≥1,

s.t. o ∈ {argmax, argmin}, nk ∈ Nd

Table 4: Definitions of solutions for numeric answers
and non-numeric answers. Nd is the set of num-
bers in d, and S is a set of pre-defined numbers.
For arithmetic solutions for numeric answers, z =
n1[, o1, n2[, o2, n3]] denotes equations with no more
than three operands. For solutions of sorting type for
non-numeric answers, kv〈·, ·〉 is a key-value pair where
the key is a span in d and the value is its associated num-
ber from d. argmax (argmin) returns the key with the
largest (smallest) value.

analysis, we used the public development set as our
test set, and split the public train set into 90%/10%
for training and development. We used Neural Sym-
bolic Reader (NeRd) (Chen et al., 2020) as the task-
specific model. NeRd is a Seq2Seq model which
encodes a question and a paragraph, and decodes a
solution (e.g., count (paragraph span(s1, e1), para-
graph span(s2, e2)) where paragraph span(si, ei)
means a paragraph span starting at si and ending
at ei). We used the precomputed solution sets pro-
vided by Chen et al. (2020)1. Data preprocessing

1Our implementation of NeRd has four major differences
from that of (Chen et al., 2020). (1) Instead of choosing
BERTlarge as encoder, we chose the discriminator of Electrabase
(Clark et al., 2020) which is of a smaller size. (2) We did not
use moving averages of trained parameters. (3) We did not
use the full public train set for training but used 10% of it for
development. (4) For some questions, it is hard to guarantee
that a precomputed solution set covers the ground-truth solu-
tion. For example, the question How many touchdowns did

was also kept the same.
Results: As shown in Table 3, our method signif-
icantly outperforms all baselines in terms of F1
score on our test set.

We also compared our method with the base-
line VAE which uses a question reconstructor φ
to adjust the task-specific model θ via maximiz-
ing a variational lower bound of logP (q|d) as the
regularization term Lvae(θ, φ). To pre-train the
task-specific model for this method, we simply ob-
tained the best task-specific model trained with
HardEM-thres. VAE optimizes the task-specific
model on Lvae(θ, φ) with reinforcement learning
where Pφ(q|d, z) is used as learning signals for the
task-specific model. Despite our efforts to stabi-
lize training, the F1 score still dropped to 36.28
after optimizing the overall objective L(θ, φ) for
1,000 steps. By contrast, our method does not use
Pφ(q|d, z) to compute learning signals for the task-
specific model but rather uses it to select solutions
to train the task-specific model, which makes a
better use of the question reconstructor.

4.4 Semantic Parsing
Text2SQL is a popular semantic parsing task.
Given a question q and a table header d =
[h1, ..., hL] where hl is a multi-token column, a
parser is required to parse q into a SQL query z
and return the execution results. Under the weakly
supervised setting, only the final answer is provided
while the SQL query is not. Following Min et al.
(2019), Z is approximated as a set of non-nested
SQL queries with no more than three conditions:

Z = {z = (zsel, zagg, {zcondk }3k=1)|f(z) = a,

zsel ∈ {h1, ..., hL}, zcondk ∈ {none} ∪ C,
zagg ∈ {none, sum,mean,max,min, count}}

Brady throw? needs counting, but the related mentions are
not known. (Chen et al., 2020) partly solved this problem by
adding model-predicted solutions (with correct answer) into
the initial solution sets as learning proceeds. In this paper, we
kept the initial solution sets unchanged during training, so that
different QA tasks share the same experimental setting.
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where zagg is an aggregating operator and zsel is
the operated column (a span of d). C = {(h, o, v)}
is the set of all possible conditions, where h is a
column, o ∈ {=, <,>}, and v is a question span.

We experimented on WikiSQL (Zhong et al.,
2017) under the weakly supervised setting2. We
chose SQLova (Hwang et al., 2019) as the task-
specific model which is a competitive text2SQL
parser on WikiSQL. Hyperparameters were kept
the same as in (Hwang et al., 2019). We used the
solution sets provided by Min et al. (2019).
Results: All models in Table 5 do not apply
execution-guided decoding during inference. Our
method achieves new state-of-the-art results under
the weakly supervised setting. Though without su-
pervision of ground-truth solutions, our execution
accuracy (i.e., accuracy of execution results) on
the test set is close to that of the fully supervised
SQLova. Notably, GRAPPA focused on represen-
tation learning and used a stronger task-specific
model while we focus on the learning method and
outperform GRAPPA with a weaker model.

