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Abstract

While Transformer-based text classifiers pre-
trained on large volumes of text have yielded
significant improvements on a wide range of
computational linguistics tasks, their imple-
mentations have been unsuitable for live in-
cremental processing thus far, operating only
on the level of complete sentence inputs. We
address the challenge of introducing meth-
ods for word-by-word left-to-right incremen-
tal processing to Transformers such as BERT,
models without an intrinsic sense of linear
order. We modify the training method and
live decoding of non-incremental models to de-
tect speech disfluencies with minimum latency
and without pre-segmentation of dialogue acts.
We experiment with several decoding meth-
ods to predict the rightward context of the
word currently being processed using a GPT-2
language model and apply a BERT-based dis-
fluency detector to sequences, including pre-
dicted words. We show our method of incre-
mentalising Transformers maintains most of
their high non-incremental performance while
operating strictly incrementally. We also evalu-
ate our models’ incremental performance to es-
tablish the trade-off between incremental per-
formance and final performance, using differ-
ent prediction strategies. We apply our sys-
tem to incremental speech recognition results
as they arrive into a live system and achieve
state-of-the-art results in this setting.

1 Introduction

Conversational systems provide a significant ad-
dition to the present approaches in mental health
care delivery. Interactions with these conversa-
tional agents have been shown to contain observ-
able indicators of cognitive states, such as the rate
of filled pauses and different temporal and turn-
related features (Gratch et al., 2014). Alzheimer’s
Disease (AD) patients, for example, have trouble

performing tasks that leverage semantic informa-
tion; they have difficulties with verbal fluency and
object recognition. AD patients speak more slowly
with long pauses and spend extra time looking for
the correct word, which leads to speech disfluency
(López-de Ipiña et al., 2013; Nasreen et al., 2021).
Disfluency markers can be key features for identi-
fying certain cognitive disorders for application in
conversational agents (Rohanian et al., 2020).

Such conversational systems are primarily used
for content processing, which is then analyzed of-
fline. There is much work on detecting disfluen-
cies for offline analysis of transcripts. However,
given that these disfluency detection models do not
work for live systems and depend on rich transcrip-
tion data, including pre-segmentation of dialogue
acts, to facilitate more cost-effective analysis of
other data, we need systems capable of performing
directly and incrementally off the speech signal,
or at least from the results of automatic speech
recognition (ASR) as they arrive in the system.

As it receives word-by-word data, an incremen-
tal model must operate with minimum latency and
do so without changing its initial assumptions and
delivering its best decisions as early as possible
following the principles outlined in (Hough and
Purver, 2014). Here we design and evaluating mod-
els that work with online, incremental speech recog-
nition output to detect disfluencies with varying
levels of granularity.

The best neural language encoders currently
used in computational linguistics consider word se-
quences as a whole, and their implementations have
been unsuitable for live incremental processing.
Transformers (Vaswani et al., 2017), for instance,
operate on representations that do not naturally
have an organizing principle of linear word or-
der. We analyze how these models work under
incremental frameworks, where it is essential to
present partial output relying on partial input pro-
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vided up to a certain time step that may occur in
interactive healthcare systems. We explore whether
we can adjust such models to function incremen-
tally and how useful they are in terms of overall
accuracy and incremental metrics.

To further enhance the models’ incremental per-
formance, we use two general strategies to adjust
the training regime and the real-time procedure:
incremental training (‘chunk-based’ training and
add-M training) and incremental decoding (con-
stant latency and prophecies). We employ three
prominent decoding methods to predict the right-
ward context of the word currently being processed:
beam search, top-k sampling, and top-p sampling.
We also measure our models’ incremental perfor-
mance to set the trade-off between incremental per-
formance and final performance.

