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Abstract

Existing work in multilingual pretraining has
demonstrated the potential of cross-lingual
transferability by training a unified Trans-
former encoder for multiple languages. How-
ever, much of this work only relies on the
shared vocabulary and bilingual contexts to
encourage the correlation across languages,
which is loose and implicit for aligning the
contextual representations between languages.
In this paper, we plug a cross-attention mod-
ule into the Transformer encoder to explicitly
build the interdependence between languages.
It can effectively avoid the degeneration of
predicting masked words only conditioned on
the context in its own language. More impor-
tantly, when fine-tuning on downstream tasks,
the cross-attention module can be plugged in
or out on-demand, thus naturally benefiting a
wider range of cross-lingual tasks, from lan-
guage understanding to generation.

As a result, the proposed cross-lingual model
delivers new state-of-the-art results on vari-
ous cross-lingual understanding tasks of the
XTREME benchmark, covering text classifi-
cation, sequence labeling, question answer-
ing, and sentence retrieval. For cross-lingual
generation tasks, it also outperforms all ex-
isting cross-lingual models and state-of-the-
art Transformer variants on WMT14 English-
to-German and English-to-French translation
datasets, with gains of up to 1∼2 BLEU. 1

1 Introduction

Cross-lingual pre-trained models like mBERT (De-
vlin et al., 2019), XLM (Lample and Conneau,
2019) and XLM-R (Conneau et al., 2019) that tar-
get providing contextualized representations for the
inputs across languages, have shown large poten-

*Equal contribution.
1Code and model are available at https://github.

com/alibaba/AliceMind/tree/main/VECO
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Figure 1: The attention scores of XLM and XLM-R
with the input of a pair of parallel sentences: Take a
seat and have a rest in English and its translated Chi-
nese sentence. The darker line denotes a higher score.
We can found that there are only a few attention pat-
terns across English and Chinese subwords.

tial on a variety of cross-lingual understanding and
generation tasks.

Behind the great success, two major factors play
the role of aligning the contextual representations
between languages: 1) build the shared vocabulary
across languages through subword tokenization,
which supports the simple extension of masked lan-
guage modeling (MLM) from English corpus to
multilingual corpus; 2) capture the alignment in
parallel data via concatenating two sentences as
input, called translation language modeling (TLM).
However, both of these two mechanisms rely on
the self-attention module (query=key/value) of the
Transformer encoder to implicitly enhance the in-
terdependence between languages, which may lead
to few attention patterns across languages. Tak-
ing Figure 1 as an example, even though inputting
a pair of parallel sentences, both models only at-
tend to the English context to build the represen-
tation of English tokens, while ignoring the se-

https://github.com/alibaba/AliceMind/tree/main/VECO
https://github.com/alibaba/AliceMind/tree/main/VECO
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Figure 2: A schematic comparison of cross-lingual pre-training tasks and their attention matrices. When predicting
the masked words of different languages: a) MLM can only attend to the context in its own language; b) TLM
implicitly attend to a part of words across languages (as shown in Figure 1). However, c) the proposed CA-MLM
can: (1) not only attend to the context in its own language to predict words x2 and y3, (2) but also can firstly attend
to its own context and then explicitly attend to all words across languages to predict words x3 and y2 via a plug-in
cross-attention module.

mantically related Chinese tokens. That is, the
self-attention module captures little communica-
tion across languages, which is crucial for learning
universal cross-lingual representations.

Based on the above observation, we propose to
plug a cross-attention module (query!=key/value)
into the Transformer encoder and design a cross-
attention MLM task to explicitly capture the inter-
dependence between languages. As illustrated in
Figure 2 (c), the cross-attention module takes the
representation of x as query and y as key/value
(purple lines) to build the representations of x in
the next layer, thus explicitly aligning the repre-
sentations across languages (purple attention ma-
trices). It can effectively avoid the degeneration of
predicting masked words only conditioned on the
context in its own language. Moreover, what dis-
tinguishes our work from pre-training an encoder-
decoder model (Liu et al., 2020b) is that we also
keep the good nature (i.e., bidirectional contextual
modeling) of the original encoder by unplugging
the cross-attention from the model to predicting the
masked words (e.g., x2 and y3).

Furthermore, when fine-tuning on various down-
stream tasks, we can choose either plug-in or plug-
out the cross-attention module on-demand, thus
making it suitable for both cross-lingual language
understanding (NLU) and generation tasks (NLG).
For cross-lingual NLU tasks, if plugging the cross-
attention module out, we can adopt the same fine-

tuning methods as an encoder-only model like
XLM. However, we find that plugging the cross-
attention module in fine-tuning can better utilize
the bilingual context to boost the performance. For
cross-lingual NLG like machine translation (MT),
the cross attention is already jointly pre-trained
with the whole network. Therefore, the parame-
ters of the decoder do not need to be re-adjusted
substantially in the following tuning process, thus
fundamentally solving the main drawback of utiliz-
ing pre-trained encoders like XLM for initializing
encoder-decoder models.

We call our approach VECO for “Variable and
Flexible Cross-lingual Pre-training”. We validate
VECO on a variety of representative cross-lingual
understanding and generation benchmarks. Regrad-
ing cross-lingual understanding tasks, we conduct
experiments on the XTREME benchmark consist-
ing of 9 cross-lingual tasks, including text clas-
sification, sequence labeling, question answering,
and sentence retrieval. VECO ranks first at the
XTREME leaderboard 2 at the submission deadline.
Regrading cross-lingual generation tasks, we vali-
date VECO on the widely used WMT14 English-
German and English-French machine translation
benchmarks. VECO obtains 44.5 and 31.7 BLEU
scores, consistently outperforming existing cross-
lingual pre-training approaches and state-of-the-art
Transformer variants by around 1∼2 BLEU.

2https://sites.research.google/xtreme

https://sites.research.google/xtreme
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2 Pre-training of VECO

2.1 Overview of VECO

VECO extends from a multi-layer Transformer en-
coder and plugs a cross-attention module in each
layer. Given a pair of input (x,y) and its corrupted
version (x̂, ŷ) via randomly masking part of its to-
kens, the model builds two types of contextualized
vector representation for each token:

• One suit of contextual representations H, de-
noted as green blocks and yellow blocks in
Figure 2 (c), are only build on self-attention
module (i.e., unpluging the cross-attention
module) in each layer.

• Another suit of contextual representations S,
denoted as mixed color blocks in Figure 2
(c), are build on both the self-attention and
cross-attention modules 3.

The model is trained to predict the masked to-
kens via two corresponding representations, condi-
tioning on both its own context and paired context,
respectively. Take predicting the masked words
in sequence x as an example, the training objec-
tive is the cross-entropy of the gold distribution
and predicted distribution P (x|x̂) and P (x|ŷ, x̂)
computed via the above two suits of contextual rep-
resentations. Thus, the training objective of cross-
attention masked language modeling (CA-MLM)
can be formulated as

L(x,y) =
− logP (x|x̂; θs)− logP (x|ŷ, x̂; θs, θc)
− logP (y|ŷ; θs)− logP (y|x̂, ŷ; θs, θc)

(1)

where θs and θc are the parameters of self-attention
and cross-attention modules.

2.2 Architecture

The backbone network of VECO is composed of a
stack ofN Transformer layers. Each layer has three
modules: a required self-attention module, a plug-
and-play cross-attention module, and a required
feed-forward linear module. Both self-attention
and cross-attention modules are based on the multi-
head attention (Vaswani et al., 2017). An attention
function can be described as mapping a query (Q)
and a set of key-value (K-V) pairs to an output.

3For simplicity of illustration, we only show the mixed
representations S of x3 and y2 in Figure 2 (c).

For the self-attention module, all the queries,
keys and values are the same representations from
the previous layer. Specifically, for the l-th Trans-
former layer, the output of a self-attention head As

l

is computed via:

Q = Hl−1WQ
l (2)

K = Hl−1WK
l (3)

V = Hl−1WV
l (4)

As
l = softmax(

QKT

√
dk

)V (5)

where Hl−1 are the previous layer’s outputs,
WQ

l ,W
K
l ,W

V
l are the parameter matrices of self-

attention modules.
For the cross-attention module, the queries come

from the previous layer, and the keys and values
come from the last layer’s representations of paired
input. Specifically, for the l-th layer, the output of
a cross-attention head Ac

l is computed via:

Q = Sl−1UQ
l (6)

K = HLUK
l (7)

V = HLUV
l (8)

Ac
l = softmax(

QKT

√
dk

)V (9)

where Sl−1 are the previous layer’s outputs,
UQ

l ,U
K
l ,U

V
l are the parameter matrices of cross-

attention modules.
Finally, the output HL of the last layer is used

to recover the masked tokens of x, conditioning on
its own context.

P (x|x̂) = softmax(f(HL
x )) (10)

P (y|ŷ) = softmax(f(HL
y )) (11)

where f is the feed-forward network that maps the
output vectors into the dictionary. HL

x and HL
y are

computed via Eq 2∼5 when H0
x and H0

y are the
word embeddings of x and y, respectively.

Meanwhile, SL, conditioning on the context of
the paired sequence x̂ and ŷ, is used to predict the
masked tokens of y.

P (x|ŷ, x̂) = softmax(f(SL
x )) (12)

P (y|x̂, ŷ) = softmax(f(SL
y )) (13)

where SL
x and SL

y are computed via Eq 6∼9 with
the corresponding word embeddings and HL.



3983

VECO Fine-tuning: Flexible for NLU and NLG tasks
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Figure 3: The overview of VECO. During pre-training, a plug-and-play cross-attention module is jointly pre-
trained along with the self-attention module. When fine-tuning on natural language understanding (NLU) tasks,
the cross-attention module can be either plug-in or plug-out on demand. When fine-tuning on natural language
generation (NLG) tasks, VECO can initialize an encoder-decoder module (the mainstream backbone model of
generation tasks) since all those necessary modules in the encoder and decoder are already pre-trained.

Note that when optimizing the objectives based
on Eq 12 and Eq 13, we apply a stop-gradients
operation (Chen and He, 2020) to HL (i.e., HL

is treated as a constant in this term). This opera-
tion can largely speed up the training by avoiding
the backpropagation on a 2L-layer network. More-
over, it even stabilizes the training of deep post-
layernorm Transformer, which requires non-trivial
efforts regarding carefully designing learning rate
schedulers and cutting-edge optimizers (Liu et al.,
2020a; Bachlechner et al., 2020).

3 Fine-tuning VECO for Downstream
Cross-lingual Understanding and
Generation Tasks

As Figure 3 illustrated, when fine-tuning on vari-
ous downstream tasks, one advantage of VECO is
its flexibility for initializing both the encoder-only
Transformer for understanding tasks and encoder-
decoder Transformer for generation tasks. Beyond
it, we also explore a fine-tuning approach combined
with the characteristics of VECO .

3.1 VECO for Cross-lingual Understanding
Due to the plug-and-play cross-attention module,
we explore two fine-tuning approaches:

• Plug-Out fine-tuning is to unplug the cross-
attention module from the pre-trained model.
In other words, the architecture of the fine-
tuned model is almost the same as mBERT or
XLM. Specifically, the contextual representa-
tions from the last layer HL

x is used to predict
the label of input x.

• Plug-In fine-tuning is to plug the cross-
attention module into the fine-tuned model, if

the bilingual or automatically translated train-
ing data y is available in the downstream task.
Specifically, we concatenated the two repre-
sentations [HL

x : SL
x ] to predict the label of x,

[HL
y : SL

y ] to predict the label of y. 4.

3.2 VECO for Cross-lingual Generation

For pre-trained encoders like XLM, it is not a triv-
ial problem to incorporate them into the sequence-
to-sequence architecture – the mainstream back-
bone model of generation tasks (Zhu et al., 2020).
One of the drawbacks or challenges could be that
the encoder-to-decoder attention is not pre-trained.
Therefore, the parameters of the decoder need to be
re-adjusted along with the encoder in the following
fine-tuning process (Ren et al., 2019).

However, under the framework of VECO , the
cross-attention is jointly pre-trained along with
the whole network, making it easy to provide
full initialization for sequence-to-sequence models.
Specifically, the self-attention module is used to
initialize both the corresponding modules in the en-
coder and decoder for contextual modeling, while
the cross-attention module is used to initialize the
encoder-to-decoder attention. It’s okay whether
you continue to tie the self-attention parameters dur-
ing fine-tuning. Directly pre-training a sequence-
to-sequence model like mBART (Liu et al., 2020b)
could be another solution for NLG tasks, but we
found mBART is not so effective in cross-lingual
NLU tasks. We refer the reader to the Section 7 for
detailed experiments and analysis.

4Plug-In fine-tuning is not suitable for the zero-shot setting
(also called cross-lingual transfer) due to the lack of bilingual
or translated pair (x,y)
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Model Architecture #Parameters Enc Layers Dec Layers #Languages #Vocab Training Data

mBERT (Devlin et al., 2019) Encoder-only 110M 12 - 104 110k Wikipedia
XLM (Lample and Conneau, 2019) Encoder-only 570M 24 - 100 200k Wikipedia
XLM-R (Conneau et al., 2019) Encoder-only 550M 24 - 100 250k CommonCrawl
mRASP (Lin et al., 2020) Encoder-decoder 375M 6 6 32 64k Translation
MMTE (Siddhant et al., 2020) Encoder-decoder 375M 6 6 103 64k Translation
mBART (Liu et al., 2020b) Encoder-decoder 680M 12 12 25 250k CommonCrawl

VECO Flexible 662M 24* 50 250k CommonCrawl + Translation

Table 1: Comparison of large cross-lingual models. * denotes VECO unifies the encoder and decoder.

4 Pre-training Setup

Model Configuration We pre-train a 24-layer
model with 1024 embedding/hidden size and 4096
feed-forward size. We do not use language em-
beddings to allow our model to better deal with
downstream tasks of unseen languages. We adopt
the same 250K vocabulary that is also used by
XLM-R (Conneau et al., 2019). Table 1 shows the
other details of baselines and VECO .

Pre-Training Data We collect monolingual and
bilingual corpus covering 50 languages. For mono-
lingual training datasets, we reconstruct Common-
Crawl Corpus used in XLM-R (Conneau et al.,
2019). We extract 1.36TB data in 50 languages,
which contains 6.5G sentences and 0.4G docu-
ments. We up/down-sample the monolingual text
like XLM from each language with a smooth-
ing parameter α = 0.5. For bilingual data, we
collect from the OPUS website 5 like previous
works (Lample and Conneau, 2019; Chi et al.,
2020b). There are 6.4G parallel sentences, cov-
ering 879 language pairs across 50 languages. See
more statistics of training data in Appendix A.

Optimization Settings For each iteration, we al-
ternately sample a batch of adjacent segments from
the monolingual corpus and a batch of parallel sen-
tences from bilingual datasets to conduct a pair of
masked input (x̂, ŷ). We adopt the translation lan-
guage modeling (TLM) when the inputs are parallel
bilingual sentences. Thus the overall training objec-
tive is the sum of TLM and the proposed CA-MLM
objectives. During training, the model parameters
except for cross-attention are initialized by XLM-R.
We first freeze the parameters of XLM-R and only
update the cross-attention parameters for faster con-
vergence. Then, we jointly train the whole model.
We pre-train our model with mixed-precision train-
ing using 64 Nvidia Telsa V100 32GB GPUs. Ap-
pendix A shows additional details.

5http://opus.nlpl.eu/

5 Experiments on Cross-lingual
Understanding Tasks

5.1 Experimental Setup

Downstream Tasks We conduct cross-lingual
NLU evaluations on XTREME (Hu et al., 2020), a
representative massively multilingual benchmark
that consists of 9 understanding tasks over 40 lan-
guages. XTREME tasks can be classified into four
different categories: (1) sentence-pair classifica-
tion: XNLI (Conneau et al., 2018), PAWS-X (Yang
et al., 2019); (2) structured prediction: POS (Nivre
et al., 2018), Wikiann NER (Pan et al., 2017);
(3) question answering: XQuAD (Artetxe et al.,
2020), MLQA (Lewis et al., 2020), TyDiQA (Clark
et al., 2020); (4) sentence retrieval: BUCC
2018 (Zweigenbaum et al., 2017), Tatoeba (Artetxe
and Schwenk, 2019). Tasks in the first three cate-
gories are provided: 1) golden training corpus in
English, 2) translated training corpus in other lan-
guages, and 3) dev/test set in all languages. For
sentence retrieval tasks, no training datasets are
provided. We refer the reader to Hu et al. (2020)
for additional details about the datasets.

Fine-tuning Setting Following previous
works (Conneau et al., 2019; Hu et al., 2020),
we consider two typical fine-tuning settings:
(1) Cross-lingual Transfer which fine-tunes the
pre-trained model using English golden data
only and directly performs inference on the test
data of different target languages; (2) Translate-
Train-All fine-tunes a multilingual model on the
concatenation of all data (golden training corpus
in English and translated training corpus in other
languages). Note that for two sequence-labeling
tasks (POS, NER), the position of token labels in
the translated text generally differs from that in
the source text. Following FILTER (Fang et al.,
2020), we use the model trained only on the
English training dataset as a teacher, to label the
translated text. To have a fair comparison with the
strong baseline XLM-R (Conneau et al., 2019)

http://opus.nlpl.eu/
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Datasets XNLI PAWS-X POS NER XQuAD MLQA TyDiQA BUCC Tatoeba
#Languages 15 7 33 40 11 7 9 5 33
Metrics Acc Acc F1 F1 F1/EM F1/EM F1/EM F1 Acc Avg.

