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Abstract

While sophisticated Visual Question Answer-
ing models have achieved remarkable success,
they tend to answer questions only accord-
ing to superficial correlations between ques-
tion and answer. Several recent approaches
have been developed to address this language
priors problem. However, most of them pre-
dict the correct answer according to one best
output without checking the authenticity of an-
swers. Besides, they only explore the inter-
action between image and question, ignoring
the semantics of candidate answers. In this
paper, we propose a select-and-rerank (SAR)
progressive framework based on Visual Entail-
ment. Specifically, we first select the candi-
date answers relevant to the question or the im-
age, then we rerank the candidate answers by a
visual entailment task, which verifies whether
the image semantically entails the synthetic
statement of the question and each candidate
answer. Experimental results show the effec-
tiveness of our proposed framework, which es-
tablishes a new state-of- the-art accuracy on
VQA-CP v2 with a 7.55% improvement.1

1 Introduction

Visual Question Answering (VQA) task is a multi-
modal problem which requires the comprehensive
understanding of both visual and textual informa-
tion. Presented with an input image and a question,
the VQA system tries to determine the correct an-
swer in the large prediction space. Recently, some
studies (Jabri et al., 2016; Agrawal et al., 2016;
Zhang et al., 2016; Goyal et al., 2017) demonstrate
that VQA systems suffer from the superficial corre-
lation bias (i.e. language priors) caused by acciden-
tal correlations between answers and questions. As
a result, traditional VQA models always output the
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1The code is available at https://github.com/
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Figure 1: (a) We evaluate the performance of UpDn,
LMH, SSL on the VQA-CP v2 test. topN represents
the topN accuracy. (b) Visual verification utilizing an-
swer semantics.

most common answer(Selvaraju et al., 2019) of the
input sample’s question category, no matter what
image is given. To address this language priors
problem, various approaches have been developed.

However, through exploring the characteristics
of the existing methods, we find that whether the
general VQA models such as UpDn(Anderson
et al., 2018) and LXMERT(Tan and Bansal, 2019)
or models carefully designed for language priors, as
LMH(Clark et al., 2019) and SSL(Zhu et al., 2020),
yield a non-negligible problem. Both models pre-
dict the correct answer according to one best output
without checking the authenticity of answers. Be-
sides, these models have not made good use of
the semantics information of answers that could be
helpful for alleviating the language-priors.

As presented in Figure 1(a), quite a few correct
answers usually occur at top N candidates rather
than top one. Meanwhile, if the top N candidate
answers are given, the image can further verify
the visual presence/absence of concepts based on
the combination of the question and the candidate

https://github.com/PhoebusSi/SAR
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answer. As shown in Figure 1(b), the question is
about the color of the bat and two candidate an-
swers are “yellow” and “black”. After checking
the correctness of candidate answers, the wrong
answer “yellow” which is contradicted with the im-
age can be excluded and the correct answer “black”
which is consistent with the image is confirmed.
Nevertheless, this visual verification, which uti-
lizes answer semantics to alleviate language priors,
has not been fully investigated.

In this paper, we propose a select-and-rerank
(SAR) progressive framework based on Visual En-
tailment. The intuition behind the proposed frame-
work comes from two observations. First, after
excluding the answers unrelated to the question
and image, the prediction space is shrunken and we
can obtain a small number of candidate answers.
Second, on the condition that a question and one
of its candidate answer is bridged into a complete
statement, the authenticity of this statement can be
inferred by the content of the image. Therefore, af-
ter selecting several possible answers as candidates,
we can utilize the visual entailment, consisting of
image-text pairs, to verify whether the image se-
mantically entails the synthetic statement. Based
on the entailment degree, we can further rerank can-
didate answers and give the model another chance
to find the right answer. To summarize, our contri-
butions are as follows:

1. We propose a select-and-rerank progres-
sive framework to tackle the language priors prob-
lem, and empirically investigate a range of design
choices for each module of this framework. In
addition, it is a generic framework, which can be
easily combined with the existing VQA models and
further boost their abilities.

2. We highlight the verification process between
text and image, and formulate the VQA task as
a visual entailment problem. This process makes
full use of the interactive information of image,
question and candidate answers.

3. Experimental results demonstrate that our
framework establishes a new state-of-the-art accu-
racy of 66.73%, outperforming the existing meth-
ods by a large margin.