2 Related Work

Although considerable work has been done on de-
tecting disfluencies, much of this work uses tran-
scripts as texts rather than live speech inputs, with
the goal of ‘cleaning’ the disfluent content for
post-processing purposes. They are almost exclu-
sively conducted on pre-segmented utterances of
the Switchboard corpus of telephone conversations
(Godfrey et al., 1992). Several disfluency detec-
tion efforts involve sentence-based parsing and
language models (Johnson and Charniak, 2004;
Zwarts et al., 2010). Sequence labeling models
with start-inside-outside (BIO) style tags have been
used in recent neural sequence approaches to disflu-
ency detection based on bi-directional Long Short
Term Memory (BiLSTM) networks and Transform-
ers, in which the sequences are available in full
(Zayats et al., 2016; Lou and Johnson, 2020; Wang
et al., 2020).

Such offline methods are insufficient if we in-
tend to infer meaning from repairs and edit words
for disfluency detection in real-time, which is ben-
eficial in a healthcare domain dialogue system that
seeks to get a consistent and clear understanding of
user statements and the user’s cognitive state.

Methods based on strictly incremental opera-
tion have been rare. Hough and Purver (2014) used
a line of classifiers and language model features
in a strong incremental operating system without
looking ahead. Incremental dependency parsing
combined with the removal of disfluency was also
studied (Rasooli and Tetreault, 2015). Some studies
have used recurrent neural networks for live dis-

fluency identification. Using a basic Elman Recur-
rent Neural Network (RNN), Hough and Schlangen
(2015) investigated incremental processing, with
an objective coupling detection accuracy with low
latency.

Language models have been used as an addi-
tional task for the identification of disfluencies, re-
lying on the intuition that disfluencies can be de-
tected by divergences from clean language models,
with Johnson and Charniak (2004)’s noisy chan-
nel model beginning this effort. Shalyminov et al.
(2018) made language modelling an auxiliary task
to disfluency detection in a deep multi-task learn-
ing (MTL) set-up, gaining accuracy over a vanilla
RNN tagger. POS tags have also been used as
an input for detecting disfluencies, showing slight
increases in disfluency detection over using word
values alone (Purver et al., 2018).

While the work above operates only on tran-
scripts pre-segmented into utterances, recent re-
search has been performed on combining disflu-
ency detection with utterance segmentation. This
was done in a joint tagset of disfluency, and utter-
ance segmentation tags by (Hough and Schlangen,
2017), showing an improvement over the perfor-
mance of the individual tasks, and (Rohanian and
Hough, 2020) show an improvement in both tasks
when framed as a multi-task learning (MTL) set-up
with a Long Short-term Memory network (LSTM),
also simultaneously doing POS-tagging and lan-
guage modelling.

The recent live incremental systems fall short of
the same accuracies achievable on pre-segmented
transcripts, so there is a natural interest in using
the best non-incremental sequence models and
adapting them for incrementality. Madureira and
Schlangen (2020) take up this effort in several other
sequence tagging and classification tasks, showing
how bidirectional encoders and Transformers can
be modified to work incrementally. To reduce the
impact of the partiality of the input, the models pre-
dict future content and wait for more rightward con-
text. Dalvi et al. (2018) also use truncated inputs
during the training phase of live machine transla-
tion to address the partial input sentence decoding
problem Bidirectional encoders face. Here, we
seek to add to this growing effort to investigate the
trade-off of incremental performance against the
final output quality of deep neural network-based
language processing, applied to incremental disflu-
ency detection.
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| A uh flight [ to Boston + { uh I mean } to Denver ] on Friday | Thank you |
Disfluency f e f f f e e e rpS−5 rpnSub f f f f

Utterance segmentation .w- -w- -w- -w- -w- -w- -w- -w- -w- -w- -w- -w. .w- -w.
POS tags DT UH NN IN NNP UH PRP V B IN NNP IN NNP V B PRP

Figure 1: An utterance with the disfluency tags (repair structures and edit terms) and the utterance segmentation
tags and POS tags used for preprocessing.

3 Disfluency Detection

Disfluencies are generally assumed to have
a reparandum-interregnum-repair structure in
their fullest form as speech repairs (Shriberg, 1994;
Meteer et al., 1995). A reparandum is a stretch of
speech later corrected by the speaker; the corrected
expression is a repair, the beginning of which is
referred to as repair onset. An interregnum word
is a filler or a reference expression between the
repair and reparandum, usually an interruption and
hesitation step when the speaker expresses a repair,
giving the structure as in (1).