5 Ablation Study

5.1 Performance on Test Data with Different
Size of Solution Set

Fig 4 shows the performance on test data with dif-
ferent size of solution set3. Our method consis-
tently outperforms HardEM-thres and by a large
margin when test examples have a large solution
set.

5.2 Effect of |Z| at Training

The more complex a question is, the larger the set
of possible solutions tends to be, the more likely a
model will suffer from the spurious solution prob-
lem. We therefore investigated whether our learn-
ing method can deal with extremely noisy solution
sets. Specifically, we extracted a hard train set from
the original train set of WikiSQL. The hard train
set consists of 10K training data with the largest
Z. The average size of Z on the hard train set is
1,554.6, much larger than that of the original train
set (315.4). We then compared models trained on
the original train set and the hard train set using
different learning methods.

2WikiSQL has annotated ground-truth SQL queries. We
only used them for evaluation but not for training.

3In this experiment, |Z| is only seen as a property of an
example. Evaluated solutions are predicted by the task-specific
model but not from Z.

Model
Execution Accuracy
Dev Test

Fully-supervised Setting
SQLova (Hwang et al., 2019) 87.2 86.2
HydraNet (Lyu et al., 2020) 89.1 89.2

Weakly-supervised Setting
MeRL (Agarwal et al., 2019) 74.9 74.8
GRAPPA (Yu et al., 2021) 85.9 84.7
MML(Min et al., 2019) 70.6 70.5
HardEM 84.5‡ 84.1‡

HardEM-thres 85.2† 84.1‡

Ours 85.9 85.6

Table 5: Evaluation on WikiSQL. Accuracy that is sig-
nificantly lower than the highest one is marked with †

for p-value < 0.1, and ‡ for p-value < 0.05 (t-test).
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Figure 4: Performance on test examples with different
size of Z on DROP.

Figure 5: Logical form accuracy (left) and execution
accuracy (right) on dev set and test set of WikiSQL. A
method marked with Ori. Train or Hard Train means
the evaluated model is trained on the original train set
or a hard subset of training data, respectively. The hard
train set consists of 10K training data with the largest
solution set; the average size of solution set is 1,554.6.

As shown in Fig 5, models trained with our
method consistently outperform baselines in terms
of logical form accuracy (i.e., accuracy of predicted
solutions) and execution accuracy. When using the
hard train set, the logical form accuracy of models
trained with HardEM or HardEM-thres drop to be-
low 14%. Compared with HardEM, HardEM-thres
is better when trained on the original train set but is
worse when trained on the hard train set. These in-
dicate that model confidence can be unreliable and
thus insufficient to filter out spurious solutions. By
contrast, our method explicitly exploits the seman-
tic correlations between a question and a solution,
thus much more resistant to spurious solutions.
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Training Epochs 2 4 6 8 10
BARTbase w/ HardEM 65.1 60.8 59.7 58.6 61.0
SQLova w/ HardEM 61.3 62.2 61.8 61.8 61.7

SQLova w/ Ours 79.7 82.8 79.8 81.2 87.4

Table 6: Accuracy on the SQL selection task. The
hard train set was used for training. BARTbase w/ Har-
dEM and SQLova w/ HardEM are a BARTbase parser
and SQLova, respectively; both were trained with Har-
dEM. SQLova w/ Ours is SQLova trained with the pro-
posed mutual information maximization approach (us-
ing BARTbase question reconstructor).

5.3 Effect of the Question Reconstructor
As we used BARTbase as the question resconstruc-
tor, we investigated how our question reconstructor
contributes to performance improvements.