2 Related Work

Language-Priors Methods To address the lan-
guage prior problem of VQA models, a lot of
approaches have been proposed, which can be
roughly categorized into two lines: (1) Design-

ing Specific Debiasing Models to Reduce Biases.
Most works of this line are ensemble-based meth-
ods (Ramakrishnan et al., 2018; Grand and Be-
linkov, 2019; Belinkov et al., 2019; Cadene et al.,
2019; Clark et al., 2019; Mahabadi and Henderson,
2019), among these, LMH(Clark et al., 2019) re-
duces all biases between question-answer pairs by
penalizing the samples that can be answered with-
out utilizing image content. (2) Data Augmentation
to Reduce Biases. The main idea of such works
(Zhang et al., 2016; Goyal et al., 2017; Agrawal
et al., 2018) is to carefully construct more balanced
datasets to overcome priors. For example, the re-
cent method SSL(Zhu et al., 2020) first automat-
ically generates a set of balanced question-image
pairs, then introduces an auxiliary self-supervised
task to use the balanced data. CSS(Chen et al.,
2020a) balances the data by adding more comple-
mentary samples which are generated by masking
objects in the image or some keywords in the ques-
tion. Based on CSS, CL(Liang et al., 2020) forces
the model to utilize the relationship between com-
plementary samples and original samples. Unlike
SSL and CSS which do not use any extra manual
annotations, MUTANT(Gokhale et al., 2020) lo-
cates critical objects in the image and critical words
in the question by utilizing the extra object-name
labels, which directly helps the model to ground
the textual concepts in the image. However, above
methods only explore the interaction between the
image and the question, ignoring the semantics of
candidate answers. In this paper, we propose a
progressive VQA framework SAR which achieves
better interaction among the question, the image
and the answer.

Answer Re-ranking Although Answer Re-
ranking is still in the infancy in VQA task, it has
been widely studied for QA tasks like open-domain
question answering, in which models need to an-
swer questions based on a broad range of open-
domains knowledge sources. Recent works (Wang
et al., 2018b,a; Kratzwald et al., 2019) address
this task in a two-stage manner: extract candi-
dates from all passages, then focus on these candi-
date answers and rerank them to get a final answer.
RankVQA(Qiao et al., 2020) introduces Answer
Re-ranking method to VQA task. They design an
auxiliary task which reranks candidate answers ac-
cording to their matching degrees with the input
image and off-line generated image captions. How-
ever, RankVQA still predicts the final answer from
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Figure 2: Overview of the progressive framework SAR.

the huge prediction space rather than selected can-
didate answers.

3 Method

Figure 2 shows an overview of the proposed select-
and-rerank (SAR) framework, which consists of
a Candidate Answer Selecting module and an An-
swer Re-ranking module. In the Candidate Answer
Selecting module, given an image and a question,
we first use a current VQA model to get a candi-
date answer set consisting of top N answers. In
this module, the answers irrelevant to the question
can be filtered out. Next, we formulate the VQA
as a VE task in the Answer Re-ranking module,
where the image is premise and the synthetic dense
caption(Johnson et al., 2016) (combination of the
answer and the question ) is hypothesis. We use
the cross-domain pre-trained model LXMERT(Tan
and Bansal, 2019) as VE scorer to compute the
entailment score of each image-caption pair, and
thus the answer corresponding to the dense caption
with the highest score is our final prediction.

3.1 Candidate Answer Selecting

The Candidate Answer Selector (CAS) selects sev-
eral answers from all possible answers as candi-
dates and thus shrinks the huge prediction space.
Given a VQA dataset D = {Ii, Qi}Mi=1 with M
samples, where Ii ∈ I , Qi ∈ Q are the image
and question of the ith sample and A is the whole
prediction space consisting of thousands of answer
categories. Essentially, the VQA model applied as
CAS is a |A|-class classifier, and is a free choice in
our framework. Given an image Ii and a question
Qi, CAS first gives the regression scores over all
optional answers: P (A|Qi, Ii). Then CAS chooses
N answers A∗i with top N scores as candidates,
which is concluded as follows:

A∗i = topN(argsort(P (A|Qi, Ii))) (1)

N (hyper-parameter) candidate answers A∗i =
[A1

i , A
2
i , ..., A

N
i ] are selected for each (Ii, Qi)

pair by CAS, forming a dataset D
′

=
{Ii, Qi, A

n
i }

M ,N
i=1,n=1 with M ∗N instances, where

An
i ∈ A∗i , for the next Answer Re-ranking module.

In this paper, we mainly use SSL as our CAS. We
also conduct experiments to analyze the impact of
different CAS and different N .

3.2 Answer Re-ranking

3.2.1 Visual Entailment
Visual Entailment (VE) task is proposed by Xie
et al. (2019), where the premise is a real-world
image, denoted by Pimage, and the hypothesis is a
text, denoted by Htext. Given a sample of (Pimage,
Htext), the goal of VE task is to determine whether
the Htext can be concluded based on the informa-
tion of Pimage. According to following protocols,
the label of the sample is assigned to (1) Entailment,
if there is enough evidence in Pimage to conclude
Htext is true. (2) Contradiction, if there is enough
evidence in Pimage to conclude Htext is false. (3)
Neutral, if there is no sufficient evidence in Pimage

to give a conclusion about Htext.

3.2.2 VQA As Visual Entailment
A question Qi and each of its candidate answers
A∗i can be bridged into a complete statement, and
then the image could verify the authenticity of
each statement. More specifically, the visual pres-
ence of concepts (e.g. “black bat”/“yellow bat”)
based on the combination of the question and
the correct/wrong candidate answer can be en-
tailed/contradicted by the content of the image. In
this way, we achieve better interaction among ques-
tion, image and answer.

Therefore, we formulate VQA as a VE prob-
lem, in which the image Ii is premise, and the
synthetic statement of an answer An

i in A∗i and
question Qi, represented as (Qi,An

i ), is hypothe-
sis. For an image, synthetic statements of different
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questions describe different regions of the same
image. Following Johnson et al. (2016), we also
refer to the synthetic statement as “dense caption”.
We use A+

i to represent the An
i if An

i is the correct
answer of Qi, use A−i otherwise. There is enough
evidence in Ii to prove (Qi,A+

i ) is true, i.e. the
visual linguistic semantically entails (Qi,A+

i ). And
there is enough evidence in Ii to prove (Qi, A

−
i )

is false, i.e. the visual linguistic semantically con-
tradicts (Qi, A

−
i ). Note that, there is no Neutral

label in our VE task and we only have two labels:
Entailment and Contradiction.

3.2.3 Re-Ranking based on VE
We re-rank dense captions by contrastive learning,
that is, (Qi,A+

i ) should be more semantically simi-
lar to Ii than (Qi,A−i ). The right part of Figure 2
illustrates this idea. The more semantically similar
Ii to (Qi,An

i ), the deeper the visual entailment de-
gree is. We score the visual entailment degree of
Ii to each (Qi,An

i ) ∈ (Qi,A∗i ) and rerank the can-
didate answers A∗i by this score. The ranking-first
answer is our final output.

Question-Answer Combination Strategy The
answer information makes sense only when com-
bine it with the question. We encode the combina-
tion of question and answer text to obtain the joint
concept.

We design three question-answer combination
strategies: R, C and R→C to combine question
and answer into synthetic dense caption Ci:

R: Replace question category prefix with answer.
The prefix of each question is the question cate-
gory such as “are there”, “what color”, etc. For
instance, given a question “How many flowers in
the vase?”, its answer “8” and its question category
“how many”, the resulting dense caption is “8 flow-
ers in the vase”. Similarly, “No a crosswalk” is
the result of question “ Is this a crosswalk?” and
answer “No”. We build a dictionary of all question
categories of the train set, then we adopt a Forward
Maximum Matching algorithm to determine the
question category for every test sample.

C: Concatenate question and answer directly.
For two cases above, the resulting dense captions
are “8 How many flowers in the vase?” and “No Is
this a crosswalk?”. The resulting dense captions af-
ter concatenation are actually rhetorical questions.
We deliberately add answer text to the front of ques-
tion text in order to avoid the answer being deleted
when trimming dense captions to the same length.

R→C: We first use strategy R at training, which
is aimed at preventing the model from excessively
focusing on the co-occurrence relation between
question category and answer, and then use strat-
egy C at testing to introduce more information for
inference.

Adopting any strategy above, we combine Qi

and each answer in A∗i to derive the dense cap-
tions C∗i . And thus we have a dataset D

′′
=

{Ii, Cn
i }

M ,N
i=1,n=1with M ∗N instances for VE task.

VE Scorer We use the pre-trained model
LXMERT to score the visual entailment degree
of (Ii, Cn

i ). LXMERT separately encodes image
and caption text in two streams. Next, the separate
streams interact through co-attentional transformer
layers. In the textual stream, the dense caption is
encoded into a high-level concept. Then the visual
representations from visual stream can verify the
visual presence/absence of the high-level concept.

We represent the VE score for the ith
image and its nth candidate caption as:
sigmoid(Trm(Ii, C

n
i )), where Trm() is

the 1-demensional output from the dense layers
following LXMERT, δ() denotes the sigmoid
function. The larger score represents higher
entailment degree. We optimize parameters by
minimizing the multi-label soft loss:

LV E =
−1

M ∗N

M∑
i=1

N∑
n=1

[tni log(δ(Trm(Ii, C
n
i )))

+ (1− tni )log(1− δ(Trm(Ii, C
n
i )))]

(2)
where tni is the soft target score of the nth answer.

Combination with Language-Priors Method
After Candidate Answer Selecting, the amount of
candidate answers decreases from all possible an-
swers to top N . Although some unrelated answers
are filtered out, the dataset D

′′
for VE system is

still biased. Therefore, we can optionally apply
existing language-priors methods to our framework
for further reducing language priors. Take the SSL
as an example, we apply the loss function of its
self-supervised task to our framework by adjusting
the loss function to:

Lssl =
α

M ∗N

M∑
i=1

N∑
n=1

P (I ′i, C
n
i ) (3)

where (I ′i, C
n
i ) denotes the irrelevant image-

caption pairs, α is a down-weighting coefficients.
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The probability P (I ′i, C
n
i ) could be considered as

the confidence of (I ′i, C
n
i ) being a relevant pair. We

can reformulate the overall loss function:

L = LV E + Lssl (4)

3.3 Inference Process
Question Type Discriminator Intuitively, most
“Yes/No” questions can be answered by the answer
“Yes” or “No”. There is no need to provide too
many candidate answers for “Yes/No” questions
at the test stage. Therefore, we propose a Ques-
tion Type Discriminator(QTD) to determine the
question type and then correspondingly set differ-
ent numbers of candidate answers, denoted as N ′.
Specifically, we roughly divided question types (in-
cluding “Yes/No”, “Num” and “Other”) into yes/no
and non-yes/no. A GRU binary classifier is trained
with cross-entropy loss and evaluated with 5-fold
cross-validation on the train split of each dataset.
Then, the trained QTD model with an accuracy
about 97% is implemented as an off-line module
during the test stage. We will further investigate
the effect of N ′ on each question type in the next
section.

Final Prediction In the inference phase, we
search for the best dense caption Ĉi among all
candidates C∗i for the ith image.

Ĉi = argmax
n∈N ′

δ(Trm(Ii, C
n
i )) (5)

The answer Âi corresponding to Ĉi is the final
prediction.

4 Experiments

4.1 Setting
Datasets Our models are trained and evalu-
ated on the VQA-CP v2(Agrawal et al., 2018)
dataset, which is well-crafted by re-organizing
VQA v2(Goyal et al., 2017) training and validation
sets such that answers for each question category
(65 categories according to the question prefix)
have different distributions in the train and test sets.
Therefore, VQA-CP v2 is a natural choice for eval-
uating VQA model’s generalizability. The ques-
tions of VQA-CP v2 include 3 types: “Yes/No”,
“Num” and “Other”. Note that the question type
and question category (e.g.“what color”) are differ-
ent. Besides, we also evaluate our models on the
VQA v2 validation set for completeness, and com-
pare the accuracy difference between two datasets

with the standard VQA evaluation metric(Antol
et al., 2015).

Baselines We compare our method with the
following baseline methods: UpDn(Anderson
et al., 2018), AReg(Ramakrishnan et al., 2018),
RUBi(Cadene et al., 2019), LMH(Clark et al.,
2019), RankVQA(Qiao et al., 2020), SSL(Zhu
et al., 2020), CSS(Chen et al., 2020a), CL(Liang
et al., 2020) and LXMERT(Tan and Bansal, 2019).
Most of them are designed for the language pri-
ors problem, while LXMERT represents the recent
trend towards utilizing BERT-like pre-trained mod-
els(Li et al., 2019; Chen et al., 2020b; Li et al.,
2020) which have top performances on various
downstream vision and language tasks (including
VQA-v2). Note that MUTANT(Gokhale et al.,
2020) uses the extra object-name label to ground
the textual concepts in the image. For fair compari-
son, we do not compare with MUTANT.

4.2 Implementation Details

In this paper, we mainly choose SSL as our CAS
and setN=12 andN=20 for training. To extract im-
age features, we follow previous work and use the
pre-trained Faster R-CNN to encode each image
as a set of fixed 36 objects with 2048-dimensional
feature vectors. We use the tokenizer of LXMERT
to segment each dense caption into words. All
the questions are trimmed to the same length of
15 or 18, respectively for R or C question-answer
combination strategy. In the Answer Re-ranking
Module, we respectively incorporate two language-
priors methods, SSL and LMH, into our proposed
framework SAR, which is dubbed as SAR+SSL
and SAR+LMH. Our models are trained on two
TITAN RTX 24GB GPUs. We train SAR+SSL
for 20 epochs with batch size of 32, SAR and
SAR+LMH for 10 epochs with batch size of 64.
For SAR+SSL, we follow the same setting as the
original paper(Zhu et al., 2020), except that we
don’t need to pre-train the model with the VQA
loss before fine-tuning it with the self-supervised
loss. The Adam optimizer is adopted with the learn-
ing rate 1e–5.

For Question Type Discriminator, we use 300-
dimensional Glove(Pennington et al., 2014) vectors
to initialize word embeddings and feed them into a
unidirectional GRU with 128 hidden units. When
testing on the VAQ-CP v2, N ′ ranges from 1-2 for
yes/no questions and 5-15 for non-yes/no questions.
As for VQA v2, N ′ ranges from 1-2 for yes/no
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Model
VQA-CP v2 test(%)↑ VQA-v2 val(%)↑ GAP

ALL Yes/No Num Other All Yes/No Num Other (%)↓
UpDN(Anderson et al., 2018) 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 23.74
Areg(Ramakrishnan et al., 2018) 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58
RUBI(Cadene et al., 2019) 47.11 68.65 20.28 43.18 61.16 - - - 14.05
LMH(Clark et al., 2019) 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04 9.19
RankVQA(Qiao et al., 2020) 43.05 42.53 13.91 51.32 65.42 82.51 57.75 45.35 22.37
LXMERT(Tan and Bansal, 2019) 46.23 42.84 18.91 55.51 74.16 89.31 56.85 65.14 27.93
SSL(Zhu et al., 2020) 57.59 86.53 29.87 50.03 63.73 - - - 6.14
CSS(Chen et al., 2020a) 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96
CL(Liang et al., 2020) 59.18 86.99 49.89 47.16 - - - - -
Top12-SAR(R→C) (Ours) 64.55 83.03 50.05 58.8 70.41 87.87 54.34 61.38 5.86
Top20-SAR(R→C) (Ours) 65.44 83.13 54.52 59.16 70.63 87.91 54.93 61.64 5.19
Top12-SAR+SSL(R→C) (Ours) 64.29 82.86 51.98 57.94 69.84 87.22 54.41 60.70 5.55
Top20-SAR+SSL(R→C) (Ours) 65.32 83.41 54.32 58.85 70.03 87.47 54.59 60.85 4.71
Top12-SAR+LMH(R) (Ours) 65.93 85.38 62.30 56.73 69.13 87.61 50.43 60.03 3.20
Top20-SAR+LMH(R) (Ours) 66.73 86.00 62.34 57.84 69.22 87.46 51.20 60.12 2.49

Table 1: Results on VQA-CP v2 test and VQA-v2 validation set. Overall best scores are bold, our best are
underlined. The gap represents the accuracy difference between VQA v2 and VQA-CP v2.

questions and 2-5 for non-yes/no questions.

4.3 Results and Analysis

4.3.1 Main Results
Performance on two benchmarks VQA-CP-v2 and
VQA-v2 is shown in Table 1. We report the best
results of SAR, SAR+SSL and SAR+LMH among
3 question-answer combination strategies respec-
tively. “TopN-” represents that N candidate an-
swers (selected by CAS) feed into the Answer Re-
ranking Module for training. Our approach is eval-
uated with two settings of N (12 and 20).

From the results on VQA-CP v2 shown in Ta-
ble 1, we can observe that: (1) Top20-SAR+LMH
establishes a new state-of-the-art accuracy of
66.73% on VQA-CP v2, beating the previous best-
performing method CL by 7.55%. Even with-
out combining language-priors methods in An-
swer Re-ranking module, our model Top20-SAR
outperforms CL by 6.26%. These show the out-
standing effectiveness of our proposed SAR frame-
work. (2) SAR+SSL and SAR+LMH achieve much
better performance than SSL and LMH, which
demonstrates that SAR is compatible with cur-
rent language-priors methods and could realize
their full potential. (3) Compared with another
reranking-based model RankVQA, our method ele-
vates the performance by a large margin of 23.68%.
This shows the superiority of our proposed progres-
sive select-and-rerank framework over RankVQA
which only uses the answer reranking as an aux-
iliary task. (4) Previous models did not general-
ize well on all question types. CL is the previ-

ous best on the “Yes/No”, “Num” questions and
LXMERT on the “Other” questions. In compar-
ison, our model not only rivals the previous best
model on the “Yes/No” questions but also improves
the best performance on the “Num” and “Other”
questions by 12.45% and 3.65%. The remarkable
performance on all question types demonstrates
that our model makes a significant progress toward
a truly comprehensive VQA model.

We also evaluate our method on the VQA v2
which is deemed to have strong language biases.
As shown in Table 1, our method achieves the best
accuracy of 70.63% amongst baselines specially
designed for overcoming language priors, and is
the closest to the SOTA established by LXMERT
which is trained explicitly for the biased data set-
ting. For completeness, the performance gap be-
tween two datasets is also compared in Table 1 with
the protocol from Chen et al. (2020a). Compared
with most previous models which suffer severe per-
formance drops between VQA v2 and VQA-CP v2
(e.g., 27.93% in LXMERT), the Top20-SAR+LMH
significantly decreases the performance drop to
2.49%, which demonstrates the effectiveness of
our framework to further overcome the language
biases. Though CSS achieves a better performance
gap, it sacrifices the performance on the VQA v2.
Meanwhile, as N rises from 12 to 20, our models
achieve better accuracy on both datasets along with
a smaller performance gap. This demonstrates that,
unlike previous methods, our method can alleviate
language priors while maintaining an excellent ca-
pability of answering questions. Nonetheless, we
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Figure 3: Results from model SAR+SSL(R→C) in
VQA-CP v2 with different N during training.

Model/CAS UpDn LMH SSL
w/o SAR∗ 41.04 53.03 57.66
SAR 61.71 61.65 64.55
SAR+SSL 63.52 61.78 64.29
SAR+LMH 64.98 62.72 65.14

Table 2: Results based on different CAS in VQA-CP
v2. We set N=12. ∗ indicates the results come from our
reimplementation using official released codes.

believe that, how to improve the model’s generality
and further transform the trade-off between elim-
inating language priors and answering questions
into win–win outcomes, is a promising research
direction in the future.

4.3.2 The Effect of N
From Figure 3, we can observe that the overall per-
formance is getting better as N increases. The per-
formance improvement on the “Num” and “Other”
questions is especially obvious, and there is a very
slight drop on the “Yes/No” questions. We believe
that SAR can further get better performance by
properly increasing N . Due to the resource limita-
tion, the largest N we use is 20 in this paper.

4.3.3 The Effect of Different CAS
To find out the potential performance limitation
of CAS models, we show the accuracy of 3 CAS
models on the VQA-CP v2 test set. As shown in
Figure 1 (a), the Top3 accuracy (acc) of 3 models is
about 70% and Top6 acc is 80%, which guarantees
that sufficient correct answers are recalled by CAS.
And thus, the performance limitation of CAS is
negligible.

We also conduct experiments to investigate the
effect of different CAS on SAR. From the results
shown in Table 2, we can observe that: (1) Choos-
ing a better VQA model as CAS does not guarantee
a better performance, e.g. performance based on

Top N Model R C R→C

Top12
SAR 59.51 60.24 64.55
SAR+SSL 62.12 62.87 64.29
SAR+LMH 65.93 65.23 65.14

Top20
SAR 60.43 61.86 65.44
SAR+SSL 62.29 63.94 65.32
SAR+LMH 66.73 65.19 66.71

Table 3: Results on the VQA-CP v2 test set based on
different question-answer combination strategies: R, C
and R→C. The major difference between R and C is
whether keeping question prefix which includes 65 cat-
egories.

UpDn outperforms that based on LMH, but LMH
is a better VQA model in overcoming language pri-
ors compared with UpDn. This is because a good
Candidate Answer Selector has two requirements:
(a) It should be able to recall more correct answers.
(b) Under the scenario of language biases, wrong
answers recalled by CAS at training time should
have superficial correlations with the question as
strong as possible. However, the ensemble meth-
ods, such as LMH, are trained to pay more attention
to the samples which are not correctly answered by
the question-only model. This seriously reduces
the recall rate of those language-priors wrong an-
swers, which leads to the training data for VE is
too simple and thus hurts the model’s capability of
reducing language priors. (2) If CAS is the gen-
eral VQA model UpDn rather than LMH and SSL,
the improvement brought from the combination
with language-priors method in Answer Re-ranking
module is more obvious. (3) Even we choose the
UpDn, a backbone model of most current works, as
our CAS and do not involve any language-priors
methods, SAR still achieves a much better accu-
racy than the previous SOTA model CL by 2.53%,
which shows that our basic framework already pos-
sesses outstanding capability of reducing language
priors.

4.3.4 The Effect of Question-Answer
Combination Strategies

From the results shown in Table 3, we can observe
that: (1) From overall results, R→C achieves or ri-
vals the best performance on three models. On
average, R→C outperforms C by 2.02% which
demonstrates avoiding the co-occurrence of ques-
tion category and answer during training time could
effectively alleviate language priors; R→C outper-
forms R by 2.41% which indicates that the informa-
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Model All Yes/No Num Other
LXM 46.23 42.84 18.91 55.51
LXM+SSL 53.09 55.07 29.60 58.50
CAS+LXM(R) 55.58 70.91 29.14 54.81
CAS+LXM+SSL(R) 59.41 76.60 40.81 55.51
CAS+LXM+QTD(R) 59.51 83.20 29.17 55.42
CAS+LXM+SSL+QTD(R) 62.12 85.14 41.63 55.68

Table 4: Ablation study to investigate the effect of each
component of Top12-SAR+SSL: Candidate Answer
Selector (CAS), LXMERT (LXM), Question Type Dis-
criminator (QTD) and SSL.

tion of question category is useful in inference. (2)
On the SAR and SAR+SSL, C consistently outper-
forms R, but on the SAR+LMH, we see opposite
results. This is probably because our method and
the balancing-data method SSL could learn the pos-
itive bias resulted from the superficial correlations
between question category and answer, which is
useful for generalization, but the ensemble-based
method LMH will attenuate positive bias during
de-biasing process. (3) Even without language pri-
ors method, SAR with R→C rivals or outperforms
the SAR+SSL and SAR+LMH with R or C, which
shows that R→C strategy could help the model to
alleviate language priors. As a result, compared
with R or C, our framework with R→C only gains
a slight performance improvement after using the
same language-priors methods.

4.3.5 Ablation Study

“CAS+” represents we use the select-and-rerank
framework. From Table 4, we can find
that: (1) LXM+SSL represents directly apply-
ing SSL to LXMERT. Its poor performance
shows that the major contribution of our frame-
work does not come from the combination of
the language-priors method SSL and pre-trained
model LXMERT. (2) Compared with LXM and
LXM+SSL, CAS+LXM and CAS+LXM+SSL re-
spectively gain prominent performance boost of
9.35% and 6.32%, which demonstrates the im-
portance and effectiveness of our proposed select-
and-rerank procedure. (3) CAS+LXM+QTD(R)
and CAS+LXM+SSL+QTD(R) respectively out-
perform CAS+LXM(R) and CAS+LXM+SSL(R)
by 3.93% and 2.71%, which shows the contribu-
tion of QTD module. This further demonstrates
that choosing appropriate N ′ for different question
types is a useful step for model performance. (4)
CAS+LXM+SSL+QTD improves the performance
of CAS+LXM+QTD by 2.61%, which shows that

Figure 4: Results from SAR(R), SAR+SSL(R),
SAR(R→C) and SAR+LMH(R) with different N ′ dur-
ing test. To better investigate the impact of N ′ on each
question type, we report the results without Question
Type Discriminator.

Figure 5: Qualitative comparison between our Top20-
SAR(R→C) and the baseline SSL. The green/red
bounding boxes indicate the most important regions re-
sulting from ours/SSL. G-T is ground-truth.

current language-priors methods fit our framework
well and could further improve performance.

4.3.6 The Effect of N ′

From Figure 4, we can find that: (1) The best N ′

for yes/no questions is smaller than that for non-
yes/no questions due to the nature of yes/no ques-
tion. (2) As N ′ increases, the accuracy of “Num”
and “Other” questions rises first and then decreases.
There is a trade-off behind this phenomenon: when
N ′ is too small, the correct answer may not be
recalled by CAS; when N ′ is too large, the distrac-
tion from wrong answers makes it more difficult
for model to choose the correct answer.

4.3.7 Qualitative Examples
We qualitatively evaluate the effectiveness of our
framework. As shown in Figure 5, compared with
SSL, SAR performs better not only in question
answering but also in visual grounding. With the
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help of answer semantics, SAR can focus on the
region relevant to the candidate answer and further
use the region to verify its correctness.

5 Conclusion

In this paper, we propose a select-and-rerank (SAR)
progressive framework based on Visual Entailment.
Specifically, we first select candidate answers to
shrink the prediction space, then we rerank can-
didate answers by a visual entailment task which
verifies whether the image semantically entails the
synthetic statement of the question and each can-
didate answer. Our framework can make full use
of the interactive information of image, question
and candidate answers. In addition, it is a generic
framework, which can be easily combined with
the existing VQA models and further boost their
abilities. We demonstrate advantages of our frame-
work on the VQA-CP v2 dataset with extensive
experiments and analyses. Our method establishes
a new state-of-the-art accuracy of 66.73% with an
improvement of 7.55% on the previous best.

Acknowledgments

This work was supported by National Natural Sci-
ence Foundation of China (No. 61976207, No.
61906187)

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. In EMNLP.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume;
look and answer: Overcoming priors for visual ques-
tion answering. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 4971–4980.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 6077–6086.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Yonatan Belinkov, Adam Poliak, Stuart M Shieber,
Benjamin Van Durme, and Alexander M Rush. 2019.

Don’t take the premise for granted: Mitigating arti-
facts in natural language inference. In ACL (1).

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal biases
for visual question answering. Advances in Neural
Information Processing Systems, 32:841–852.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shil-
iang Pu, and Yueting Zhuang. 2020a. Counterfac-
tual samples synthesizing for robust visual question
answering. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10800–10809.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020b. Uniter: Universal image-text
representation learning. In European Conference on
Computer Vision, pages 104–120. Springer.

Christopher Clark, Mark Yatskar, and Luke Zettle-
moyer. 2019. Don’t take the easy way out: En-
semble based methods for avoiding known dataset
biases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4060–4073.

Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and
Yezhou Yang. 2020. Mutant: A training paradigm
for out-of-distribution generalization in visual ques-
tion answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 878–892.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6904–6913.

Gabriel Grand and Yonatan Belinkov. 2019. Adver-
sarial regularization for visual question answering:
Strengths, shortcomings, and side effects. NAACL
HLT 2019, page 1.

Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. 2016. Revisiting visual question an-
swering baselines. In European conference on com-
puter vision, pages 727–739. Springer.

Justin Johnson, Andrej Karpathy, and Li Fei-Fei.
2016. Densecap: Fully convolutional localization
networks for dense captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition.

Bernhard Kratzwald, Anna Eigenmann, and Stefan
Feuerriegel. 2019. Rankqa: Neural question answer-
ing with answer re-ranking. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6076–6085.



4110

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage. arXiv preprint arXiv:1908.03557.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision,
pages 121–137. Springer.

Zujie Liang, Weitao Jiang, Haifeng Hu, and Jiaying
Zhu. 2020. Learning to contrast the counterfactual
samples for robust visual question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3285–3292.

Rabeeh Karimi Mahabadi and James Henderson. 2019.
Simple but effective techniques to reduce biases.
arXiv preprint arXiv:1909.06321, 2(3):5.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Yanyuan Qiao, Zheng Yu, and Jing Liu. 2020.
Rankvqa: Answer re-ranking for visual question an-
swering. In 2020 IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6. IEEE.

Sainandan Ramakrishnan, Aishwarya Agrawal, and
Stefan Lee. 2018. Overcoming language priors in
visual question answering with adversarial regular-
ization. In NeurIPS.

Ramprasaath R Selvaraju, Stefan Lee, Yilin Shen,
Hongxia Jin, Shalini Ghosh, Larry Heck, Dhruv Ba-
tra, and Devi Parikh. 2019. Taking a hint: Lever-
aging explanations to make vision and language
models more grounded. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 2591–2600.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5103–5114.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaox-
iao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger,
Gerald Tesauro, and Murray Campbell. 2018a. Ev-
idence aggregation for answer re-ranking in open-
domain question answering. In International Con-
ference on Learning Representations.

Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu,
and Tian Wu. 2018b. Joint training of candidate ex-
traction and answer selection for reading comprehen-
sion. In ACL (1).

Ning Xie, Farley Lai, Derek Doran, and Asim Ka-
dav. 2019. Visual entailment: A novel task for
fine-grained image understanding. arXiv preprint
arXiv:1901.06706.

Peng Zhang, Yash Goyal, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2016. Yin and yang:
Balancing and answering binary visual questions. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5014–5022.

Xi Zhu, Zhendong Mao, Chunxiao Liu, Peng Zhang,
Bin Wang, and Yongdong Zhang. 2020. Overcom-
ing language priors with self-supervised learning for
visual question answering.