John [ likes︸ ︷︷ ︸
reparandum

+ { uh }︸ ︷︷ ︸
interregnum

loves ]︸ ︷︷ ︸
repair

Mary

(1)

In the absence of reparandum and repair, the
disfluency is reduced to an isolated edit term. A
marked, lexicalised edit term such as a filled pause
(“uh” or “um”) or more phrasal terms such as “I
mean” and “you know” may occur. The identifi-
cation of these elements and their structure is then
the task of disfluency detection.

The task of detecting incremental disfluencies
adds to the difficulty of doing this in real-time,
word-by-word, from left to right. Disfluency recog-
nition is then treated as the same problem that a
human processor faces with a disfluent expression:
only when an interregnum is detected, or maybe
even when a repair is initiated, does it become clear
that the earlier content is now to be regarded as ‘to
be repaired,’ i.e., to be classified as a reparandum.
Therefore, the task cannot be defined as a simple
sequence labeling task in which the tags for the
reparandum, interregnum, and repair phases are as-
signed left-to-right over words as seen in the above
example; in this case, it will require the assumption
that “likes” would be repaired, at a time when there
is no data to make it available.

We use a tag set that encodes the start of the
reparandum only at a time when it can be inferred,
primarily when the repair starts – the disfluency
detection task is to tag words as in the top line of
tags in Fig. 1 as either fluent (f ) an edit term (e),

a repair onset word (rpS−N for the reparandum
starting N words back) and a repair end word of
the type repeat (rpnRep), substitution (rpnSub)
or delete (rpnDel).

4 Model

To incrementalise a Transformer-based model for
word-by-word disfluency detection, we devise a
model built on top of a pre-trained BERT archi-
tecture (Devlin et al., 2019) with a Conditional
Random Field (CRF) output architecture to tag
sequences with tags such as those in the top line
of Fig. 1. We use a BERT-based encoder and try
different strategies to incrementalise the system’s
operation and output, using language models to
predict future word sequences as described in Sec-
tion 5 while maintaining BERT’s non-incremental
quality.

Utterance segmentation Our models are de-
signed to work not only with pre-segmented data
but also on raw transcripts and ASR results, where
utterance segmentation is required to leverage
the use of sentence-based linguistic knowledge in
BERT. Utterance segmentation has a clear interde-
pendence with and influence on the detection of
disfluency as disfluent restarts and repairs may be
incorrectly predicted at fluent utterance boundaries
without segmentation. In this paper, rather than
performing utterance segmentation in tandem with
disfluency detection, we perform it on words as
they arrive in the system as a live segmentation
task before sending the current prefix of the utter-
ance to the disfluency detection system. We use
the word-by-word segmentation system from (Ro-
hanian and Hough, 2020) where four output tags
define ranges of transcribed words or word hypothe-
ses using a BIES tag scheme (Beginning, Inside,
End, and Single) to allow for the prediction of an
utterance ending. The tagset allows information to
be captured from the context of the word to decide
whether this word continues a current utterance
(the - prefix) or starts anew (the . prefix), and also
allows live prediction of whether the next word
will continue the current utterance (the - suffix) or
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whether the current word finishes the utterance (the
. suffix). An example of the scheme is shown in
the second line of Fig. 1.

CRF We use a CRF output architecture to pre-
dict a tag for every token. Although this model
generates predictions for the whole sequence, the
labels are outputted individually. There are impor-
tant dependencies between adjacent labels in dis-
fluency detection, and explicit modeling of these
relationships can help. The addition of the CRF
enables the model to test for the most optimal path
across all available label sequences.

4.1 Input Features

In addition to the word values, we also experiment
with two other inputs:

Part-of-speech tags POS tags may enhance the
identification of disfluencies on various settings.
POS tagging helps detect disfluency structure as the
parallelism between the reparandum and repair in
substitutions, as shown in the repeated IN NNP
sequences in Fig. 1.

Word timings We also experiment with the du-
ration from the ending of the previous word to
the ending of the current word as it enters the sys-
tem, either from ground truth word transcriptions
or from ASR results.

5 Strategies for Incrementalising BERT

Here we describe the different strategies we used
to modify the training and live decoding methods
of non-incremental models to detect speech disflu-
encies word-by-word incrementally. The general
principle is to leverage high accuracy full sequence
classification using BERT but deploying it on se-
quences, including future predictions for words up
to the hypothesised end of the current utterance.

5.1 Modifying the Training Procedure

Training is performed on full sentences/utterances,
but the decoder produces outputs based on par-
tial input data at the test time. This disparity be-
tween training and decoding can potentially affect
our models’ performance. Based on (Dalvi et al.,
2018), we present two methods to address this is-
sue: chunk-based training and add-M training.

Chunk-based training In chunk-based training,
we change the training scheme by removing the
ends of each sentence in the training set and sim-
ply break each training sentence into chunks of N
tokens. Here we use 2 and 3 for N .

Add-M training We begin with the first N
words in training sentences in add-M training.
The next training instances are then generated by
N +M,N +2M,N +3M... words before the end
of the sentence is reached. In our experiments, we
found setting N=1 and M=1 worked best.

5.2 Modifying the Decoding Procedure
Constant latency The technique of constant la-
tency requires allowing certain ‘future’ words to
be seen before a label to previous words is given.
It is a form of look-ahead based on Baumann et al.
(2011), in which before making the first decision
with respect to previous time steps, the processor
is required to wait for some correct context. We
explore the one- or two-word contexts of our in-
put. This suggests that the model generates the
first label for word t after the word t+ 1 is seen or
the model observes words t + 1 and t + 2 before
tagging word t. This has an inherent limit on the
latency achievable, and we use this as a baseline
incremental decoding system.

Prophecy-based decoding For our other decod-
ing strategies, we use a ‘prophecy’-based approach
to predicting future word sequences, following the
task of open-ended language generation, which,
given an input text passage as context, is to pro-
duce text that constitutes a cohesive continuation
(Holtzman et al., 2019). Inspired by (Madureira
and Schlangen, 2020), using the GPT-2 language
model (Radford et al., 2019), we first give each
word as a left context and create a continuation un-
til the end of an utterance to create a hypothetical
complete context that satisfies the requirements of
the models’ non-incremental structure.

Formally, with m tokens x1...xm as our context,
the task is to create the next n continuation tokens
to achieve the completed sequence x1...xm+n. It
is assumed that the models compute P (x1:m+n)
using a standard left-to-right decomposition of the
text probability as in (2). This process is used
to build the utterance continuation token-by-token
using a specific decoding technique.

P (x1:m+n) =

m+n∏
i=1

P (xi|x1...xi−1) (2)

Three of the most common decoding methods
are used in this paper: Beam search, Top-k sam-
pling, and Top-p sampling. Example word se-
quence prophecies from these decoding methods
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(a)

(b)

(c)

Figure 2: Using a ‘prophecy’-based approach to pre-
dict future word sequences, following the task of open-
ended language generation with three different decod-
ing methods. (a) Beam search. (b) Top-k sampling.
(c) Top-p sampling.

are shown in Fig. 2. The right-most block shows
the prediction of the continuation of the word se-
quences as each new word in the sequence “John
likes uh loves Mary” is fed into the language model.

Beam search Assuming that the model gives a
greater likelihood to better quality text, we are look-
ing for a sequence with the highest probability. Dur-
ing the search, a group of stacks is used to hold
hypotheses. Beam size N is used to manage the
search space by expanding the top N hypotheses
in the existing stack. We used beam size 10 for all
the models.

Top-k sampling We define sampling as ran-
domly choosing the next word based on its con-
ditional probability distribution as in (3).

xi ∼ P (x|x1:i−1) (3)

In the Top-k sampling, the most probable next k
words are extracted and the probability mass is
redistributed between only the following k words

(Fan et al., 2018). Given a distribution P (x|x1:i−1),
we extract its top-k vocabulary V (k) ⊂ V as the set
of size k which maximizes

∑
x∈V (k) P (x|x1:i−1).

After an initial investigation, we set k to 50 in all
experiments.

Top-p sampling Rather than selecting only the
most probable K words, in Top-p sampling, we
select the smallest possible range of words with
their total likelihood exceeds the probability p
(Holtzman et al., 2019). The probability mass is
then redistributed between this set of words. With
this method, the size of the word set will dynami-
cally adjust based on the probability distribution of
the next word. With the distribution P (x|x1:i−1),
we consider its top-p sequence, with vocabulary
V (p) ⊂ V as the smallest set with P (x|x1:i−1) ≥ p.
We set p = 0.95.

6 Experimental Set-up

We train on transcripts and test on both transcripts
and ASR hypotheses. All models in testing have
strictly word-by-word left to right input. In addition
to using the latest word hypothesis as input, we
train and evaluate the presented models with two
kinds of additional inputs: time elapsed from the
end of the previous word (hypothesis) to the current
one and the POS tag of the current word. Results
on the development set were used to find the best
model to be evaluated on the test set.

We used the data from (Hough and Schlangen,
2017) for ASR hypotheses – this was generated
by a free trial version of IBM’s Watson Speech-
To-Text service for incremental ASR. The service
offers good quality ASR on noisy data-on our se-
lected held-out data on Switchboard, and the aver-
age WER is 26.5%. The Watson service, crucially
for our task, does not filter out hesitation markers
or disfluencies (Baumann et al., 2017). The service
delivers results incrementally, so silence-based end-
pointing is not used. It also outputs word timings,
which are close enough to the source timings to use
as features in the live version of our system.

The word embedding for LSTM was initialised
with 50-dimensional embedding trained on Google
News (Mikolov et al., 2013). The model has been
implemented using Tensorflow 2.1. We train all
models for a maximum of 50 epochs; otherwise,
stop training if there is no improvement on the best
score on the validation set after 7 epochs.

A large version of the pre-trained BERT is used
with 340M parameters (24-layer blocks, 16 self-
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Input Model
Pre-segmented transcripts

(per word)
Transcripts
(per word)

ASR
(per 10 second window)

Frm FrpS Fe Frm FrpS Fe Frm FrpS Fe

Words
STIR (HS’15/ PHH’18) 0.741 / 0.749 -/0.827 0.880/- - - - - - -
RNN (HS’15) 0.689 - 0.873 - - - - - -
LSTM 0.686 0.771 0.928 0.59 0.678 0.904 - 0.548 0.726
LSTM-MTL (RH’20) 0.737 0.799 0.938 0.629 0.743 0.917 - 0.573 0.757
BERT 0.758 0.851 0.960 0.659 0.782 0.947 0.524 0.603 0.812

Word +
Timings

LSTM 0.681 0.777 0.921 0.623 0.718 0.908 - 0.555 0.721
LSTM-MTL (RH’20) 0.741 0.812 0.929 0.629 0.741 0.922 - 0.559 0.751
BERT 0.752 0.842 0.958 0.678 0.791 0.939 0.502 0.594 0.793

Word +
POS

STIR (HP’14 / PHH’18) 0.779 / 0.768 -/0.833 0.937/- - - - - - -
RNN (HS’15 / PHH’18) 0.711 / 0.668 -/0.790 0.902/- - - - - - -
LSTM joint tagset (HS’17) - - - 0.599 0.686 0.907 - 0.557 0.726
LSTM-MTL (SEL’18) 0.753 0.816 0.919 - - - - 0.548 -

Words +
Timings +

POS

LSTM joint tagset (HS’17) - - - 0.601 0.719 0.918 - 0.555 0.727
LSTM 0.692 0.778 0.931 0.601 0.720 0.910 - 0.557 0.727
LSTM-MTL (RH’20) 0.743 0.811 0.932 0.633 0.743 0.931 - 0.571 0.757
BERT 0.757 0.853 0.958 0.676 0.802 0.944 0.522 0.605 0.809

Table 1: Final disfluency detection accuracy results on Switchboard data

attention heads, and 1024 hidden-size) for the
model. In our analysis, when fine-tuning BERT,
we followed the hyper-parameters of (Devlin et al.,
2019). Since the datasets we use are tokenized,
and each token has a matching tag, we adopt the
directions provided by (Devlin et al., 2019) to deal
with the sub-tokenization of BERT: to determine
its label, the scores of the first sub-token are used,
and further sub-token scores are discarded.

Data We use standard Switchboard training data
(all conversation numbers starting sw2*,sw3 * in
the Penn Treebank III release: 100k utterances,
650k words) and use standard held-out data (PTB
III files sw4[5-9] *: 6.4k utterances, 49k words)
as our validation set. We test on the standard test
data (PTB III files 4[0-1] *) with partial words
and punctuation stripped away from all files. We
only choose a subset of the held-out and test data
for the ASR results in assessment, whereby both
channels achieve below 40 percent WER to ensure
good separation- this left us with 18 dialogues in
validation data and 17 dialogues for test data.

6.1 Evaluation Criteria

We calculate F1 accuracy for repair onset detec-
tion FrpS and for edit term words Fe, which in-
cludes interregna and Frm for reparandum detec-
tion. Performing the task live, on hypotheses of
speech recognition that may not be quite equiva-
lent to the annotated gold-standard transcription
involves the use of time-based local accuracy met-
rics in a time window (i.e., within this time frame,
has a disfluency been detected, even if not on the

identical words?)-we, therefore, measure the F1
score over 10-second windows of each speaker’s
channel.

For incremental performance, we measure la-
tency and output stability over time. We use the
first time to detection (FTD) metric of (Zwarts et al.,
2010) for latency: the average latency (in number
of words) before the first detection of a gold stan-
dard repair onset or edit term word. For stability,
we evaluate the edit overhead (EO) of output labels
(Baumann et al., 2011), the proportion of the un-
necessary edits (insertions and deletions) required
to achieve the final labels produced by the model,
with perfect performance being 0%.

6.2 Competitor Baselines

We compare our incrementalised BERT model
against a number of existing baselines, largely from
existing incremental disfluency detection systems
trained and tested on the same data:

STIR (HP’14/HS’15/PHH’18): Hough and
Purver (2014)’s STrongly Incremental Repair de-
tection (STIR) non-deep model using n-gram lan-
guage model features in a pipeline of Random
Forest classifiers. The reparandum is detected by
a backward search, showing robustness for longer
lengths of repair compared to deep sequence tag-
ging models (Purver et al., 2018). A state-of-
the-art incremental model on pre-segmented tran-
scripts.

RNN (HS’15): (Hough and Schlangen, 2015)’s
RNN-based model, the first deep learning-based
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Training
Scheme Model Final output F1 Incrementality

Frm FrpS Fe EO FTD

Chunk
LSTM .591 .674 .901 0.21 0.06
MTL .631 .739 .911 0.41 0.07
BERT .647 .780 .938 0.61 0.32

Add-M
LSTM .598 .683 .909 0.20 0.03
MTL .628 .751 .921 0.38 0.10
BERT .664 .788 .949 0.60 0.31

Table 2: Final accuracy vs. incremental performance
trade-off in the different models on un-segmented tran-
scripts.

incremental disfluency detection model using
the same tagset as in our model. Results from
Purver et al. (2018) are used, which reproduced
the model with some degradation in the results.

LSTM: An LSTM version of Hough and
Schlangen (2015) on pre-segmented transcripts

LSTM joint tagset (HS’17) Hough and
Schlangen (2017)’s model, which simultaneously
predicts utterance segmentation using a joint tag
set of utterance segmentation tags and disfluency
tags, the latter of which is the same as our own.
This is the only other work to use word timing
information and to be testable on ASR results.

LSTM-MTL (SEL’18) Shalyminov et al.
(2018)’s multi-task learning model, which tags
according to our tag set but simultaneously does
language modelling by predicting the probability
of the current word given the history. Also adds
ground-truth POS tags to input.

LSTM-MTL (RH’20): Rohanian and Hough
(2020)’s multi-task learning model, which simul-
taneously predicts utterance segmentation, POS
tags and language model probabilities, exhibiting
state-of-the-art results for a strictly incremental
deep model. The model is used as described by
the authors and also here with the addition of
timing information and gold standard POS infor-
mation (as opposed to simultaneously predicted
POS tags). It is also applied to ASR results as it is
a suitable model to do so. This same model pro-
vides the automatic live utterance segmentation
in our own model.

7 Results

The results in terms of the final output of our best
performing incremental BERT system in the three
testing regimes versus its competitors is shown in

Model F1
Repeats Substitution Deletes

With Standard Training
LSTM 0.94 0.70 0.48
MTL 0.96 0.72 0.46
BERT 0.96 0.77 0.54
With Add-M Training
LSTM 0.95 0.71 0.48
MTL 0.96 0.73 0.47
BERT 0.96 0.79 0.54

Table 3: Performance on different types of repair.

Table 1.1 We found our best model was the add-M
trained model, and the best decoding strategy was
using top-p sampling for predicting future words.

Disfluency detection on transcripts For repair
detection, our system’s best FrpS score for detect-
ing repair onsets on pre-segmented transcripts at
0.853 beats state-of-the-art incremental systems.
This performance degrades using automatic seg-
mentation to 0.802, a state-of-the-art result for this
setting. Its Frm accuracy of 0.757 on reparandum
words on pre-segmented transcripts is only beaten
by HP’14/PHH’18 model using word and POS in-
put, making it a state-of-the-art strictly incremental
deep model. This performance degrades to 0.678
on raw transcripts but is a state-of-the-art result for
this setting. In terms of edit term detection, state-
of-the-art detection results of 0.960 and 0.944 are
achieved on the pre-segmented and unsegmented
settings, improving over the existing benchmarks
of HP’14 and RH’20. These results suggest we
have achieved the aim of a strictly incremental
model achieving high final accuracies.

Disfluency detection on ASR results Using the
ASR results from HS’17 for comparison, a signifi-
cant improvement can be seen over the previously
reported results on FrpS and Fe per 10-second
window, improving from 0.557 to 0.605 and from
0.727 to 0.809 respectively. Given the previously
reported best system gave strong correlations in
terms of real repair rates, this is encouraging that
our system could be very useful in a live setting.

7.1 Incremental Performance
The purpose of this paper was to adapt a high-
performing, non-incremental model for incremen-
tal operation. As can be seen in Table 2 and in
Fig. 3, while our BERT model with top-p sam-
ple utterance prediction outperforms the multi-task

1Experiments are reproducible from https://github.
com/mortezaro/tr-disfluency

https://github.com/mortezaro/tr-disfluency
https://github.com/mortezaro/tr-disfluency
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(a)

(b)

Figure 3: Incremental results of first time to detection (FTD) metric for rpS and e and edit overhead (EO) for
disfluency detection labels.(a) On unsegmented transcripts. (b) On ASR results.

model and vanilla LSTM model in terms of final
output accuracy, its incremental output stability is
slightly below its competitors, with the best edit
overhead of 63% unnecessary edits versus 25%
(LSTM joint tagset (HS’17)) and 42% (LSTM-
MTL (RH’20)) on ASR results, meaning the output
is slightly, though not severely, more jittery.

Of the prophecy-based approaches, we found
the top-p sampling method gave the most stable re-
sults (EO=61% with chunk training, EO=60% with
add-M training) and beam search gave the least
stable. As shown in Fig. 3, while the constant la-
tency approaches offer large advantages in EO over
prophecy-based models on transcripts, that advan-
tage disappears on ASR results, where the prophecy
models generally outperform them. As can be seen
in Table 2, there is a slight improvement in stability
across all systems using the add-M training regime
for final output and incremental performance.

In terms of latency, results are even more encour-
aging, with the best FTD for rpS of 0.31 words
(versus 0.03 and 0.07) on transcripts, which shows
a relatively short latency of detecting the repair for
the first time– this suggests a responsive, sensitive
system.

7.2 Error Analysis

We conduct an error analysis in terms of perfor-
mance on different repair types and in terms of
repairs with different lengths. Table 3 shows the
performance in terms of FrpS score on detecting re-
pairs of the three different types: verbatim repeats,
substitutions, and deletes (restarts). Our BERT
model performs best, either jointly or uniquely,
across all three types, with a gain of 0.06 over its
nearest competitors for substitutions and deletes.
Through large-scale training, the enhanced linguis-
tic knowledge equips it to recognize the syntactic
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Model Reparandum length Reparandum length of
nested disfluencies

1 2 3 4 5 6 1 2 3 4 5 6
With Standard Training
LSTM .843 .675 .405 .311 .134 .131 .747 .586 .382 .320 .110 .104
MTL .856 .683 .431 .335 .134 .131 .763 .586 .405 .291 .110 .104
BERT .892 .716 .469 .379 .310 .187 .818 .623 .405 .320 .130 .140
With Add-M Training
LSTM .843 .675 .434 .334 .134 .131 .741 .586 .382 .320 .110 .104
MTL .851 .709 .468 .335 .134 .131 .779 .586 .405 .291 .130 .104
BERT .892 .719 .472 .379 .310 .187 .833 .645 .405 .320 .130 .140

Table 4: F1 of models on repairs with reparanda of different length

and lexical parallelism in more complex repairs
while retaining high accuracy on repeats. Table 4
shows the degradation in performance in detecting
repairs of different lengths. With Add-M training,
the BERT model degrades less and performs (joint)
best on all lengths and nested disfluencies. While
the performance on length five repairs is consider-
ably better than the other deep models, the 0.187
accuracy on length six repairs is what gives it a
slight disadvantage compared to the HP’14 explicit
backtracking system (reported as high as 0.500 in
PHH’18), which likely accounts for the lower Frm

score despite the superior FrpS score of our system.

8 Discussion and Conclusion

Our incremental GPT-2 and BERT-driven sys-
tem performs well at detecting repair disfluencies
on pre-segmented and unsegmented transcripts,
achieving state-of-the-art results for a strictly incre-
mental repair onset detection. Our system is com-
petitive at reparadnum word detection and achieves
state-of-the-art results in edit term detection. The
results on ASR transcripts are also state-of-the-art.

The high sequence-final performance comes at
the expense of marginally increased jitter in the
word-by-word output, but with sensitive and fast
repair detection, on average first detecting the re-
pair under a third of a second after the end of the
repair onset word. These results suggest it is begin-
ning to enjoy the best of both worlds in leveraging
the right-ward context which BERT uses for its
high performance, while the continuation predic-
tions from the GPT-2 model are good enough to
allow good incremental performance before the
true right-ward context is available.

The linguistic knowledge in the BERT model
allows it to recognize parallelism in reparandum
and repair phases and the absence thereof to in-
crease performance on detecting substitution and
delete repairs. This improvement to existing deep

disfluency detection models, and, with appropriate
use of open-ended language generation techniques
with a GPT-2 language model, its good incremen-
tal performance, is consistent with a growing body
of work (Heeman and Allen, 1999; Johnson and
Charniak, 2004; Zwarts et al., 2010; Hough and
Purver, 2014; Shalyminov et al., 2018; Rohanian
and Hough, 2020), showing good language mod-
elling can lead to good disfluency detection, as they
are inherently part of the same process.

Our system still fails to detect longer repairs
compared to an explicit backtracking mechanism
like (Hough and Purver, 2014). While the van-
ishing gradient problem is partly overcome here,
the strictly left-to-right constraint on decoding puts
memory limitations on any repair detection system.
In future, we will explore efficient ways to navigate
this space whilst not filtering out rarer repair forms.

The results on ASR results show our disfluency
detection system is ready for use in a live set-
ting with a good degree of accuracy, and work is
currently underway to use it to help detect a va-
riety of different cognitive conditions, including
Alzheimer’s Disease, in a live diagnostic system.
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