We first investigated whether BARTbase itself is
less affected by the spurious solution problem than
the task-specific models. Specifically, we viewed
text2SQL as a sequence generation task and fine-
tuned a BARTbase on the hard train set of WikiSQL
with HardEM. The input of BART shares the same
format as that of SQLova, which is the concate-
nation of a question and a table header. The out-
put of BART is a SQL query. Without constraints
on decoding, BART might not produce valid SQL
queries. We therefore evaluated models on a SQL
selection task instead: for each question in the de-
velopment set of WikiSQL, a model picks out the
correct SQL from at most 10 candidates by select-
ing the one with the highest prediction probability.
As shown in Table 6, when trained with HardEM,
both BARTbase parser and SQLova perform sim-
ilarly, and underperform our method by a large
margin. This indicates that using BARTbase as a
task-specific model can not avoid the spurious so-
lution problem. It is our mutual information maxi-
mization objective that makes a difference.

DROP WikiSQL (Hard Train Set)
Dev Test Dev Test

EM F1 EM F1 LF. Acc Exe. Acc LF. Acc Exe. Acc
T-scratch 61.5 66.3 69.0 72.4 24.7 67.9 24.9 67.5
T-DAE 61.5 66.3 69.4 72.7 49.4 68.9 48.5 68.4

BARTbase 61.5 66.4 69.3 72.9 45.8 69.1 45.6 68.4

Table 7: Results with different question reconstructors.
LF. Acc and Exe. Acc are logical form accuracy and
execution accuracy, respectively. T-scratch is a Trans-
former without pre-training. T-DAE is a Transformer
pre-trained as a denoising auto-encoder of questions.

We further investigated the effect of the choice
of question reconstructor. We compared BARTbase
with two alternatives: (1) T-scratch: a three-layer
Transformer (Vaswani et al., 2017) without pre-

training and (2) T-DAE: a three-layer Transformer
pre-trained as a denoising auto-encoder of ques-
tions on the train set; the text infilling pre-training
task for BART was used. As shown in Table 7, our
method with either of the three question reconstruc-
tors outperforms or is at least competitive with base-
lines, which verifies the effectiveness of our mu-
tual information maximization objective. What’s
more, using T-DAE is competitive with BARTbase,
indicating that our training objective is compatible
with other choices of question reconstructor besides
BART, and that using a denoising auto-encoder to
initialize the question reconstructor may be benefi-
cial to exploit the semantic correlations between a
question and its solution.

6 Evaluation of Solution Prediction

As solutions with correct answer can be spurious,
we further analyzed the quality of predicted solu-
tions. We randomly sampled 50 test examples from
DROP for which our method produced the correct
answer, and found that our method also produced
the correct solution for 92% of them.

To investigate the effect of different learning
methods on models’ ability to produce correct so-
lutions, we manually analyzed another 50 test sam-
ples for which HardEM, HardEM-thres, and our
method produced the correct answer with different
solutions. The percentage of samples for which our
method produced the correct solution is 58%, much
higher than that of HardEM (10%) and HardEM-
thres (30%). For experimental details, please re-
fer to the appendix.

7 Case Study

Fig 6 compares NeRd predictions on four types of
questions from DROP when using different learn-
ing methods. An observation is that NeRd using
our method shows more comprehensive understand-
ing of questions, e.g., in the Arithmetic case, NeRd
using our method is aware of the two key elements
in the question including the year when mission-
aries arrived in Ayutthaya and the year when the
Seminary of Saint Joseph was built, while NeRd us-
ing HardEM-thres misses the first element. What’s
more, NeRd using our method is more precise in lo-
cating relevant information, e.g., in the first Sorting
case, NeRd with our method locates the second ap-
pearance of 2 whose contextual semantics matches
the question, while NeRd using HardEM-thres lo-
cates the first appearance of 2 which is irrelevant.
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Span(s)
Question: Which team attempted a 2-point conversion?
Answer: Rams
Paragraph: Hoping to rebound from their road loss to the Patriots, the ①Rams went home for a Week 9 NFC West duel with the Arizona Cardinals … In the second quarter, the Cardinals 
responded with a vengeance as safety Antrel Rolle returned an interception 40 yards for a touchdown, kicker Neil Rackers got a 36-yard field goal, RB Tim Hightower got a 30-yard TD run, 
and former ②Rams QB Kurt Warner completed a 56-yard TD pass to WR Jerheme Urban. In the third quarter, Arizona increased its lead as Warner completed a 7-yard TD pass to WR 
Anquan Boldin. In the fourth quarter, the ③Rams tried to come back as Bulger completed a 3-yard TD pass to WR Torry Holt (with a failed 2-point conversion). However, the Cardinals 
flew away as Rackers nailed a 30-yard field goal. During the game, the ④Rams inducted former Head Coach Dick Vermeil (who helped the franchise win Super Bowl XXXIV) onto the ⑤
Rams Ring of Honor.
Model Prediction:

Ours: ③Rams ✓
HardEM-thres: ⑤Rams ✗

Arithmetic
Question: How many years after the missionaries arrived in Ayutthaya did the build the Seminary of Saint Joseph?
Answer: 2 or 1
Paragraph: In 1664, a group of missionaries led by Franois Pallu, Bishop of Heliopolis, also of the Paris Foreign Missions Society, joined Lambert in the capital city of Ayutthaya after 24 
months overland travel and started missionary work. In 1665-66 they built a seminary in Ayutthaya with the approval of King Narai, the Seminary of Saint Joseph. In 1669, Louis Laneau, 
Bishop of Motella, also a member of the Paris Foreign Missions Society, …
Model Prediction:

Ours: 1666 - 1664 ✓
HardEM-thres: 1666 - 1665 ✗

Sorting
Question: How many yards was the shortest touchdown pass?
Answer: 2
Paragraph: The Giants played their Week ①2 home opener against the Green Bay Packers … The Giants responded with a 26-yard scoring strike by Eli Manning to Plaxico Burress. The 
Giants got a Lawrence Tynes field goal and a 10-7 half time lead. In the second half, the Packers drove 51 yards to start the second half. Favre capped off the scoring drive with a ②2-yard 
pass to Bubba Franks for a 14-10 lead the Packers would not relinquish… 
Model Prediction:

Ours: min{②2} ✓
HardEM-thres: ①2 ✗

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Question: How many yards was Sebastian Janikowski's longest field goal?
Answer: 49
Paragraph: … The Seahawks immediately trailed on a scoring rally by the Raiders with kicker Sebastian Janikowski nailing a 31-yard field goal. This was followed in the second quarter 
by QB Jason Campbell's 30-yard TD pass to FB Marcel Reece. Then in the third quarter Janikowski made a 36-yard field goal. Then he made a 22-yard field goal in the fourth quarter to put 
the Raiders up 16-0 ... with kicker Olindo Mare hitting a 47-yard field goal. However, they continued to trail as Janikowski made a 49-yard field goal …
Model Prediction:

Ours: max{49, 36} Incomplete
HardEM-thres: max{49, 31} Incomplete

Counting
Question: How many passed did Houshmandzadeh catch?
Answer: 2
Paragraph: … In the third quarter, Cincinnati tried to rally as QB Carson Palmer completed an 18-yard TD pass to WR T. J. Houshmandzadeh... Cincinnati tried to come back as Palmer 
completed a 10-yard TD pass to Houshmandzadeh (with a failed 2-point conversion), but Dallas pulled away with Romo completing a 15-yard TD pass to WR Patrick Crayton.
Model Prediction:

Ours: |{18-yard TD pass, 10-yard}| ✓
HardEM-thres: 2 ✗

Figure 6: NeRd predictions on four types of questions from DROP when using different learning methods. Spans
in dark gray and green denote semantic correlations between a question and its solution, while spans in orange are
spurious information and should not be used in a solution.

These two observations can be attributed to our
mutual information maximization objective which
biases a task-specific model towards those solutions
that align well with the questions.

However, we also observed that when there are
multiple mentions of relevant information of the
same type, NeRd trained with HardEM-thres or our
method has difficulty in recalling them all, e.g., in
the second Sorting case, the correct solution should
locate all four mentions of Sebastian Janikowski’s
field goals while NeRd using either method lo-
cates only two of them. We conjecture that this
is because the solution sets provided by Chen et al.
(2020) are noisy. For example, all precomputed
solutions of sorting type for numeric answers in-
volve up to two numbers from reference informa-
tion, which makes it hard for a model to learn to
sort more than two numbers.

8 Conclusion

To alleviate the spurious solution problem in
weakly supervised QA, we propose to explicitly

exploit the semantic correlations between a ques-
tion and its solution via mutual information maxi-
mization. During training, we pair a task-specific
model with a question reconstructor which guides
the task-specific model to predict solutions that are
consistent with the questions. Experiments on four
QA datasets demonstrate the effectiveness of our
learning method. As shown by automatic and man-
ual analyses, models trained with our method are
more resistant to spurious solutions during training,
and are more precise in locating information that is
relevant to the questions during inference, leading
to higher accuracy of both answers and solutions.
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A Implementation Details

A.1 Learning Methods
HardEM: We followed Min et al. (2019) to apply
annealing to HardEM on reading comprehension
tasks: at the training step t, a model optimizes
MML objective with a probability of min(t/τ, 0.8)
and optimizes HardEM objective otherwise. τ was
chosen from {10K, 20K, 30K, 40K, 50K} based
on model performance on the development set.
HardEM-thres: We set the confidence threshold
as γ = 0.5n where n was initialized as follows: we
first computed the prediction probability of each
solution with a task-specific model, and then set n
to a value such that the model was trained on no
less than half of training data at the first epoch. We
halved γ after each epoch.
VAE(Cheng and Lapata, 2018): A method that
views a solution as the latent variable for ques-
tion generation and adopts the training objective of
Variational Auto-Encoder (VAE) to regularize the
task-specific model. The overall training objective
is given by:

θ∗, φ∗ = argmax
θ,φ
L(θ, φ)

L(θ, φ) = Lmle(θ) + λLvae(θ, φ)

=
∑
z∈B

logPθ(z|d, q) + λEPθ(z|d,q) log
Pφ(q|d, z)
Pθ(z|d, q)

where Lmle(θ) is the total log likelihood of the set
of model-predicted solutions (denoted by B) with
correct answer. Lvae(θ, φ) is the evidence lower
bound of the log likelihood of questions. λ is the
coefficient of Lvae(θ, φ). The optimization pro-
cess is divided into three stages: (1) the 1st stage
pre-trains a task-specific model θ with HardEM-
thres on solution sets4; (2) the 2nd stage pairs the
task-specific model with our question reconstruc-
tor φ to optimize L(θ, φ) for one epoch, except
that Lvae(θ, φ) is used to pre-train φ and is kept
from back-propagating to θ; (3) the 3rd stage opti-
mizes L(θ, φ) while allowing Lvae(θ, φ) to back-
propagate to θ. The gradient of Lvae(θ, φ) w.r.t. θ
is given by:

5θLvae(θ, φ) = EPθ(z|d,q)R5θ logPθ(z|d, q)

R = log
Pφ(q|d, z)
Pθ(z|d, q)

where R is the reward function. To stabilize train-
ing, we use the average reward of 5 sampled so-

4Cheng and Lapata (2018) pre-trained the task-specific
model θ by maximizing Lmle(θ). We enhanced their method
by pre-training θ with HardEM-thres.
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lutions as a baseline b and re-define the reward
function as R

′
= R− b. λ is set to 0.1.

In section 4.3, we report performance of the best
model in the 3rd stage. At the 2nd stage, as the
task-specific model optimized on both correct solu-
tions and spurious solutions equally, the F1 score
dropped from 72.35 to 67.93 at the end of this stage,
indicating that correct training solutions is vital
for generalization. At the 3rd stage, model learn-
ing was further regularized with Lvae(θ, φ) which
was optimized via reinforcement learning. Despite
our efforts to stabilize training, the F1 score still
dropped to 36.28 after training for 1,000 steps at
the 3rd stage.

A.2 Experimental Settings

For all experiments, we used previously proposed
task-specific models and optimized them with their
original optimizer. We chose the best task-specific
model according to its performance on the devel-
opment set. As for our learning method, we used
BARTbase as the question reconstructor. AdamW
optimizer (Loshchilov and Hutter, 2019) was used
to update the question reconstructor with learning
rate set to 5e-5.

A.2.1 Multi-mention Reading
Comprehension

We adopted the reading comprehension model, data
preprocessing, and training configurations from
Min et al. (2019).
Task-specific model: The model is based on un-
cased version of BERTbase, which takes as input the
concatenation of a question and a paragraph, and
outputs the probability distribution of the start and
end position of the answer span. To deal with multi-
paragraph reading comprehension, it also trains a
paragraph selector; during inference, it outputs a
span from the paragraph ranked 1st.
Data Preprocessing: Documents are split to seg-
ments up to 300 tokens. For Quasar-T, as re-
trieved sentences are short, we concatenated all
sentences into one document in decreasing order
of retrieval score (i.e., relevance with the question);
for WebQuestions, we concatenated 5 retrieved
paragraphs into one document, resulting in 10 ref-
erence documents per question.
Training: Batch size is 20. BertAdam optimizer
was used to update the reading comprehension
model with learning rate set to 5e-5. The number
of training epochs is 10.

A.2.2 Discrete Reasoning over Paragraphs

We used NeRd (Chen et al., 2020) for discrete rea-
soning. The major differences with its original
implementation have been discussed in section 4.3.
Task-specific Model: Chen et al. (2020) have de-
signed a domain-specific language for discrete rea-
soning on DROP. The definitions of solutions for
discrete reasoning introduced in section 4.3 are
also expressed in this language except that we use
different symbols (e.g., the minus sign “-” in our
definitions has the same meaning as the symbol

“DIFF” in their paper). NeRd is a Seq2Seq model
which tasks as input the concatenation of a ques-
tion and a paragraph, and generates the solution as
a sequence. The answer is obtained by executing
the solution.
Data Preprocessing: The input of the task-specific
model is truncated to up to 512 words. We used the
solution sets provided by Chen et al. (2020), which
cover 93.2% of examples in the train set.
Training: Batch size is 32. Adam optimizer
(Kingma and Ba, 2015) was used to update NeRd
with learning rate set to 5e-5. The number of train-
ing epochs is 20.

A.2.3 Semantic Parsing

Following Min et al. (2019), we used SQLova
(Hwang et al., 2019) on WikiSQL.
Task-specific Model: SQLova encodes the con-
catenation of a question and a table header with
uncased BERTbase, and outputs a SQL query via
slot filling with an NL2SQL (natural language to
SQL) layer.
Data Preprocessing: Data preprocessing was kept
the same as in (Min et al., 2019). We also used the
solution sets provided by Min et al. (2019) which
cover 98.8% of examples in the train set.
Training: Following Min et al. (2019), we set the
batch size to 10. Following Hwang et al. (2019),
Adam optimizer was used to update SQLova with
learning rate of BERTbase and NL2SQL layer set to
1e-5 and 1e-3, respectively. The number of training
epochs is 15 and 20 when using the original train
set and the hard train set of WikiSQL, respectively.

A.3 Computing Infrastructure

We conducted experiments on 24GB Quadro RTX
6000 GPUs. Most experiments used 1 GPU except
that experiments on DROP used 4 GPUs in parallel.
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B Details of Ablation Study

B.1 SQL Selection Task
We defined a SQL selection task on the develop-
ment set of WikiSQL. Specifically, for each ques-
tion, we randomly sampled min(10, |Z|) solution
candidates from the solution set Z without replace-
ment while ensuring the ground-truth solution was
one of the candidates. A model was required to
pick out the ground-truth solution by selecting the
candidate with the highest prediction probability.

In section 5.3, we only show model accuracy in
the first 10 training epochs because for BARTbase
w/ HardEM, SQLova w/ HardEM, and SQLova w/
Ours, model confidence (computed as the average
log likelihood of selected SQLs) showed a down-
ward trend after the 2nd, 4th, and ≥ 10th epoch,
respectively.

B.2 Choice of Question Reconstructor
We investigated how the choice of the question re-
constructor affects results. One alternative choice
is a Transformer pre-trained as a denoising auto-
encoder of questions on the train set. This question
reconstructor is the same as BARTbase except that
the number of encoder layers and the number of de-
coder layers are 3 respectively. We pre-trained the
question reconstructor for one epoch to reconstruct
original questions from corrupted ones. For 50%
of the time, the input question is the original ques-
tion; otherwise, we followed Lewis et al. (2020) to
corrupt the original question by randomly masking
a number of text spans with span lengths drawn
from a Poisson distribution (λ = 3). Batch size is 4.
AdamW optimizer was used with learning rate set
to 5e-5.