Cross-lingual Transfer: Fine-tune model on English training set and test on all languages
MMTE† 67.4 81.3 73.5 58.3 64.4/46.2 60.3/41.4 58.1/43.8 59.8 37.9 59.5
mBERT† 65.4 81.9 70.3 62.2 64.5/49.4 61.4/44.2 59.7/43.0 56.7 38.7 59.6
XLM† 69.1 80.9 70.1 61.2 59.8/44.3 48.5/32.6 43.6/29.1 56.8 32.6 55.5
XLM-R† 79.2 86.4 72.6 65.4 76.6/60.8 71.6/53.2 65.1/45.0 66.0 57.3 68.1
VECOout 79.9 88.7 75.1 65.7 77.3/61.8 71.7/53.2 67.6/49.1 85.0 75.1 73.1

Translate-Train-All: Fine-tune model on English training data and translated data of the target language
XLM-R‡ 82.6 90.4 - - 80.2/65.9 72.8/54.3 66.5/47.7 - - -
XLM-R∗ 82.8 90.2 72.6 65.4 80.0/65.8 73.0/54.3 74.5/58.3 80.2 75.2 74.4
FILTER 83.9 91.4 76.2 67.7 82.4/68.0 76.2/57.7 68.3/50.9 84.5 84.5 77.0
VECOout 83.0 91.1 75.1 65.7 79.9/66.3 73.1/54.9 75.0/58.9 89.3 86.9 77.2
VECOin 84.3 92.8 79.8 71.0 83.9/70.9 77.5/59.3 79.4/63.7 92.6 91.1 81.0

Table 2: XTREME results on each dataset (as of ACL submission deadline). Averaged results on the four cate-
gories can be found at leaderboard: https://sites.research.google/xtreme. “†” and “‡” indicates results
from Hu et al. (2020) and Fang et al. (2020), respectively. “*” indicates the results obtained by our implementation.
The detailed results for each language are in Appendix D.

under the translate-train-all setting, we also show
the results of XLM-R using the same fine-tuning
hyperparameters as VECO .

5.2 Experimental Results

The detailed test results of nine tasks on the
XTREME benchmark are shown in Table 2. It
demonstrates that the proposed VECO outperforms
previous cross-lingual models on all datasets. Com-
pared to XLM-R, it averagely scores 5.0 and 6.6
points higher under the cross-lingual transfer and
translation-train-all settings, respectively.

In the cross-lingual transfer setting, VECO deliv-
ers a large improvement compared to XLM-R, espe-
cially on zero-shot sentence retrieval tasks (BUCC,
Tatoeba). This phenomenon reflects that our model
can better build the interdependence between lan-
guages. Thus it can better mine parallel sentences
in a multilingual corpus.

Under the translation-train-all setting, it can
be observed that VECO with Plug-In fine-tuning
(VECOin) is better than Plug-Out fine-tuning
(VECOout). We conclude the reasons as two-fold.
On the input side, the Plug-Out fine-tuning individ-
ually takes multilingual instances as input, while
the Plug-In fine-tuning considers the bilingual in-
stances 6 at each run. On the model side, the
Plug-In fine-tuning can encourage correspondence
across language via the cross-attention module.
Note that the Plug-In fine-tuning method also out-
performs FILTER (Fang et al., 2020), an enhanced
cross-lingual fine-tuning method that also takes the

6English instance with its translated one.

bilingual instance as the input of XLM-R. It further
demonstrates the effectiveness of VECO and its
specialized fine-tuning method.

We conclude the reasons for the above perfor-
mance improvement as two-fold: 1) the introduc-
tion of bilingual data during pre-training, which is
a direct way to enhance the cross-lingual ability
of the model; 2) Stronger ability to enhance the
interdependence and fusion among languages via
the proposed CA-MLM pre-training tasks. To ana-
lyze which plays a leading role, we conduct a set
of more fair experiments in Section 7.

6 Experiments on Cross-lingual
Generation Tasks

6.1 Experimental Setup

Datasets We choose the machine translation
(MT) task, a typical cross-lingual generation sce-
nario. In order to illustrate the generality of our
approach and have a fair comparison with the
most recent state-of-the-art Transformer work (Liu
et al., 2020a), we choose two most widely used
datasets: WMT14 English→German (En-De) and
English→French (En-Fr) translation. WMT14 En-
De is a medium-resource dataset that provides
4.5M pairs for training and validation. We adopt
standard newstest2014 as the test set. WMT14
En-Fr is a high-resource dataset that contains
36M pairs of parallel sentences. We use new-
stest2012+newstest2013 for validation and new-
stest2016 for test. We measure case-insensitive to-
kenized BLEU with multi-bleu.perl and de-

https://sites.research.google/xtreme
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Model WMT14 En-Fr WMT14 En-De
BLEU SacreBLEU BLEU SacreBLEU

Randomly Initialize
Baseline 42.9 40.4 28.7 27.8
Liu et al. (2020a) 43.8 41.8 30.1 29.5

Randomly Initialize + More Bilingual Data*
Baseline* - - 30.6 29.5

Cross-lingual Model Initialize
mBART 43.2 41.0 30.0 29.1
mRASP 44.3 41.7 30.3 -
XLM-R 43.8 41.2 30.9 29.9
VECO 44.5 42.0 31.7 30.6 10 15 20 25 30 35

Epochs

25

26

27

28

29

30

sa
cr

e
B

LE
U

VECO Init.

XLM-R Init.

Random Init.

Table 3: (left) Results on machine translation. (right) Learning curves of different initialization methods.

tokenized SacreBLEU 7 to avoid the influence of
different tokenization and normalization between
models (Post, 2018).

Fine-tuning Setting We fine-tune our model us-
ing fairseq 8 toolkit and adopt comparable train-
ing settings with baselines. We run WMT 14 En-
De and En-Fr MT experiments on 16 and 32 V100
GPUs, respectively. The batch size is 64k for En-
De and 256k for En-Fr. The total training updates
are set to 100k. The learning rate is 1e-4/2e-4, with
linear warm-up over the first 16k steps and linear
decay. We average the last 10 checkpoints and use
beam search with a beam size of 5.

Baselines We consider two types of Transformer
baselines: randomly initialized and cross-lingual
models initialized. For random initialization, we
reproduce a Transformer baseline that adopts the
same architecture and fine-tuning hyperparame-
ters as VECO but with random initialization. Be-
sides, we compare to the state-of-the-art Deep
Transformer (Liu et al., 2020a). For cross-lingual
encoder-decoder models, we include mBART (Liu
et al., 2020b) and mRASP (Lin et al., 2020), which
show impressive results on MT. Note that since
we tied the self-attention weights of each encoder
layer with each decoder layer, the whole parame-
ters of mBART and VECO are comparable. We
also conduct the WMT experiments for XLM-R,
following the totally same fine-tuning settings as
VECO , but leaving the encoder-to-decoder atten-
tion un-initialized.

7Hash: BLEU+case.mixed+lang.en-{de,fr}+numrefs.1+
smooth.exp+test.wmt14/full+tok.13a+version.1.4.9

8https://github.com/pytorch/fairseq

6.2 Experimental Results

Table 3 (left) shows the results on the machine
translation. We can observe that VECO can largely
outperform the randomly initialized same-sized
Transformer baseline by 2.3 BLEU points. More-
over, it even beats the (randomly initialized) state-
of-the-art Deep-Transformer (Liu et al., 2020a),
which is three times deep as VECO . Among the
cross-lingual models, VECO can consistently out-
perform the best models, averaged on two datasets,
by 0.8 BLEU points.

Table 3 (right) displays the BLEU scores of
same-sized models during training. We find that
VECO initialized model can get a surprising more
than 28 SacreBLEU score just after 10 epochs,
which is better than the final score of the ran-
domly initialized model at 35 epochs. It reveals that
VECO can provide a fairly good initialization for
the machine translation model, which can converge
quickly and further boost the results.

One might suspect that the main reason for the
performance improvement is leveraging parallel
corpus during pre-training. To figure it out, we
conduct a more comparable experiment. We first
train an out-of-domain Transformer model using
the whole En-De parallel data (∼ 68M) used in
VECO pre-training, and then continue to train the
model on the in-domain WMT14 En-De training
dataset. Results are shown in Table 3 (left) marked
with *. Under this set of a totally fair comparison,
VECO still maintains a lead of 1.1 BLEU score.
This directly confirms that the improvement in MT
is not only due to the use of bilingual data. More
importantly, CA-MLM ensures better use of bilin-
gual and large-scale unlabeled multilingual corpus.

https://github.com/pytorch/fairseq
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Method #Layers WMT14 En-De
BLEU SacreBLEU

Randomly Initialize 3 28.5 27.6
6 28.6 27.7

VECO Initialize

First-3 30.8 29.8
Last-3 31.2 30.3
First-6 31.1 30.1
Last-6 31.5 30.5
Full-24 31.7 30.6

Table 4: Results of utilizing VECO to initialize deep
encoder and shallow decoder (3/6-layer) Transformers.

6.3 Potential of Initializing Shallow Decoder
Online translation applications usually have a re-
striction of inference time. The most direct way
is to reduce the decoder layers since previous MT
works (Liu et al., 2020a) have shown that deeper en-
coders are more worthwhile than deeper decoders.
Based on this, we also explore the potential of the
VECO to initialize deep encoder and shallow de-
coder Transformers, which is a blank in the cross-
lingual pre-training works.

Table 4 contrasts two ways of initializing a Trans-
former with n decoder layers (n < 24) via select-
ing: (1) the first n layers; (2) the last n layers from
a 24-layer pre-trained VECO model. We consider
n = {3, 6} to conduct experiments. We find that se-
lecting the last n layers exhibits better performance
than selecting the first n layers. It reveals that
the last several layers play a more important role
in making predictions over the whole vocabulary.
Moreover, we can find that there is 0.2∼0.3 BLEU
gain when increasing the decoder layers from 3 to 6.
However, we observe that only marginal improve-
ment can be gained when further increasing the
decoder layers from 6 to 24, which is also in line
with the findings in Liu et al. (2020a). Regardless
of the initialization method, the VECO initialized
model can gain consistent 1∼2 BLEU improve-
ment over the randomly initialized model.

7 Analysis and Ablation Study

We perform an ablation study to investigate where
the improvement in cross-lingual NLU and NLG
tasks mainly comes from. Specifically, there are
three main aspects we have studied:

1. How much performance improvement comes
from the parallel translation corpus used in
pre-training?

2. How effective of the CA-MLM pre-training

Data Models Tasks XNLI IWSLT

Mono.
XLM MLM 59.8 33.7

mBART MLM 57.3 32.9
VECO CA-MLM 60.6 34.0

Bili.
XLM MLM+TLM 64.5 33.9

mBART MLM+TLM 60.8 34.5
VECO CA-MLM +TLM 67.7 36.0

Table 5: Ablation study of small-sized models on XNLI
and IWSLT14 De-En translation dataset.

task, especially compared to the MLM and
TLM pre-training tasks?

3. How about pre-training a sequence-to-
sequence model like mBART for NLU and
NLG tasks?

To figure out these questions, we train XLM,
mBART and VECO model from scratch using the
same datasets and parameter settings (see Appendix
A for more details). All of them is pre-trained via
MLM and TLM tasks. Note that the MLM task gen-
erally refers to predict the masked words of source
language, while the TLM task generally refers to
predict the words of the target language. Specifi-
cally for mBART that is under the framework of
encoder-decoder, the input of encoder is masked se-
quence x̂, and the target of decoder is the masked
words of source input x (for MLM task), or the
parallel sentence y (for TLM task).

Table 5 shows the results of two representa-
tive datasets of cross-lingual NLU and NLG. We
can observe that, when using monolingual corpus
only, VECO can outperform XLM by 0.8 points
on the XNLI dataset and 0.3 BLEU scores on
the IWSLT14 De-En translation dataset. It sug-
gests that the CA-MLM can still benefit from
adjacent sentences in monolingual corpus 9, to
be equipped with a stronger ability of contextual
modeling. Moreover, when pre-training both on
the monolingual and bilingual corpus, VECO can
even achieve a larger improvement compared to
XLM, with 3.2 and 2.1 points improvement on two
datasets, respectively. It reveals that CA-MLM ob-
jective of VECO can better utilize the bilingual
corpus, compared to only optimized by TLM and
MLM of XLM.

Moreover, we find that pre-training a sequence-
to-sequence model like mBART (Liu et al., 2020b)

9As noted in Section 4, we take two adjacent sentences in
the monolingual corpus as (x,y).
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performs worst on NLU tasks like XNLI 10, al-
most 6 points worse than VECO and near 2 points
worse than XLM. One possible explanation could
be that the unidirectional language modeling in the
decoder might be sub-optimal for NLU tasks. And
even on the machine translation task, mBART still
performs worse than VECO when pre-training on
the same bilingual datasets. We conclude that it is
because that VECO can do better in the contextual
modeling of source input x via a explicit masked
language modeling objective in Eq 10 applied to
x2 in Figure 2 (c).

8 Related Work

mBERT (Devlin et al., 2019) is a key step towards
building a unified contextual language represen-
tation over multiple languages. It simply shares
all languages’ vocabulary and trains a bidirec-
tional Transformer encoder, achieving promising
results in various cross-lingual NLU tasks. There
have been several extensions that follow the same
encoder-only backbone as mBERT. The main dif-
ference is the introduction of more training cor-
pus (e.g., bilingual data) and pre-training tasks.
XLM (Lample and Conneau, 2019) utilizes both
monolingual and bilingual corpus to perform the
masked language modeling. XLM-R (Conneau
et al., 2019) extends to be built on RoBERTa (Liu
et al., 2019) using larger monolingual training data.
Other works (Huang et al., 2019; Yang et al., 2020;
Chi et al., 2020b) propose new pre-training tasks to
utilize the bilingual data better. However, there
are two main drawbacks of these works. First,
they mainly rely on the self-attention module in
the Transformer encoder to implicitly build the in-
terdependence between languages, leading to few
attention patterns across languages due to the “lazy”
network. Second, even though they show impres-
sive performance improvement on cross-lingual
understanding tasks like XNLI, only marginal im-
provement has been gained on cross-lingual gener-
ation tasks like machine translation, especially on
high-resource languages.

A feasible solution for cross-language gener-
ation is to pre-train a denoising auto-encoder
like mBART (Liu et al., 2020b). It extends
BART (Lewis et al., 2019) to the multilin-
gual setting, demonstrating significant gains in
low/medium-resource machine translation, but

10We follow BART (Lewis et al., 2019) by utilizing the final
representation from the decoder for classification tasks.

with a decrease in high resource languages. Unlike
mBART, Chi et al. (2020a) first trains an encoder
via MLM and then frozen the encoder to train the
decoder only via two generative tasks. A similar
approach is also proposed in Liang et al. (2020) and
Lin et al. (2020), with the main difference in the
joint training of encoder-decoder with code-switch
tricks. However, all these cross-lingual models em-
phasize training a dedicated model for NLG. Thus
they may hurt the NLU capabilities of the model.
The ablation study in Section 7 also validates that it
is sub-optimal to train an encoder-encoder network
for NLU tasks.

This paper endeavors to build a unified cross-
lingual model for NLU and NLG tasks via a plug-
and-play cross-attention module. More importantly,
the cross-attention module plays a role in the ex-
plicit alignment of encoded representations of dif-
ferent languages, thus largely contributing to build-
ing a unified cross-lingual model.

9 Conclusion

We present VECO, a variable and flexible cross-
lingual pre-training model, targets at explicitly cap-
turing the interdependence between languages via
a plug-and-play cross-attention module. Based on
the flexible characteristics, VECO can initialize
both NLU preferred encoder-only and NLG spe-
cialized encoder-decoder Transformer. Moreover,
we also introduce a Plug-In fine-tuning approach
to encourage the fusion between languages, com-
bining the feature of VECO and cross-language
downstream tasks.

Taken together, VECO achieves consistent im-
provements on various language understanding and
generation tasks, broadening the way of thinking
about pre-trained backbone architecture and fine-
tuning methods under the cross-lingual scenario.
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A Pre-Training Details

For monolingual data, following XLM-R (Con-
neau et al., 2019), we build a clean CommonCrawl
Corpus using an open-source tool CCNet (Wenzek

et al., 2019). There are 1.36TB monolingual data
in 50 languages before up/down-sampling. Table 6
reports the language codes and statistics of pre-
training data. We collect bilingual corpus in 50 lan-
guages from the OPUS website11, including Mul-
tiUN, UNPC, Bombay, EU-bookshop, OpenSubti-
tles2018, Tanzil, GlobalVoices, ParaCrawl, Multi-
ParaCrawl, DGT, Tilde, Europarl, Wikipedia, ECB,
TED2013, News-Commentary, Ubuntu, Books,
UN, infopankki-v1, EUconst, and Bianet. In to-
tal, there are 1TB bilingual training data before
pre-processing, covering 879 language pairs. Ta-
ble 7 lists the statistics for each language pair. We
then apply subword tokenization directly on raw
text data using Sentence Piece Model (Kudo and
Richardson, 2018) without any additional prepro-
cessing.

We use the whole corpus to train VECO and
a subset (∼ 1/4) that contains 33 languages to
train small-sized XLM, mBART and VECO . The
full set of pre-training hyperparameters for small-
sized and large-sized VECO (default) are listed in
Table 8.

B More details about Illustrated
Attention

The models illustrated with attention patterns in
Figure 1 of main paper (not appendix), are the
base-sized XLM 12 and XLM-R 13. We show the
attention scores averaged on all heads in the middle
layer.

C Fine-Tuning Details on XTERME

We select the model with the best average result
over all the languages on the dev sets, by searching
the learning rate over [5e-6,8e-6,1e-5,2e-5,3e-5]
for the Cross-lingual Transfer setting and [5e-6,6e-
6,7e-6,8e-6,9e-6] for Translate-Train-All setting,
training epoch over [3,5,10], and batch size over
[16,32,64].

D Detailed Results on XTREME

The detailed results of each XTREME task under
the cross-lingual transfer and translate-train-all set-
tings on all languages are listed in the following
tables.

11http://opus.nlpl.eu/
12https://huggingface.co/

xlm-mlm-tlm-xnli15-1024
13https://huggingface.co/

xlm-roberta-base
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Language #Document(M) #Sentence(M) Size(GB)

af 0.023 0.522 0.107
ar 2.823 42.659 11.786
bg 0.919 14.743 5.217
bn 0.750 9.217 4.264
cs 3.980 55.754 9.668
de 21.410 310.942 66.333
el 1.740 24.334 9.737
en 130.087 2,215.534 479.099
es 17.569 267.764 58.774
et 0.347 5.252 0.877
eu 0.342 5.216 0.613
fr 15.819 267.888 58.023
fa 2.506 43.570 13.831
fi 1.530 23.790 3.940
fy 0.027 0.537 0.054
gu 0.039 0.519 0.228
gd 0.009 0.126 0.020
he 0.755 12.338 3.073
hi 0.536 7.303 3.762
hu 1.816 29.962 6.421
id 3.417 60.908 11.528
it 9.336 133.006 30.854
ja 27.967 588.926 71.785
jv 0.002 0.138 0.030
ka 0.141 1.756 0.766
kk 0.061 1.545 0.448
ko 11.609 227.396 27.837
lt 0.552 7.996 1.480
lv 0.281 4.159 0.798
ms 0.334 3.762 0.455
ml 0.162 2.615 1.025
my 0.045 0.893 0.306
mr 0.059 0.708 0.365
pl 6.642 93.760 19.082
pt 8.623 128.107 25.612
ne 0.080 0.829 0.429
nl 6.513 85.997 16.648
ru 35.887 580.291 203.105
ro 1.944 31.929 7.056
si 0.132 2.927 0.902
sw 0.057 0.945 0.179
ta 0.876 20.376 6.422
te 0.288 4.995 1.721
tr 18.547 291.081 40.321
th 6.278 117.826 27.941
tl 0.166 5.611 0.679
vi 12.183 234.071 37.919
ur 0.460 7.509 2.003
yo 0.0002 0.003 0.0005
zh 27.067 497.408 87.005

Total 382.735 6,475.444 1,360.526

Table 6: The statistics of monolingual pre-training corpus.
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Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K)

af-ar 12.34 bg-my 0.08 de-he 12751.69 en-tr 46584.82 eu-zh 19.76 fy-vi 34.95 id-pt 6825.29 ko-sw 6.74 pl-es 46863.47
af-bg 18.19 bg-ne 0.01 de-hi 106.11 en-ur 781.60 fa-fi 4485.62 gd-es 21.62 id-ro 7944.59 ko-ta 13.74 pl-pt 72437.93
af-bn 1.19 bg-nl 30757.50 de-hu 24409.40 en-vi 3563.39 fa-fr 4507.06 gd-it 13.26 id-ru 5039.44 ko-te 0.93 pl-ru 19170.23
af-cs 17.93 bg-pl 33043.03 de-id 4786.89 en-yo 0.13 fa-he 4944.80 gd-pl 12.29 id-si 366.00 ko-th 230.84 pl-sw 1424.02
af-de 19.28 bg-pt 30058.54 de-it 35936.62 en-zh 28952.02 fa-hi 186.23 gd-pt 18.90 id-sw 30.56 ko-tl 1.21 pl-tl 1039.37
af-el 29.83 bg-ro 38925.52 de-ja 1472.72 es-et 18090.74 fa-hu 5201.51 gd-ru 10.39 id-ta 35.37 ko-tr 1246.58 pl-tr 32470.18
af-en 44.70 bg-ru 17423.43 de-ka 123.12 es-eu 793.59 fa-id 3220.00 gd-tr 14.12 id-te 13.30 ko-ur 57.21 pl-ur 391.99
af-es 34.31 bg-si 460.50 de-kk 3.72 es-fa 5696.70 fa-it 4243.56 he-hi 57.85 id-th 1562.94 ko-vi 345.79 pl-vi 3790.71
af-et 6.34 bg-sw 10.80 de-ko 776.89 es-fi 34222.07 fa-ja 1072.14 he-hu 23959.87 id-tl 7.80 ko-zh 56.43 pt-ro 33802.95
af-fa 3.07 bg-ta 27.14 de-lt 9134.99 es-fr 96233.21 fa-ka 96.32 he-id 6362.29 id-tr 8017.99 lt-lv 6546.76 pt-ru 14698.48
af-fi 10.25 bg-te 17.14 de-lv 8532.06 es-he 27060.49 fa-kk 1.01 he-it 19908.66 id-ur 172.71 lt-ml 66.40 pt-si 450.40
af-fr 18.56 bg-th 2733.84 de-ml 294.16 es-hi 85.35 fa-ko 627.97 he-ja 1683.29 id-vi 2081.70 lt-ms 393.89 pt-sw 13.06
af-fy 36.94 bg-tl 6.69 de-ms 1228.82 es-hu 43947.78 fa-lt 615.78 he-ka 149.06 id-zh 356.46 lt-nl 7497.18 pt-ta 26.37
af-he 14.53 bg-tr 31179.35 de-my 0.68 es-id 8015.69 fa-lv 228.40 he-kk 2.38 it-ja 1613.05 lt-pl 9965.36 pt-te 19.32
af-hi 1.15 bg-ur 71.60 de-ne 0.28 es-it 49423.51 fa-ml 308.49 he-ko 1094.72 it-ka 106.70 lt-pt 7663.84 pt-th 2561.09
af-hu 16.32 bg-vi 2855.13 de-nl 34909.49 es-ja 1929.41 fa-ms 1072.22 he-lt 1220.91 it-kk 2.54 lt-ro 5786.22 pt-tl 10.35
af-id 4.56 bg-zh 746.27 de-pt 32610.10 es-ka 181.19 fa-my 0.06 he-lv 461.81 it-ko 1125.97 lt-ru 950.02 pt-tr 27428.79
af-it 15.01 bn-cs 340.51 de-ro 24261.82 es-kk 2.48 fa-ne 0.01 he-ml 250.07 it-lt 7359.92 lt-si 106.53 pt-ur 73.57
af-ja 1.98 bn-de 346.51 de-ru 10904.25 es-ko 1229.50 fa-nl 5010.64 he-ms 1455.61 it-lv 6607.27 lt-sw 0.02 pt-vi 2963.83
af-lt 0.65 bn-el 340.94 de-si 324.86 es-lt 7702.99 fa-pt 4998.09 he-my 0.05 it-ml 235.96 lt-ta 13.04 pt-yo 0.05
af-lv 1.08 bn-en 752.08 de-sw 45.61 es-lv 6703.10 fa-ro 5714.73 he-nl 22186.61 it-ms 1269.97 lt-te 9.71 pt-zh 846.44
af-ml 2.18 bn-es 480.35 de-ta 42.32 es-ml 339.71 fa-ru 4205.20 he-pl 24962.23 it-my 0.36 lt-th 263.89 ro-ru 19568.56
af-ms 1.31 bn-et 252.68 de-te 12.81 es-ms 1731.36 fa-si 292.78 he-pt 21226.36 it-ne 1.02 lt-tl 1.36 ro-si 504.24
af-nl 22.61 bn-eu 42.42 de-th 1695.53 es-my 2.50 fa-sw 69.51 he-ro 26370.15 it-nl 37644.29 lt-tr 1377.40 ro-sw 10.72
af-pl 1096.89 bn-fa 391.89 de-tl 12.91 es-ne 2.87 fa-ta 83.30 he-ru 14873.77 it-pl 35037.31 lt-ur 4.47 ro-ta 33.50
af-pt 22.68 bn-fi 279.35 de-tr 17579.53 es-nl 46908.79 fa-te 10.11 he-si 435.87 it-pt 35301.98 lt-vi 486.84 ro-te 24.44
af-ro 32.19 bn-fr 373.13 de-ur 218.89 es-pt 47542.26 fa-th 1201.04 he-sw 0.06 it-ro 32153.38 lt-zh 40.65 ro-th 2874.73
af-ru 15.41 bn-he 302.62 de-vi 2284.70 es-ro 48229.60 fa-tl 7.02 he-ta 23.99 it-ru 17669.12 lv-ml 23.32 ro-tl 8.61
af-si 0.98 bn-hi 38.68 de-zh 587.96 es-ru 55569.05 fa-tr 6217.24 he-te 18.65 it-si 366.97 lv-ms 163.28 ro-tr 36549.61
af-ta 1.13 bn-hu 321.36 el-en 55078.46 es-si 512.22 fa-ur 568.00 he-th 2666.00 it-sw 15.77 lv-nl 6622.81 ro-ur 73.55
af-th 2.08 bn-id 360.65 el-es 46876.21 es-sw 41.33 fa-vi 1514.04 he-tl 6.58 it-ta 17.39 lv-pl 9460.93 ro-vi 3207.73
af-tr 24.22 bn-it 301.31 el-et 16463.57 es-ta 31.19 fa-zh 372.10 he-tr 25179.32 it-te 9.93 lv-pt 6672.14 ro-zh 947.91
af-vi 3.30 bn-ja 142.19 el-eu 673.93 es-te 21.76 fi-fr 28973.81 he-ur 20.57 it-th 2447.55 lv-ro 4833.77 ru-si 340.11
ar-bg 23090.32 bn-ka 8.68 el-fa 5137.52 es-th 2976.49 fi-he 17820.49 he-vi 2813.73 it-tl 13.30 lv-ru 435.73 ru-sw 84.77
ar-bn 378.28 bn-ko 93.92 el-fi 28885.65 es-tl 13.55 fi-hi 55.60 he-zh 563.24 it-tr 25770.29 lv-si 34.42 ru-ta 61.50
ar-cs 24147.25 bn-lt 96.24 el-fr 38560.84 es-tr 39805.02 fi-hu 27350.30 hi-hu 60.05 it-ur 69.89 lv-sw 0.01 ru-te 10.80
ar-de 12733.65 bn-lv 41.21 el-he 22042.85 es-ur 79.44 fi-id 5806.36 hi-id 85.85 it-vi 2542.41 lv-ta 4.10 ru-th 2194.91
ar-el 22486.60 bn-ml 93.14 el-hi 62.26 es-vi 3215.16 fi-it 26756.85 hi-it 60.12 it-yo 0.10 lv-te 4.01 ru-tl 13.43
ar-en 60392.55 bn-ms 203.84 el-hu 34559.75 es-yo 0.12 fi-ja 1599.82 hi-ja 46.14 it-zh 473.74 lv-th 108.92 ru-tr 19317.60
ar-es 57561.29 bn-my 0.78 el-id 7098.25 es-zh 28688.60 fi-ka 148.42 hi-ka 0.80 ja-ka 35.37 lv-tr 515.30 ru-ur 417.23
ar-et 9738.71 bn-ne 0.78 el-it 34337.63 et-eu 406.33 fi-kk 3.41 hi-ko 33.66 ja-kk 1.21 lv-ur 1.08 ru-vi 2289.72
ar-eu 578.30 bn-nl 331.34 el-ja 1740.08 et-fa 3085.41 fi-ko 859.31 hi-lt 23.67 ja-ko 308.30 lv-vi 209.40 ru-yo 0.10
ar-fa 5679.85 bn-pt 333.59 el-ka 167.39 et-fi 15969.08 fi-lt 7507.00 hi-lv 12.61 ja-lt 281.74 lv-zh 14.71 ru-zh 28138.59
ar-fi 17169.90 bn-ro 337.94 el-kk 2.33 et-fr 15697.59 fi-lv 6732.38 hi-ml 30.28 ja-lv 99.97 ml-ms 101.75 si-ta 6.33
ar-fr 50632.52 bn-ru 392.15 el-ko 1130.94 et-fy 51.63 fi-ml 232.48 hi-ms 40.38 ja-ml 79.78 ml-nl 268.10 si-te 1.85
ar-he 20577.16 bn-si 47.49 el-lt 7400.42 et-he 9814.49 fi-ms 1276.96 hi-my 0.01 ja-ms 489.33 ml-pt 280.62 si-th 109.38
ar-hi 96.26 bn-sw 23.91 el-lv 6549.40 et-hi 43.98 fi-nl 30693.72 hi-ne 0.04 ja-nl 1716.42 ml-ro 325.97 si-tl 3.02
ar-hu 23770.38 bn-ta 15.67 el-ml 302.85 et-hu 16819.43 fi-pl 29451.87 hi-nl 92.46 ja-pl 3295.60 ml-ru 310.59 si-tr 492.12
ar-id 6989.56 bn-th 129.60 el-ms 1547.63 et-id 4282.23 fi-pt 29269.50 hi-pl 681.08 ja-pt 1756.87 ml-si 28.01 si-ur 4.95
ar-it 20070.27 bn-tl 2.05 el-my 0.55 et-it 14462.11 fi-ro 27988.13 hi-pt 62.44 ja-ro 1843.14 ml-sw 12.47 si-vi 210.15
ar-ja 1847.98 bn-tr 441.74 el-ne 1.04 et-ja 1176.51 fi-ru 12403.26 hi-ro 82.89 ja-ru 1491.65 ml-ta 15.90 si-zh 14.28
ar-ka 161.65 bn-ur 108.74 el-nl 37188.78 et-ka 110.02 fi-si 391.99 hi-ru 142.53 ja-si 162.96 ml-th 81.03 sw-ta 6.24
ar-kk 1.28 bn-vi 219.57 el-pt 35491.54 et-kk 1.14 fi-sw 0.02 hi-si 11.41 ja-sw 6.24 ml-tl 3.30 sw-th 6.24
ar-ko 1262.60 bn-zh 85.24 el-ro 37986.26 et-ko 492.79 fi-ta 20.08 hi-sw 12.52 ja-ta 18.92 ml-tr 439.25 sw-tr 91.95
ar-lt 1177.67 cs-de 24049.84 el-ru 17052.36 et-lt 7431.17 fi-te 17.13 hi-ta 41.00 ja-te 5.68 ml-ur 100.52 sw-ur 50.29
ar-lv 433.66 cs-el 35372.28 el-si 466.44 et-lv 6728.85 fi-th 2288.65 hi-te 23.18 ja-th 632.26 ml-vi 124.30 sw-yo 0.03
ar-ml 348.33 cs-en 54470.47 el-sw 4.85 et-ml 179.99 fi-tl 5.91 hi-th 37.53 ja-tl 10.06 ml-zh 34.77 sw-zh 19.31
ar-ms 1555.33 cs-es 44962.42 el-ta 20.44 et-ms 1135.84 fi-tr 22551.99 hi-tl 0.51 ja-tr 1896.56 ms-nl 1409.07 ta-te 21.16
ar-my 0.18 cs-et 17819.46 el-te 18.10 et-nl 16560.63 fi-ur 19.43 hi-tr 176.39 ja-ur 61.41 ms-pt 1523.57 ta-th 14.15
ar-ne 0.41 cs-eu 686.53 el-th 2505.71 et-pl 19633.08 fi-vi 2517.08 hi-ur 101.10 ja-vi 679.31 ms-ro 1732.68 ta-tr 77.76
ar-nl 21273.78 cs-fa 5417.48 el-tl 10.13 et-pt 16768.45 fi-zh 630.12 hi-vi 32.99 ja-zh 104.37 ms-ru 1210.56 ta-ur 49.89
ar-pl 24819.83 cs-fi 28031.47 el-tr 31048.88 et-ro 15880.62 fr-he 21218.88 hi-zh 25.57 ka-ko 17.13 ms-si 204.06 ta-vi 12.65
ar-pt 20379.56 cs-fr 34876.02 el-ur 24.36 et-ru 6630.25 fr-hi 68.31 hu-id 7253.81 ka-lt 30.49 ms-sw 8.99 ta-zh 13.02
ar-ro 26187.15 cs-he 24503.29 el-vi 2966.14 et-si 331.22 fr-hu 37027.57 hu-it 33513.06 ka-lv 10.71 ms-ta 15.24 te-th 0.96
ar-ru 45992.72 cs-hi 86.86 el-yo 0.11 et-sw 0.01 fr-id 6235.29 hu-ja 1767.63 ka-ml 6.56 ms-te 4.70 te-tr 18.84
ar-si 483.96 cs-hu 39272.92 el-zh 649.81 et-ta 14.34 fr-it 41162.37 hu-ka 165.84 ka-ms 31.86 ms-th 413.17 te-vi 9.34
ar-sw 16.52 cs-id 7310.27 en-es 156560.00 et-te 14.44 fr-ja 1608.52 hu-kk 2.58 ka-nl 155.10 ms-tl 7.26 th-tl 7.28
ar-ta 37.15 cs-it 33935.96 en-et 22284.30 et-th 1746.50 fr-ka 139.63 hu-ko 1168.66 ka-pt 165.00 ms-tr 1754.22 th-tr 3054.07
ar-te 19.33 cs-ja 1806.97 en-eu 805.78 et-tl 3.09 fr-kk 1.34 hu-lt 7623.58 ka-ro 182.79 ms-ur 68.94 th-ur 58.65
ar-th 2959.96 cs-ka 163.35 en-fa 7462.52 et-tr 11408.82 fr-ko 991.60 hu-lv 6776.32 ka-ru 104.82 ms-vi 851.69 th-vi 672.82
ar-tl 7.58 cs-kk 1.26 en-fi 42783.36 et-ur 19.52 fr-lt 9440.34 hu-ml 279.13 ka-si 7.96 ms-zh 85.86 th-zh 133.45
ar-tr 26683.62 cs-ko 1199.62 en-fr 161519.91 et-vi 2048.37 fr-lv 8569.67 hu-ms 1581.43 ka-th 43.37 my-nl 0.10 tl-tr 14.51
ar-ur 126.33 cs-lt 7694.12 en-fy 126.19 et-zh 405.30 fr-ml 278.47 hu-my 0.06 ka-tl 1.27 my-pt 0.10 tl-vi 5.86
ar-vi 2875.00 cs-lv 6745.84 en-gd 47.02 eu-fa 245.78 fr-ms 1423.08 hu-nl 33904.34 ka-tr 178.79 my-ro 0.03 tr-ur 473.08
ar-yo 0.01 cs-ml 319.93 en-he 30028.28 eu-fi 581.61 fr-my 1.47 hu-pl 39869.14 ka-ur 1.98 my-ru 0.81 tr-vi 3178.03
ar-zh 28120.22 cs-ms 1592.17 en-hi 1844.38 eu-fr 636.16 fr-ne 1.45 hu-pt 31715.19 ka-vi 53.58 my-sw 0.15 tr-zh 1029.21
bg-bn 310.12 cs-my 0.08 en-hu 55233.87 eu-he 566.71 fr-nl 47363.70 hu-ro 38807.61 ka-zh 6.52 my-tr 0.03 ur-vi 12.52
bg-cs 34502.46 cs-ne 0.07 en-id 9677.33 eu-hi 9.98 fr-pt 42850.13 hu-ru 19172.99 kk-lt 0.83 my-ur 0.02 ur-zh 99.78
bg-de 19852.81 cs-nl 34427.07 en-it 76257.21 eu-hu 663.68 fr-ro 37249.80 hu-si 460.99 kk-lv 1.13 my-zh 0.13 vi-zh 148.22
bg-el 32130.86 cs-pt 32469.01 en-ja 2177.89 eu-id 307.85 fr-ru 54231.81 hu-sw 0.68 kk-ms 1.12 ne-nl 0.09
bg-en 47247.04 cs-ro 39226.31 en-ka 199.98 eu-it 568.66 fr-si 393.48 hu-ta 20.63 kk-nl 1.85 ne-pt 0.38
bg-es 39728.55 cs-ru 19703.43 en-kk 3.71 eu-ja 139.14 fr-sw 29.32 hu-te 17.57 kk-pl 77.88 ne-ro 0.04
bg-et 15188.54 cs-si 454.26 en-ko 1493.95 eu-ka 9.42 fr-ta 24.03 hu-th 2867.23 kk-pt 3.35 ne-ru 1.30
bg-eu 605.10 cs-sw 17.34 en-lt 10992.89 eu-ko 72.17 fr-te 11.93 hu-tl 10.79 kk-ro 2.35 ne-sw 0.05
bg-fa 4927.53 cs-ta 32.81 en-lv 9883.08 eu-lt 108.12 fr-th 2325.22 hu-tr 32494.90 kk-ru 2.22 ne-tr 0.03
bg-fi 25191.01 cs-te 18.72 en-ml 573.95 eu-lv 36.81 fr-tl 13.18 hu-ur 23.32 kk-th 0.93 ne-ur 0.06
bg-fr 30185.98 cs-th 2858.53 en-ms 2050.83 eu-ml 42.72 fr-tr 29245.91 hu-vi 2974.61 kk-tr 2.59 ne-zh 0.01
bg-he 22887.40 cs-tl 7.44 en-my 2.43 eu-ms 129.20 fr-ur 73.99 hu-zh 730.70 kk-vi 1.18 nl-pt 37775.73
bg-hi 71.38 cs-tr 32797.28 en-ne 2.89 eu-nl 619.88 fr-vi 2752.32 id-it 5831.16 ko-lt 148.54 nl-ro 36051.60
bg-hu 34293.44 cs-ur 122.87 en-nl 65918.54 eu-pt 641.30 fr-yo 0.12 id-ja 1271.31 ko-lv 57.10 nl-ru 16582.78
bg-id 7047.21 cs-vi 3040.14 en-pl 59729.77 eu-ro 715.99 fr-zh 28008.77 id-ka 85.07 ko-ml 42.92 nl-si 410.92
bg-it 27649.85 cs-zh 894.87 en-pt 61861.36 eu-ru 435.12 fy-es 49.12 id-kk 1.03 ko-ms 291.25 nl-sw 31.38
bg-ja 1658.40 de-el 30170.64 en-ro 60415.46 eu-si 34.56 fy-he 44.06 id-ko 605.78 ko-my 0.12 nl-ta 39.21
bg-ka 193.27 de-en 83872.47 en-ru 65105.13 eu-ta 3.35 fy-it 47.88 id-lt 855.43 ko-ne 0.01 nl-te 16.07
bg-kk 3.40 de-es 41634.80 en-si 601.16 eu-te 0.73 fy-ja 37.61 id-lv 342.36 ko-nl 1120.75 nl-th 2548.14
bg-ko 1056.96 de-et 15186.40 en-sw 171.65 eu-th 80.75 fy-pl 49.37 id-ml 230.67 ko-pl 2722.47 nl-tl 8.18
bg-lt 5604.11 de-eu 534.93 en-ta 125.96 eu-tl 2.60 fy-pt 95.81 id-ms 1614.63 ko-pt 1119.49 nl-tr 28822.22
bg-lv 4748.15 de-fa 3948.14 en-te 27.22 eu-tr 722.77 fy-ru 45.83 id-my 0.11 ko-ro 1242.76 nl-ur 171.71
bg-ml 283.77 de-fi 25753.06 en-th 3375.07 eu-ur 2.01 fy-sw 0.37 id-ne 0.07 ko-ru 959.46 nl-vi 2748.28
bg-ms 1506.56 de-fr 44392.06 en-tl 16.03 eu-vi 201.28 fy-tr 45.40 id-nl 6493.33 ko-si 58.66 nl-zh 866.75 Total 6,421,152.04

Table 7: The statistics of bilingual (parallel) pre-training corpus.
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Pre-training Hyperparameters Large Small

Number of layers 24 6
Hidden Size 1024 768
FFN inner hidden size 4096 3072
Attention heads 16 12
Attention head size 64 64
Embedding Size 1024 768
Mask percent (monolingual/ bilingual) 15%/25% 15%/25%
Learning Rate Decay Linear Linear
Warmup steps 12k 12k
Learning Rate 2e-4 3e-4
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.999
Attention Dropout 0.1 0.1
Dropout 0.1 0.1
Weight Decay 0.01 0.01
Max Sequence Length (monolingual/bilingual) 512/128 512/128
Batch Size (monolingual/bilingual) 1024/4096 1024/4096
Train Steps 240k 240k
Total Parameters 662M 247M

Table 8: The pre-training hyperparameters.

Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.

Cross-lingual Transfer
XLM-R 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
VECOout 88.2 79.2 83.1 82.9 81.2 84.2 82.8 76.2 80.3 74.3 77.0 78.4 71.3 80.4 79.1 79.9

Translate-Train-All
XLM-R 88.6 82.2 85.2 84.5 84.5 85.7 84.2 80.8 81.8 77.0 80.2 82.1 77.7 82.6 82.7 82.6
VECOout 88.9 82.4 86.0 84.7 85.3 86.2 85.8 80.1 83.0 77.2 80.9 82.8 75.3 83.1 83.0 83.0
VECOin 89.3 83.7 87.0 85.9 85.8 87.3 86.7 81.8 83.6 79.9 82.5 84.3 77.7 84.4 84.0 84.3

Table 9: XNLI accuracy scores for each language.

Model en de es fr ja ko zh Avg.

Cross-lingual Transfer
XLM-R 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
VECOout 96.2 91.3 91.4 92.0 81.8 82.9 85.1 88.7

Translate-Train-All
VECOout 96.4 93.0 93.0 93.5 87.2 86.8 87.9 91.1
VECOin 96.5 94.4 94.3 94.0 89.0 90.3 91.0 92.8

Table 10: PAWS-X accuracy scores.

Model de fr ru zh Avg.

Cross-lingual Transfer
XLM-R 67.5 66.5 73.5 56.7 66.0
VECOout 89.6 84.6 87.4 78.5 85.0

Translate-Train-All
VECOout 93.0 88.7 89.9 85.7 89.3
VECOin 95.4 91.9 93.1 89.9 92.6

Table 11: BUCC F1 results.

Model af ar bg de el en es et eu fa fi fr he hi hu id it

Cross-lingual Transfer
XLM-R 89.8 67.5 88.1 88.5 86.3 96.1 88.3 86.5 72.5 70.6 85.8 87.2 68.3 76.4 82.6 72.4 89.4
VECOout 88.3 67.4 87.4 88.5 86.7 95.9 89.0 87.8 75.1 70.9 86.2 88.9 67.5 76.2 82.9 72.9 89.9

Translate-Train-All
VECOin 92.5 73.7 93.4 91.8 90.4 95.2 91.3 90.6 79.1 79.8 89.5 91.4 79.1 80.6 88.4 74.8 91.8

ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh Avg.

Cross-lingual Transfer
XLM-R 15.9 78.1 53.9 80.8 89.5 87.6 89.5 65.2 86.6 47.2 92.2 76.3 70.3 56.8 24.6 25.7 73.8
VECOout 31.4 79.3 53.1 84.3 89.8 88.3 90.2 64.3 85.8 48.0 93.7 77.2 69.2 58.1 26.2 39.4 75.1

Translate-Train-All
VECOin 45.1 78.0 63.7 84.5 92.7 90.1 92.6 72.6 88.5 55.2 88.8 76.8 75.0 70.5 24.3 63.0 79.8

Table 12: POS results (Accuracy) for each language.
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Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

Cross-lingual Transfer
XLM-R 84.7 78.9 53.0 81.4 78.8 78.8 79.5 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53.0 81.3 23.2 62.5
VECOout 83.8 77.5 48.2 83.9 77.2 79.4 79.3 75.4 80.4 68.3 68.2 80.6 80.1 55.0 71.0 80.9 52.9 81.7 19.4 63.2

Translate-Train-All
VECOin 80.7 82.5 66.4 84.1 78.4 82.2 82.4 79.7 84.7 78.2 68.8 84.9 79.1 69.7 76.6 85.1 77.3 83.8 21.3 70.3

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh

Cross-lingual Transfer
XLM-R 71.6 56.2 60.0 67.8 68.1 57.1 54.3 84.0 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1
VECOout 67.1 51.2 59.9 63.4 65.0 70.0 56.1 83.4 83.1 71.3 70.5 60.5 56.2 1.4 71.3 80.4 69.3 76.0 37.4 29.1

Translate-Train-All
VECOin 77.0 67.2 71.0 73.3 74.1 71.8 63.8 85.5 80.8 72.8 77.0 69.1 67.5 2.6 74.0 85.2 71.5 76.4 32.8 31.0

Table 13: NER results (F1) for each language.

Model en ar de el es hi ru th tr vi zh Avg.

Cross-lingual Transfer
XLM-R 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
VECOout 87.6 / 76.5 73.6 / 56.1 79.8 / 62.2 79.6 / 61.6 81.2 / 61.6 74.7 / 57.6 78.7 / 62.1 72.8 / 60.6 75.1 / 58.3 79.0 / 59.8 69.2 / 59.2 77.3 / 61.8

Translate-Train-All
VECOout 88.3/77.9 76.9/61.1 80.5/64.6 81.5/64.1 84.2/66.8 78.8/62.5 80.2/66.1 77.0/70.4 77.8/62.2 82.5/63.7 71.6/69.4 79.9/66.3
VECOin 90.2/79.5 81.8/66.4 85.4/69.8 85.3/69.0 87.2/70.8 83.7/67.9 85.6/71.6 80.0/74.7 82.4/68.6 85.8/68.3 74.9/73.1 83.9/70.9

Table 14: XQuAD results (F1 / EM) for each language.

Model en ar de es hi vi zh Avg.

Cross-lingual Transfer
XLM-R 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74.0 / 52.9 62.1 / 37.0 71.6 / 53.2
VECOout 83.6 / 70.5 65.0 / 44.6 69.8 / 54.6 73.8 / 55.6 69.1 / 51.4 73.1 / 51.8 67.3 / 43.6 71.7 / 53.2

Translate-Train-All
VECOout 84.1/71.3 67.8/47.1 70.7/55.8 74.6/56.6 71.1/53.4 74.8/54.4 68.8/45.8 73.1/54.9
VECOin 87.5/75.5 72.3/52.1 75.7/61.1 78.8/61.6 76.6/58.6 79.3/59.1 72.1/46.8 77.5/59.3

Table 15: MLQA results (F1 / EM) for each language.

Model en ar bn fi id ko ru sw te Avg.

Cross-lingual Transfer
XLM-R 71.5 / 56.8 67.6 / 40.4 64.0 / 47.8 70.5 / 53.2 77.4 / 61.9 31.9 / 10.9 67.0 / 42.1 66.1 / 48.1 70.1 / 43.6 65.1 / 45.0
VECOout 71.3 / 58.2 73.1 / 52.8 58.9 / 42.5 70.9 / 55.1 77.2 / 60.0 54.2 / 39.9 66.1 / 37.6 65.8 / 45.7 70.6 / 50.7 67.6 / 49.1

Translate-Train-All
VECOout 77.2/64.8 77.0/57.5 72.2/56.6 76.6/59.3 80.0/64.4 63.4/52.2 72.8/50.5 79.4/67.1 76.0/58.0 75.0/58.9
VECOin 79.4/65.2 80.1/60.9 80.8/68.1 81.6/65.5 84.3/69.7 65.4/50.4 77.8/55.8 83.7/74.1 81.0/63.4 79.4/63.7

Table 16: TyDiQA-GolP results (F1 / EM) for each language.

Model af ar bg bn de el es et eu fa fi fr he hi hu id it ja

Cross-lingual Transfer
XLM-R 58.2 47.5 71.6 43 88.8 61.8 75.7 52.2 35.8 70.5 71.6 73.7 66.4 72.2 65.4 77 68.3 60.6
VECOout 48.2 70.9 86.7 57.7 97.5 81.5 94.8 89.7 62.9 82.1 87.9 88.8 74.7 80.7 87.6 89.6 89.2 83.2

Translate-Train-All
VECOout 80.9 85.1 91.3 78.1 98.5 89.5 97.4 94.8 79.8 93.1 95.4 93.7 85.8 94.2 93.8 93.0 92.2 92.8
VECOin 88.5 88.7 91.5 84.2 98.9 91.5 97.9 96.4 85.8 95.3 95.9 95.6 89.6 97.0 95.1 94.2 94.1 94.0

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

Cross-lingual Transfer
XLM-R 14.1 52.1 48.5 61.4 65.4 56.8 80.8 82.2 74.1 20.3 26.4 35.9 29.4 36.7 65.7 24.3 74.7 68.3
VECOout 17.6 58.5 53.9 75.3 80.1 64.2 94.4 92.8 88.6 37.4 61.9 65.8 84.5 52.5 89.3 64.3 85.8 82.7

Translate-Train-All
VECOout 35.1 83.0 74.1 88.7 94.8 82.5 95.9 94.6 92.2 69.7 82.4 91.0 94.7 73.0 95.2 63.8 95.1 93.9
VECOin 49.3 86.6 83.7 91.2 97.1 87.9 97.6 96.1 93.8 82.6 88.9 95.3 95.1 79.8 97.6 91.4 97.2 95.2

Table 17: Tatoeba results (Accuracy) for each language


