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Abstract

Modern models for event causality identifica-
tion (ECI) are mainly based on supervised
learning, which are prone to the data lack-
ing problem. Unfortunately, the existing NLP-
related augmentation methods cannot directly
produce available data required for this task.
To solve the data lacking problem, we intro-
duce a new approach to augment training data
for event causality identification, by iteratively
generating new examples and classifying event
causality in a dual learning framework. On the
one hand, our approach is knowledge guided,
which can leverage existing knowledge bases
to generate well-formed new sentences. On
the other hand, our approach employs a dual
mechanism, which is a learnable augmenta-
tion framework, and can interactively adjust
the generation process to generate task-related
sentences. Experimental results on two bench-
marks EventStoryLine and Causal-TimeBank
show that 1) our method can augment suit-
able task-related training data for ECI; 2)
our method outperforms previous methods on
EventStoryLine and Causal-TimeBank (+2.5
and +2.1 points on F1 value respectively).

1 Introduction

Event causality identification (ECI) aims to iden-
tify causal relations between events in texts, which
can provide crucial clues for NLP tasks, such as
logical reasoning and question answering (Girju,
2003; Oh et al., 2013, 2017). This task is usually
modeled as a classification problem, i.e. determin-
ing whether there is a causal relation between two
events in a sentence. For example in Figure 1, an
ECI system should identify two causal relations in
two sentences: (1) attack cause−→ killed in S1; (2)
statement cause−→ protests in S2.

Most existing methods for ECI heavily rely on
annotated training data (Mirza and Tonelli, 2016;

Kimani Gray, a young man who likes football, was killed in a police attack shortly after a tight match.

In the week following the fatal violence, several protests have erupted because of the official statement.

S1:

S2:

Kimani Gray, a young man who likes football, was killed in a police attack shortly after a tight match.
EDA  deletion

S3:

Figure 1: S1 and S2 are causal sentences that contain
causal events. S3 is produced by EDA based on S1.
The dotted line indicates the causal relation.

Riaz and Girju, 2014b; Hashimoto et al., 2014; Hu
and Walker, 2017; Gao et al., 2019). However, ex-
isting datasets are relatively small, which impede
the training of the high-performance event causality
reasoning model. According to our statistics, the
largest widely used dataset EventStoryLine Corpus
(Caselli and Vossen, 2017) only contains 258 docu-
ments, 4316 sentences, and 1770 causal event pairs.
Therefore, data lacking is an essential problem that
urgently needs to be addressed for ECI.

Up to now, data augmentation is one of the most
effective methods to solve the data lacking problem.
However, most of the NLP-related augmentation
methods are a task-independent framework that pro-
duces new data at one time (Zhang et al., 2015; Guo
et al., 2019; Xie et al., 2019b). In these frameworks,
data augmentation and target task are modeled inde-
pendently. This often leads to a lack of task-related
characteristics in the generated data, such as task-
related linguistic expression and knowledge. For
example, easy data augmentation (EDA) (Wei and
Zou, 2019) is the most representative method that
relies on lexical substitution, deletion, swapping,
and insertion to produce new data. However, solely
relying on such word operations often generates
new data that dissatisfies task-related qualities. As
shown in Figure 1, S3 is produced by EDA, it lacks
a linguistic expression that expresses the causal se-
mantics between kill and attack. Therefore, how to
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interactively model data augmentation and target
task to generate new data with task-related charac-
teristics is a challenging problem on ECI.

Specific to ECI, we argue that an ideal task-
related generated causal sentence needs to possess
two characteristics as follows. (1) The two events
in the causal sentence need to have a causal re-
lation. We call such property as Causality. For
example, there is usually a causal relation between
an attack event and a kill event, while nearly no
causal relation between an attack event and a born
event. (2) The linguistic expressions of the causal
sentence need to be well-formed to express the
causal semantic of events. We call such property as
Well-formedness, which consists of a) canonical
sentence grammar, b) event-related entities with
semantic roles (e.g. the attack was carried out by a
police in S1), and c) cohesive words that express
complete causal semantics (e.g. in a and other
words except for events and entities in S1).

To this end, we propose a learnable data
augmentation framework for ECI, dubbed as
Learnable Knowledge-Guided Data Augmentation
(LearnDA). This framework regards sentence-to-
relation mapping (the target task, ECI) and relation-
to-sentence mapping (the augmentation task, sen-
tence generation) as dual tasks and models the
mutual relation between them via dual learning.
Specifically, LearnDA can use the duality to gener-
ate task-related new sentences learning from iden-
tification and makes it more accurate to understand
the causal semantic learning from generation. On
the one hand, LearnDA is knowledge guided. It
introduces diverse causal event pairs from KBs to
initialize the dual generation which could ensure
the causality of generated causal sentences. For
example, the knowledge of judgment cause−→ demon-
stration from KBs can be used to construct a novel
causal sentence, which is also helpful to understand
the causal semantic of statement cause−→ protests. On
the other hand, LearnDA is learnable. It employs
a constrained generative architecture to generate
well-formed linguistic expressions via iteratively
learning in the dual interaction, which expresses
the causal semantic between given events. Method-
ologically, it gradually fills the remaining missing
cohesive words of the complete sentences under
the constraint of given events and related entities.

In experiments, we evaluate our model on two
benchmarks. We first concern the standard evalua-
tion and show that our model achieves the state-of-

the-art performance on ECI. Then we estimate the
main components of LearnDA. Finally, our learn-
able augmentation framework demonstrates defi-
nite advantages over other augmentation methods
in generating task-related data for ECI.

In summary, the contributions as follows:

• We propose a new learnable data augmenta-
tion framework to solve the data lacking prob-
lem of ECI. Our framework can leverage the
duality between identification and generation
via dual learning which can learn to generate
task-related sentences for ECI.

• Our framework is knowledge guided and
learnable. Specifically, we introduce causal
event pairs from KBs to initialize the dual gen-
eration, which could ensure the causality of
generated causal sentences. We also employ
a constrained generative architecture to grad-
ually generate well-formed causal linguistic
expressions of generated causal sentences via
iteratively learning in the dual interaction.

• Experimental results on two benchmarks show
that our model achieves the best performance
on ECI. Moreover, it also shows definite ad-
vantages over previous data augmentation
methods.

2 Related Work

To date, many researches attempt to identify the
causality with linguistic patterns or statistical fea-
tures. For example, some methods rely on syn-
tactic and lexical features (Riaz and Girju, 2013,
2014b). Some focus on explicit causal textual
patterns (Hashimoto et al., 2014; Riaz and Girju,
2014a, 2010; Do et al., 2011; Hidey and McKeown,
2016). And some others pay attention on statisti-
cal causal association and cues (Beamer and Girju,
2009; Hu et al., 2017; Hu and Walker, 2017).

Recently, more attention is paid to the causality
between events. Mirza and Tonelli (2014) anno-
tated Causal-TimeBank of event-causal relations
based on the TempEval-3 corpus. Mirza et al.
(2014), Mirza and Tonelli (2016) extracted event-
causal relation with a rule-based multi-sieve ap-
proach and improved the performance incorporat-
ing with event temporal relation. Mostafazadeh
et al. (2016) annotated both temporal and causal
relations in 320 short stories. Caselli and Vossen
(2017) annotated the EventStoryLine Corpus for
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Figure 2: Overview of the learnable knowledge-guided
dual data augmentation for ECI.

event causality identification. Dunietz et al. (2017)
presented BECauSE 2.0, a new version of the BE-
CauSE corpus (Dunietz et al., 2015) of causal
relation and other seven relations. Gao et al.
(2019) modeled document-level structures to iden-
tify causality. Liu et al. (2020) identified event
causality with the mention masking generalization.

Unlike computer vision, the augmentation of text
data in NLP is pretty rare (Chaudhary, 2020). Zuo
et al. (2020) solved the data lacking problem of ECI
with the distantly supervised labeled training data.
However, including the distant supervision, most
of the existing data augmentation methods for NLP
tasks are task-independent frameworks (Related
work of data augmentation and dual learning are
detailed in Appendix B). Inspired by some genera-
tive methods which try to generate additional train-
ing data while preserving the class label (Anaby-
Tavor et al., 2019; Yang et al., 2019; Papanikolaou
and Pierleoni, 2020), we introduce a new learn-
able framework for augmenting task-related train-
ing data for ECI via dual learning enhanced with
external knowledge.

3 Methodology

As shown in Figure 2, LearnDA jointly models a
knowledge guided sentence generator (input: event
pair and its causal/non-causal relation, output:
causal/non-causal sentence) and an event causality
identifier (input: event pair and its sentence, out-
put: causal/non-causal relation) with dual learning.
LearnDA iteratively optimizes identifier and gener-
ator to generate task-related training data, and then
utilize new data to further train the identifier. There-
fore, we first present the main idea of dual learning,
which is the architecture of learnable dual augmen-
tation, including the states, actions, policies, and

Identifier

Relation→Sentence

NCausal-Generator

Causal-Generator

Sentence→Relation

event pair (ep)
causal/non-causal 

relation (c)

ep, s'

event pair (ep) 
sentence (s)

ep, c'

Rs

Rc

Rc

Rs

Primal Cycle Dual Cycle

R

R

I

G

Figure 3: The architecture of learnable dual augmen-
tation. Causal and NCausal represent the causal and
non-causal sentence generator respectively. Red parts
are the process of <event pair, relation> → sentence
→ relation (primal cycle), while blue parts are the pro-
cess of <event pair, sentence>→ relation→ sentence
(dual cycle). Solid and dashed lines denote the main
process and reward feedback direction respectively.

rewards. Then, we briefly introduce the knowledge
guided sentence generator, especially the processes
of knowledge guiding and constrained sentence
generation. Finally, we describe the event causality
identifier and training processes of LearnDA.

3.1 Architecture of Learnable Dual
Augmentation

The architecture of learnable dual augmentation
is shown in Figure 3. Specifically, I denotes the
event causality identifier, and G denotes the sen-
tence generator which consists of two independent
generators. They produce causal and non-causal
sentences on the relation c of input event pair ep.

Generally, G generates a sentence s′ which ex-
presses the causal or non-causal relation c of the
input event pair ep. Then it receives the reward
R that consists of a semantic alignment reward
Rs from itself and a causality reward Rc from I
(primal cycle). Similarly, I identifies the causal
or non-causal relation c′ of the input event pair ep
with its sentence s. Then it receives the reward R
consists of a causality reward Rc from itself and a
semantic alignment reward Rs from G (dual cycle).

I and G are optimized interactively with dual re-
inforcement learning. Specifically, for G, an action
is the generation from relation to sentence, a state
is denoted by the representation of input event pair
and its relation, a policy is defined by the param-
eters of generator. For I, an action is the identifi-
cation from sentence to relation, a state is denoted
by the representation of input event pair and its
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sentence, a policy is defined by the parameters of
identifier. Inspired by Shen and Feng (2020), we
utilize a probability distribution over actions given
states to represent the policys, i.e., the probability
distribution of the generation of G and identifica-
tion of I. As aforementioned, we introduce two
rewards, causality (Rc) and semantic alignment
(Rs) rewards, which encourage G to generate task-
related sentences with the feedback from identifier,
while further optimize I with the feedback from
generator. Definitions are as following:

Causality Reward (Rc) If the relation of input
event pair can be clearly expressed by the gener-
ated sentence, it will be easier to be understood
by identifier. Therefore, we use the causal relation
classification accuracy as the causality reward to
evaluate the causality of generated sentences, while
tune and optimize the identifier itself:

Rc(ep, s) =

{
p(c′|s; θI) