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Abstract

The sentence is a fundamental unit of text pro-
cessing. Yet sentences in the wild are com-
monly encountered not in isolation, but un-
segmented within larger paragraphs and doc-
uments. Therefore, the first step in many NLP
pipelines is sentence segmentation. Despite
its importance, this step is the subject of rel-
atively little research. There are no standard
test sets or even methods for evaluation, leav-
ing researchers and engineers without a clear
footing for evaluating and selecting models for
the task. Existing tools have relatively small
language coverage, and efforts to extend them
to other languages are often ad hoc.

We introduce a modern context-based mod-
eling approach that provides a solution to
the problem of segmenting punctuated text
in many languages, and show how it can be
trained on noisily-annotated data. We also es-
tablish a new 23-language multilingual eval-
uation set. Our approach exceeds high base-
lines set by existing methods on prior English
corpora (WSJ and Brown corpora), and also
performs well on average on our new evalua-
tion set. We release our tool, ERSATZ, as open
source.

1 Introduction

In many ways, the sentence is the fundamental
unit of text in natural language processing (NLP).
From the user perspective, tasks such as sentiment
analysis, POS tagging, or machine translation con-
sume sentences and emit classifications, annota-
tions, or transductions of those inputs. Even tasks
that operate at the paragraph or document level,
such as coreference resolution or summarization,
often make use of sentences internally. Yet at
the same time, sentences in the wild rarely ex-
ist with marked sentence boundaries. For many
languages, punctuation serves as a cue for these

Examples of Ambiguity in Punctuated Contexts

en
... in the U.S. ⊗ House of Representatives ...
...in the U.S. X Most Mexican Spanish ...

cs
... podnikanie s.r.o. ⊗ a hlavním investorem
... a Systémy s.r.o. X V roce 2017 ...

ro
... W. Pauli s, .a. ⊗ constituie direcţii ...
... de Robles s, .a. X A jucat în ...

Table 1: Examples of ambiguous FULL STOP punctu-
ation in English, Czech, and Romanian from Wikipedia.
X denotes a sentence boundary while ⊗ denotes an am-
biguous sentence-internal position.

boundaries, but this punctuation is ambiguous—
as we might see with acronyms or abbreviations
in English. When segmented sentences are re-
quired, they must be split using a sentence seg-
mentation technique that can resolve these ambi-
guities. Despite its importance and early position
in the NLP pipeline, sentence segmentation is the
subject of relatively little research. Widely-used
tools such as that in Moses (Koehn et al., 2007)
are implemented with ad-hoc, manually-designed,
language-specific rules, leaving them vulnerable to
the long tail of languages and language phenomena.
The little comparative work that does exist gener-
ally focuses on techniques that work in English or
other Indo-European languages (Palmer and Hearst,
1997; Gillick, 2009).

Secondly, there is not a well-understood method-
ology for training segmenters that do not make
narrow assumptions about the features or charac-
teristics of the languages they support. At the
heart of this is the lack of labeled training data.
Manually-split datasets that accompany annotation
projects tend to be small, and larger datasets are
typically (imperfectly) segmented by the very tools
whose performance is under question. Tools such
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as NLTK (Bird and Loper, 2004), which packages
Punkt (Kiss and Strunk, 2006), provide an unsuper-
vised method to train a model, but it is unclear what
the effect is when switching to non-Latin-script lan-
guages, or how a more supervised approach would
handle such noisy data.

Finally, and perhaps most importantly, there are
no standard test sets or even metrics for evaluating
segmenter performance, leaving researchers and en-
gineers with no objective way to determine which
one is best.

The work described in this paper is aimed
at these problems. We propose a simple
window-based model and semi-supervised train-
ing paradigm for the segmentation of punctuated
text (§3). We frame the task as binary classification
applied to a set of candidate punctuation locations
defined by a regular expression. Leveraging the
similarity of the task across languages (Table 1),
we show that our model is able to successfully
bootstrap from multilingual data that has been im-
perfectly segmented. We define a common metric
that works across different tools (§4), and assem-
ble a multilingual test suite by semi-automatically
splitting existing (undersegmented) test sets (§5),
providing a basis for proper comparison. We re-
lease these data splits along with our tool, ERSATZ,
as open source.1

2 Background

A sentence is a sequence of grammatically linked
words that conveys a complete thought. The term
can be difficult to define in a precise manner that
will not admit any exceptions, and in applications
like machine translation, there are many times
where the basic input unit is not a sentence, but
a sentence fragment, such as a headline or an item
from a list. In this work, we skirt these complexi-
ties, choosing instead to focus on the most common
scenario, in which we are dealing with standard
written language. For this, we adopt a functional
definition: a sentence is a group of words that ends
with a sentence-ending punctuation mark, such as
(for many languages) a period, question mark, or
exclamation point. Since punctuation is often used
for non-sentence-ending purposes as well, the pri-
mary challenge for sentence segmentation is resolv-
ing this ambiguity for each segmentation candidate.

1https://github.com/rewicks/ersatz or
pip install ersatz.

Research in sentence segmentation2 has been
limited in scope. Prior work either introduces meth-
ods that work under a set of assumptions unique
to Latin-script languages (the existence and impor-
tance of casing, word length, or whitespace), or
tackles new languages ad hoc, making adaptation
to new languages and domains difficult.

Statistical methods use text-based features such
as casing, punctuation, or length of surrounding
words to make decisions around punctuation. The
earliest work we found (Riley, 1989) considered
all sentence boundaries and used decision trees
based on these features. Gillick (2009) trained
two statistical models in the form of an SVM and
Naive Bayes classifier. Palmer and Hearst (1997)
introduced Satz and shifted the approach by only
focusing potential sentence boundaries being near
sentence-ending punctuation, using part-of-speech
distribution vectors as input to a feed-forward neu-
ral network and additionally applied their technique
to German and French.

In order to work without labeled data, Kiss and
Strunk (2006) used heuristics to craft scores based
on likelihood values of occurrences of tokens, punc-
tuation, casing and token length, and then manu-
ally tune a threshold of score to indicate a sentence
boundary. This work expanded the most multilin-
gually, considering 10 Indo-European languages as
well as Estonian and Turkish.

Other work has focused on specific non-English
languages. Xue and Yang (2011) study Chinese and
dissect the theoretical reasons behind segmenting
Chinese sentences to match their English equiv-
alents. To segment Thai, which lacks punctua-
tion, Zhou et al. (2016) use POS-taggers. Some
work has tackled the problem of domains. Sanchez
(2019) approaches the problem of legal text, which
has a set structure without punctuation; other ap-
proaches (Wang et al., 2019; Rehbein et al., 2020)
have investigated speech, which lacks both punctu-
ation and written textual structure.

A popular splitter is packaged in the Moses
toolkit (Koehn et al., 2007),3 which works by split-
ting on all sentence-final punctuation unless the
preceding context is a “non-breaking prefix”—a
hand-built, language-specific list of acronyms and
abbreviations. This approach cannot resolve the
ambiguity where punctuation legitimately exists at
the end of a sentence and is indifferent to novel

2Alternately called sentence boundary detection.
3We use the repackaged Python module at https://

pypi.org/project/sentence-splitter/.

https://github.com/rewicks/ersatz
https://pypi.org/project/sentence-splitter/
https://pypi.org/project/sentence-splitter/
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abbreviations at inference time. It produces a con-
servative segmenter that is high precision (unlikely
to oversegment) but low recall (prone to underseg-
menting). This raises the question of what effect
reliance on this tool has had on construction of re-
cent massive bitexts, such as CCMatrix (Schwenk
et al., 2019b, §4.3). Gillick (2009) credit a 0.75%
increase in accuracy to reduction of summarization
error by a factor of four. Errors in segmentation
may therefore affect the top matches for a sentence
when doing bitext construction. Another popular
splitter is SpaCy, which has not been described or
evaluated anywhere, as far as we could tell.

With sentence splitting being a crucial piece of
modern corpus creation for machine translation
and other tasks, the lack of approaches and rig-
orous comparisons between tools limits the field.
Additionally, the research field moving towards (of-
ten massively) multilingual settings, the need to
build multilingual tools compare them in a proper
scientific framework is both important and evident.

3 Approach

Our general approach is to treat sentence segmen-
tation as a binary classification problem, predicting
sentence-internal (⊗) or sentence-ending (X) po-
sitions. The input to the model (§3.1), shown in
Figure 1, is the concatenated left and right token
contexts, as depicted in Table 1. Predictions for
both training and inference are done only at prede-
fined candidate sites, which are determined by a
regular expression (§3.2). We then train in a semi-
supervised setting where many of the labels may
be missing (§3.3).

3.1 Models

Our basic model is depicted in Figure 1. The en-
coder is a two-layer Transformer (Vaswani et al.,
2017). Our hyperparameter search incorporates vo-
cabulary size (V ), embedding size (e), and left and
right context sizes (l and r). We also experiment
with simpler architectures (§8.4), including single
blocks of fully-connected linear layers with a TanH
activation.4 These simpler models typically traded
increased throughput for slight degradations in F1.
Our training objective is binary cross-entropy loss.

4We initially experimented with various functions and lay-
ers (Sigmoid, ReLU, Pooling layers, etc) but found that TanH
performs best.

ENCODER

!in !the !U.S. !Mr. !Rog ers… …

linear + softmax

⊗ ✓

0.64 0.46

embeddings

(1)

(2c, e)

(2c, e)

(V)(V)(V)(V)(V)(V)

Figure 1: Model architecture. A binary predictor is con-
structed from token embeddings from the left and right
context. Arrows denote output dimensions: V is the
vocabulary, l and r the left and right context window
sizes, and e the model/embedding size.

3.2 Candidate sites

Our model works with segmentation candidate
sites for both training and inference. This can be
done in a fairly general, language-agnostic way.
Let P be the set of all punctuation, and Pe ⊂ P be
the set of sentence-ending punctuation. For a given
input, we examine every character boundary and
match based on two regular expressions for the left
and right context, respectively:

• (.*PeP*) : The left context ends with
sentence-final punctuation, optionally fol-
lowed by any amount of punctuation; and

• ([^0-9].*) : The right context does not
start with a number.

Raw text examples can be found in Table 1 and
tokenized examples with fixed context sizes are
shown in Table 2.

Input to the model is in the form of documents.
A linear pass over the data identifies all candidates
sites and assembles them into a batch, with their
associated left and right contexts. At training time,
instances are extracted with their labels: ⊗ for line-
internal sites, and X for sites that occur between
input lines. At inference time, the trained classifier
is applied, and newlines are inserted where X is
predicted.

This general definition carries benefits and risks.
On the positive side, it allows us to work with many
languages without having to develop language-
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Label Left context Right context

⊗ _the _ P . K . _ S h t
⊗ s o on er ? " _ h e _
X B . A . T . _ " W e
X n er s . " ) _ I _ st

Table 2: Candidate site examples with their labels.
Left context-size (6) and right context-size (4) occurs
after subword tokenization. In text, ‘_’ is subword
beginning-of-word character.

specific rules. It also speeds up training and in-
ference, boosting both training speed and inference
performance. On the downside, this loose defini-
tion can permit oversegmentation, since it permits,
for example, word-internal segmentation in English
and other languages. The criteria for identifying
candidate sites can be easily altered to be more
constrained or more general depending upon use
case, and the list of punctuation to support more
languages, if necessary. Our default list covers
many languages.5

3.3 Training data

As noted in our motivation, sentences in the wild
are often not segmented but are part of paragraphs
and documents. It is therefore unsurprising to find
many segmentation errors in existing corpora. A
particular problem one can observe is that of under-
segmentation, perhaps resulting from application
of conservative segmentation tools. This means
the raw training data may contain many false nega-
tives (X sites mistakenly labeled as ⊗). Training a
sentence segmentation model therefore presents a
chicken-and-egg problem. We aim to train directly
on existing data created for MT purposes, despite
its having been either segmented by imperfect seg-
menters, or never segmented.

While some data is undersegmented, the vast ma-
jority of the end-of-line contexts should be correct,
since they are either (a) natural existing bound-
aries at the end of a paragraph or document or (b)
the result of applying a conservative segmenter.
We therefore hope to train classifiers even despite
this noise. Because we are considering a binary
classification problem (and using the associated bi-
nary cross entropy loss), we additionally consider

5Our punctuation set (by unicode name): Full Stop, Ques-
tion Mark, Exclamation Mark, Ellipsis, Ideographic Full Stop,
Devanagari Danda, Arabic Question Mark, Arabic Full Stop,
Khmer Sign Khan

adding a weighted λ value to the X class in order
to give more credence to these contexts.6

For punctuation at the end of a line, the right-
context is taken from the tokens at the beginning
of the next sentence. In Section §7.3, we look into
whether it matters if this right context is the true
document context, or whether a random sentence
will serve.

4 Evaluation: Metric

For evaluation, we begin by removing sentences
that do not end in punctuation, since none of the
tools are able to segment these. We then concate-
nate the test set into a single line, joining sentences
with a space.

Evaluation among different tools contains sub-
tle complexities. First, some tools normalize or
tokenize the input text, complicating alignment be-
tween the input and the output. Second, different
tools may attempt to segment at different subsets
of input string locations, which might unfairly bias
the results in favor of conservative tools. Finally, if
we permit segmentation at any point of the input,
there is a large class imbalance between ⊗ and X.

The class imbalance advocates for F1 as a natural
metric. The use of F1 also addresses the second
issue, since only the gold positive class (X) factors
into the score. The first two issues also require
that we align a segmenter’s output with the gold
standard segmented text. Since the texts are largely
similar, we can do this efficiently using a modified
Levenshtein distance7 that only considers a fixed
maximum distance between any two characters.
Once the text is aligned, we compute F1 against
the set of X symbols in the gold text. An example
is depicted in Figure 2.

5 Evaluation: Data

We have noted the difficulty with making use of
imperfect training data, and how we hope to work
around it (§3.3). Unfortunately, this workaround
cannot be used for evaluation, where we need gold-
standard data.

We construct test sets from the WMT News
Translation test sets (Barrault et al., 2020), which

6Generally, we find no weight (λ = 1.0) is sufficient
in punctuated English, but increasing the weight (λ = 20)
improved performance in some languages and the multilingual
setting where the data is noisier.

7While the distance itself can also be considered in com-
paring tools, we do not report these distances, and instead use
the technique to align text within the window.



3999

… him. He added: “Mr. Rogers” …

h i m . ✓ H e a d d e d :  “  M r .  R o g e r s

h i m . ✓ H e a d d e d :  "  M r . ✓ R o g e r s

h i m . ✓ H e a d d e d : ✓ ' ' M r . ✓ R o g e r s

text

gold

sys1

sys2

P      R       F1

– – –

0.5 1.0 0.67

0.3 1.0 0.5

Figure 2: Input text formatted as gold-standard data with two system outputs. Gold positive labels are marked with
X. For scoring, system outputs are independently aligned to the gold text, which accounts for text transformations
made by some tools and allows precision and recall to be computed.

provides for decent-size test sets in many lan-
guages. We manually corrected all sentence seg-
mentations. While some sets were already well-
segmented, some more recent years were extremely
under-segmented. In Table 5, we show the test
sets’ line counts before and after manual correc-
tion.8 Additionally, we report the % of candidate
sites with a true X label, which provides a mea-
sure of the ambiguity of the punctuation. Many
⊗ positions occur in acronyms, such as “U.S.A.",
embedded quotes, ellipsis, or in company names
such as “Yahoo!".

6 Experimental Setup

We consider three language settings: (i) mono-
lingual English, (ii) a multilingual setting that in-
cludes the set of recent WMT languages plus Ara-
bic, and (iii) a much larger multilingual setting that
includes the previous languages plus all languages
with at least 10k lines in the WikiMatrix (Schwenk
et al., 2019a) dataset.

Starting with the English setting, we investigate
the performance of a basic model and vary param-
eters such as context size, embedding size, and
vocabulary size. After finding an optimal setting,
we expand to the first multilingual setting and re-
peat. We train a single multilingual model that is
agnostic of language and does not need language
specification as input. Similar to the monolingual
setting, we vary the aforementioned parameters,
and compare the best model to baselines (§6.3). In
order to test expandability, we then train with the
same parameters on the largest set of languages (us-
ing the additional WikiMatrix data), and compare
to the previous model’s performance.

While we do not widely experiment with addi-
tional monolingual settings, we train monolingual
models in each language to compare against the
multilingual models’ performance. We report the

8iu was left uncorrected due to the fact that available
bitext often aligned “sentences" with singular or compound
sentences in English and a lack of automatic translation corre-
sponding to sentences.

comparison of these three settings to baselines in
Table 5.

6.1 Datasets

We train our English model on a subset of the WSJ9

and the English News Commentary datasets pro-
vided by WMT.10

To expand to a multilingual setting, we consider
the set of all WMT Task languages and Arabic (23
in total) allowing us to leverage the various mono-
lingual datasets (Joanis et al., 2020) released as part
of the WMT workshops—often using News Com-
mentary datasets, as well as WikiMatrix (Schwenk
et al., 2019a), CCMatrix (Schwenk et al., 2019b),
and Global Voices (Nguyen and Daumé III, 2019).
For validation data, we use WMT test sets when
available, and IWSLT (Cettolo et al., 2017) for
Arabic.

We experimented with (i) balancing the data so
each language has equal amounts of data, (ii) nor-
malizing the amount of data per language based
on the relative ambiguity (measured by percent of
candidate sites labeled as true X), and (iii) using
all available data. We find that the third method
performs the best and thus report under this setting.

In the larger multilingual setting, we consider all
WikiMatrix languages with more than 10k unique
lines (64 additional languages) and do not expand
the validation set. For a complete list of datasets,
please see Table 7 in Appendix A.

6.2 Training

For each vocabulary size, we train a SentencePiece
(Kudo and Richardson, 2018) model over the train-
ing data.

We use a binary cross-entropy loss over the la-
bels, Adam optimizer with a learning rate of 0.0001,
and a λ of 1.0 (English) and 20.0 (multilingual)

9Sections 1-2, 7-23 for training; section 24 for validation,
and sections 03-06 for test in order to mirror the splits in Bird
and Loper (2004)

10http://data.statmt.org/
news-commentary/v15/

http://data.statmt.org/news-commentary/v15/
http://data.statmt.org/news-commentary/v15/
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on the X class (with the exception of the exper-
iments in §7.4). We use a batch size of 25k in-
stances, and compute F1 over the validation data
every 500 batches, saving the model with the high-
est inference-time F1 score. This is the collective
F1 score across all languages in the multilingual
settings. If the model has not improved in 15 vali-
dations, training terminates.

The models were trained on a Tesla V100 GPU.
The monolingual models took approximately 2
hours to train while the multilingual models took
approximately 10-15 hours.

6.3 Baselines
We use the following existing tools as baselines:

Always split on every candidate site. This serves
as a lower-bound for our precision metric.

Splitta (Gillick, 2009) ships with both SVM and
Naive Bayes models. It targets English texts. We
found similar performance and only report the
Naive Bayes scores.

NLTK Punkt Kiss and Strunk (2006) introduce
an unsupervised training method for this task which
uses frequency of occurences of input features
such as casing, punctuation, and length in order
to segment. Pretrained models for 18 languages
(labeled as PUNKT in Table 5) are packaged with
NLTK. NLTK additionally provides the framework
to train a new model. We use this to train an ad-
ditional model on all data (to simulate a multilin-
gual model) and report the results in Table 5 as
PUNKTML. PUNKT (and thus PUNKTML) does not
segment around non-Latin punctuation.

Moses Sentence Splitter uses a list of prede-
fined acronyms and abbreviations for each lan-
guage. If left token is in this list, it does not split.
This circumvents the whole point behind the ambi-
guity "in the U.S."

SpaCy Sentencizer is a “rule-based system"
without specific details and varies from language
to language.

7 Monolingual Experiments

We first explore common questions and concerns
while focusing on English data and results. We
have three main parameters to study: context size,
embedding size, and vocabulary size. We addition-
ally consider how the training data affects results–
both in relative noise in class labels in addition to

1 2 3 4 5
Right Context Size

1
2

3
4

5
6

7
8

Le
ft 
C
on

te
xt
 S
iz
e

92.08 92.45 92.78 92.75 92.69

98.04 98.79 99.02 99.00 99.15

98.79 99.42 99.34 99.28 99.44

98.99 99.42 99.47 99.44 99.52

99.13 99.42 99.50 99.36 99.50

99.13 99.50 99.47 99.55 99.44

99.07 99.44 99.39 99.47 99.55

99.20 99.47 99.50 99.47 99.50
F1 on English DevTest

98.6

98.8

99.0

99.2

99.4

Figure 3: Heat map showing the change in F1 with re-
spect to context size in a linear model. Embedding size
and vocabulary size are kept constant at 32 and 125 re-
spectively.

training on shuffled sentences instead of documents.
In general, we find our technique creates a mono-
lingual English model (Table 3) that outperforms
the baselines.

F1 Precision Recall

Always 86.9 76.9 100.0

Splitta 99.3 99.6 99.1
Punkt 98.6 98.8 98.4
Moses 98.8 99.7 98.0
SpaCy 88.0 86.3 89.7

Our Tool 99.8 99.8 99.8

Table 3: Scores on English WSJ 03-06 Test Data. The
candidate set is determined the original English punc-
tuation contexts as described in 3.2

7.1 Exploring context size

Starting with a minimal model with an embedding
size of 32, and a vocabulary size of 125, we in-
vestigate whether such a small model can solve
this problem. Our method is rooted in a contextual
encoding of the subword tokens inside its context
windows, and may benefit from increasing the size
of these windows. At the operating point with a
very small embedding and vocabulary size, the win-
dow size is the determining factor on performance.
The results on English in Figure 3 show that a min-
imal amount of left and right context is necessary;
however, left context is more beneficial than right
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context.

7.2 How large of a model is necessary?

We consider whether increasing the size of the
model by doubling the embedding size and qua-
drupling the vocabulary size can produce better
results. While varying the context windows (as
seen in Figure 3) can result in increasingly higher
scores, varying embedding size and vocabulary size
did not produce the same effect. Keeping a fixed
context window, we find that any given change in
embedding size or vocabulary size increases F1
score by no more than 0.6%. While necessary to
find the optimal model, it is clear that the context
size is more important to experimentation. We note
that a vocabulary size of 2000 tends to perform
worse than smaller sizes while vocabulary sizes
of 125 and 500 perform equally well when paired
with any embedding size. Each of our monolingual
models reported in Table 5 is the result of a grid
search over various vocab sizes, and lambda weight
(§3.3). We keep context sizes of left (6) and right
(4) and embedding size (128) constant.

7.3 Is document context necessary?

Because released monolingual data is often cleaned
with sentences being removed and shuffled, it is
unreasonable to assume that a set of consecutive
sentences will always be available for training.

In order to justify using this data, we repeat a
subset of the previous English experiment—testing
context and embedding sizes by training the model
on the same data that has been shuffled. We test on
the same validation data that has not been shuffled
and retain its document order. In Table 4, we show
that shuffling the training data has little impact on
performance and document context is unnecessary
in this punctuated setting.

F1 Precision Recall

Original 99.8 99.7 99.9
Shuffled 99.6 99.6 99.6
Undersegmented 97.5 95.2 99.8

Table 4: Scores on English WSJ 03-06 Test Data. Orig-
inal is the best model trained on original English mono-
lingual News Commentary data. Shuffled is trained on
shuffled data, described in §7.3. Undersegmented is
trained on raw Wikipedia, described in §7.4.

7.4 Can we train on undersegmented data?

Uncleaned, unfiltered Wikipedia dumps do not
have sentence boundaries in them. The smallest
unit is the paragraph. Data scraped from internet
sites is likely to have a similar form and much of
our monolingual data is not guaranteed to be seg-
mented. In order to justify that this approach works
without already having segmented data, we show
that we can achieve similar results as our previous
English results in this setting. We train on one mil-
lion randomly-selected paragraphs from an English
Wikipedia dump. While many ⊗ labels are now
incorrect due to paragraphs being unsegmented, we
assume the X class is relatively noise-free.

Because we already established that shuffling the
data does not affect performance in this setting, the
random selection is sufficient. While maintaining
previously chosen hyper-parameters—such as con-
text sizes, learning rate, and dropout—we search
among potential λ values to use as a weight for
the X label. We find that increasing the λ value
to 200.0 achieves the highest F1 of 97.5. An un-
weighted model performs poorly. While still dis-
tant from the cleanly-trained models, it performs
significantly better than the poorer baselines. Com-
parison to our other English models can be seen in
Table 4.

8 Multilingual Experiments

After outperforming current baselines in a monolin-
gual English setting, we generalized our approach
to work multilingually. The multilingual model can
segment text irrespective of input language.

In parallel to the monolingual conditions, we
train two-layer transformer models with 6 tokens
of left context, and 4 tokens of right context with
128 embedding size. While we did experiment with
scaling these for the multilingual model, we found
little effect. We additionally scale the vocabulary
size to 12,000 to accommodate the larger character
sets in Chinese and Japanese. Because more of the
additional languages have undersegmented data,
we searched over potential lambda weights for the
X class and report the best configuration (λ =
20.0) in Table 5.

8.1 Discussion

Results of ERSATZ and baselines can be found
in Table 5. In all cases, ERSATZ is at least com-
petitive with baselines, if not outperforming them.
Although most differences are small it outperforms
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# Orig. # Corr. % X PUNKT PUNKTML ALWAYS SPACY MOSES ERSATZM ERSATZ ERSATZWM

ar 1460 1504 84.9 - 92.7 93.5 90.3 - 98.2 98.0 98.0
cs 664 1726 80.1 99.8 99.6 96.3 85.3 99.7 99.8 99.8 99.8
de 785 1965 90.2 99.7 99.5 97.9 91.4 99.9 99.9 99.8 99.8
en 7706 7706 48.6 98.6 87.7 77.0 88.0 98.8 99.8 98.7 99.1
es 3000 3064 86.5 99.1 98.9 96.5 83.6 98.7 98.8 98.6 98.6
et 2000 2017 78.2 99.3 99.4 90.6 84.0 99.5 99.8 99.7 99.8
fi 1996 1996 95.0 99.7 99.7 98.9 97.9 99.8 99.9 99.9 99.9
fr 1619 1655 95.0 99.5 99.6 98.2 90.4 99.7 99.7 99.6 99.4
gu 1016 1018 92.3 - 100.0 97.9 3.8 99.7 99.8 100.0 100.0
hi 2507 2521 68.6 - 14.4 83.7 90.6 15.1 98.5 99.1 98.6
iu 2971 2971 59.1 - 91.3 63.9 - - 86.1 93.7 93.6
ja 993 1072 89.4 - 0.2 98.1 93.7 - 99.9 99.9 99.9
kk 1000 1002 92.2 - 99.6 97.1 - - 99.7 99.8 99.9
km 2320 2361 96.3 - 2.0 99.1 - - 99.7 99.7 99.7
lt 1000 1000 59.2 - 94.7 85.5 76.6 98.6 98.8 98.8 98.9
lv 2001 2017 76.4 - 99.4 90.3 88.6 99.6 99.7 99.5 99.6
pl 1001 1005 70.7 98.3 94.8 90.1 78.9 92.8 93.4 99.1 99.2
ps 2719 2726 96.4 - 99.4 99.1 - - 99.3 99.3 99.3
ro 1999 2000 89.1 - 98.7 97.0 90.9 98.5 99.3 99.3 99.2
ru 991 991 88.4 98.8 98.1 96.4 91.3 99.4 99.3 99.4 99.5
ta 997 1005 66.1 - 92.3 89.6 89.3 93.8 98.1 96.9 96.6
tr 3000 3009 67.5 - 95.8 85.2 85.1 99.5 99.6 99.5 99.5
zh 2000 2003 85.1 - - 99.2 96.6 - 100.0 100.0 100.0

all 45k 48k 73.3 - 87.6 89.0 - - - 98.9 98.9

Table 5: Test set statistics (left block) and F1 scores (right block) on our test data. % X denotes the number of
candidate sites with a true X label. PUNKTML denotes PUNKT model trained on our data. Lack of a score means the
model was not available for that language. ERSATZM denotes monolingual models, ERSATZ the WMT-languages
multilingual model, and ERSATZWM the model trained with additional WikiMatrix languages.

SpaCy in all languages and often outperforms both
Punkt and Moses.

The Moses splitter is an interesting case. It iden-
tifies split points via a mix of general and language-
specific regular expressions, which are then filtered
against a curated list of “non-breaking prefixes”.
This results in a conservative segmenter that will
not (for example) allow a sentence to end with
the token U.S.. As such, its high performance is
notable. However, the comparison is likely unfair,
since it was likely built and refined against the news
datasets that constitute our WMT test sets. This
approach is therefore effective in this domain, but
may not generalize. Our single multilingual model,
trained on noisy data, performs nearly identically.

8.2 Performance across languages

Sentence segmentation is not equally difficult in all
languages or with respect to all punctuation. The ‘.’

is by far the most ambiguous form of punctuation
and is frequently used as an abbreviation marker.
Other scripts using their own punctuation, such
as Hindi, have specified a particular marker (the
Devanagari Danda) as a sentence-ending punctua-
tion that is rarely used sentence-internally. In these
cases, ambiguity is introduced when alternative
punctuation (such as ‘.’ or ‘...’) is used. Addi-
tionally, even languages with the same scripts may
not have the same level of ambiguity. French has
the smallest number of punctuated contexts occur-
ring sentence-internally within our test set, while
English has the most.

We note that the multilinguality of our model
hurts the near-perfect performance that we see in
the monolingual English models. We additionally
note that some monolingual models perform worse
than the multilingual model (see pl in Table 5).
We hypothesize that this may be due to a lack of



4003

data, and the additional languages contain similar
contexts, so the model may learn more about cas-
ing, punctuation, and length with additional data.

8.3 Scaling to more languages

While we note that it is difficult to evaluate many
of the world’s languages due to a lack of gold stan-
dard test data, we test for scalability by including
additional languages (as described in §6) during
training and noting any changes in performance on
the evaluable languages. We include 64 additional
languages (see Table 7 in the Appendix for compre-
hensive list) to bring us to a total of 87 languages.
Table 5 also includes scores from a larger multilin-
gual model (ERSATZWM) that was built with these
64 additional languages. Overall, we find very lit-
tle change between these two settings. With en,
we actually see some improvement in performance
from the smaller multilingual model. Generally,
there is not significant degradation of scores, im-
plying this technique can generalize to additional
languages.

8.4 How does size affect the speed?

With our context construction method, we benefit
from batching to decrease runtime, since the deci-
sion at each candidate point is dependent only on
its immediate window. We benchmark our models
as well as the baselines (Table 6). While our mod-
els are slower than some baselines, we find that
increasing the size of the model does not dramat-
ically increase the runtime. Additionally, the rate
(in tokens per second) is roughly constant.

Layer (# layers) # params Time (s) F1

Linear (x1) 1.7M 33 97.5
Linear (x2) 1.7M 35 98.0
Transformer (x1) 2.3M 74 98.7
Transformer (x2) 2.9M 172 98.7

Spacy - 13.8 88.0
Moses - 1164 98.8
Punkt - 3.2 98.6

Table 6: Time in seconds for 1 million English tokens
in input file. F1 is score on English Test Set. We show
various size encoders for our method. Linear is a linear
layer with TanH activation.

9 Summary

As one of the earliest steps in NLP pipelines, sen-
tence segmentation is an important task. However,
it has not to this date received proper experimental
attention, relying instead on ad hoc methods. It
is a good time to correct this oversight, as NLP
moves to the use of larger and larger corpora cov-
ering more and more languages. Even as the field
moves towards processing text at the paragraph or
document level directly, it is likely that sentence
processing will be with us for some time.

We show here that a simple context-based model
can produce state-of-the-art results with a modest
hyperparameter search, trained on noisy annota-
tions from imperfectly-segmented data. Together
with a straightforward multilingual approach to
identifying candidate split points and training on
noisy segmented data, our single model performs
well across a range of languages. More fundamen-
tally, we have defined an experimental framework
for benchmarking and future comparative work.

Missing from our paper is an evaluation of the
effect of these tools on downstream tasks. An ob-
vious candidate for future work is to conduct this
evaluation. It is possible that some tasks will not
be affected by small differences among the best
performing models, but this work at least sheds
light on those differences. Another obvious direc-
tion is to look at approaches that would work for
unpunctuated text (e.g., Wang et al. (2019)). This
would expand the functionality of segmenters into
other important areas, such as speech translation,
and to languages, like Thai, that do not mark ends
of sentences.
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Dataset # Lines # Tokens Dataset # Lines # Tokens

ar News Comm. v15 181k 10M kk News Comm. v15 16.4k 280k
WikiMatrix 774k 16M News Crawl 1.1M 14M

cs News Comm. v15 277k 5.2M km JW Corpus 107k 4.6M
WikiMatrix 429k 7.3M Common Crawl 343k 2.0M

de News Comm. v15 422k 8.9M lt News Crawl 2.5M 37M
WikiMatrix 1M 19M WikiMatrix 84.8k 1.1M

en News Comm. v15 609k 13M lv News Crawl 1.8M 29M
WSJ (sec 00-02;07-23) 40k 819k

es News Comm. v15 465k 12M pl Global Voices 58k 890k
Wikipedia 405k 6.6M
News Crawl 3.0M 44M

et News Crawl 1.6M 22M ps News Crawl 64.0k 1.8M
WikiMatrix 152k 5.1M SADA 132k 4.1M

SYSTRAN 196k 5.1M
TRANSTAC 75k 1.2M

fi News Crawl 4.7M 50M ro Global Voices 4043 76k
WikiMatrix 207k 2.6M WikiMatrix 223k 4.7M

News Crawl 6.9M 140M

fr News Comm. v15 415k 10M ru News Comm. v15 377k 7.3M
WikiMatrix 2.2M 50M WikiMatrix 2.2M 37M

gu News Crawl 283k 3.8M ta News Crawl 501k 5.3M
Common Crawl 164k 1.3M WikiMatrix 61.0k 532k

hi News Comm. v15 7815 213k tr Global Voices 6529 80k
WikiMatrix 1.1M 20M WikiMatrix 304k 4.5M
News Crawl 135k 3.0M News Crawl 7.9M 108M

iu N.H.I 3.0 1.3M 8.0M zh News Comm. v15 445k 772k
WikiMatrix 492k 890k

ja News Comm. 2983 4390
News Crawl 3.4M 6.9M

Table 7: Multilingual Datasets Line Count and Token Count.



4006

Dataset # Lines # Tokens Dataset # Lines # Tokens

ar News Comm v15 1637 38k kk News Comm v15 3000 38k
IWSLT 2017 1504 20k WMT19 Test 1002 30k

cs WMT18 Test 3008 47k km WMT WikiDev 2609 14k
WMT20 Test 1726 26k WMT20 Test 2361 15k

de WMT19 Test 2009 31k lt News Comm v15 3000 44k
WMT20 Test 1965 31k WMT19 Test 1000 17k

en News Commentary 3000 56k lv News Commentary 3000 49k
WMT20 Test (en-cs) WMT17 Test 2017 33k
WSJ 03-06; 24 10k 277k

es WMT11 Test 3013 69k pl News Commentary v15 3000 16k
WMT13 Test Set 3064 62k WMT20 Test Set 1005 16k

et News Commentary 3000 41k ps WMT Wiki Dev 3166 64k
WMT18 Test Set 2017 30k WMT20 Test Set 2726 55k

fi WMT18 Test Set 3031 38k ro News Commentary v15 3000 60k
WMT19 Test Set 1996 21k WMT16 Test Set 2000 43k

fr WMT15 Test Set 1502 25k ru WMT18 Test Set 3000 52k
WMT20 Test Set (fr-de) 1655 33k WMT20 Test Set 991 15k

gu News Commentary 3000 40k ta News Commentary 3000 32k
WMT19 Test Set 1018 14k WMT20 Test Set 1005 13k

hi News Commentary 3000 56k tr WMT16 Test Set 3011 44k
WMT14 Test Set 2521 57k WMT18 Test Set 3009 46k

iu N.H.I 3.0 Dev 3028 27k zh WMT18 Test Set 4097 5.8k
N.H.I 3.0 Dev 3028 27k WMT20 Test Set 2003 3.7k

ja News Commentary 3000 5.9k
WMT20 Test Set 1072 1888

Table 8: Dev and Test Data. Test Data is bolded. All News and Wikipedia sets come from WMT news translation
tasks except ar. All test sets are lang-en unless otherwise noted. NHI is the Nunavut Hansard Inuktitut English
Parallel Corpus-3.0. When News Commentary was used, the bottom N lines were taken.
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# lines # tokens # lines # tokens

an 52k 93k la 45k 50k
arz 35k 57k lb 43k 59k
as 16k 15k lmo 10k 16k
az 164k 170k mg 12k 18k
bar 40k 49k mk 452k 672k
ba 101k 112k ml 150k 130k
be 164k 223k mr 216k 225k
bg 454k 523k mwl 32k 78k
bn 360k 452k nds-nl 14k 22k
br 43k 53k nds 95k 145k
bs 502k 831k ne 70k 81k
ca 459k 417k nl 456k 348k
ceb 80k 188k no 457k 472k
da 453k 494k oc 171k 389k
el 454k 555k pt 460k 367k
eo 454k 554k sh 454k 582k
eu 305k 369k simple 465k 666k
fa 427k 818k si 182k 281k
fo 38k 46k sk 453k 539k
fy 56k 84k sl 451k 624k
gl 453k 512k sq 262k 523k
gom 22k 19k sr 452k 520k
he 458k 387k sv 452k 388k
hr 455k 551k sw 70k 118k
hu 456k 353k te 213k 170k
hy 23k 52k tg 17k 20k
id 456k 468k tl 122k 237k
is 124k 160k tt 78k 80k
it 469k 386k uk 466k 313k
jv 27k 40k vi 456k 646k
ka 42k 81k wuu 46k 7k
ko 454k 395k

Table 9: Additional WikiMatrix languages with line and token counts for training data. Language code based on
Wikipedia codes.


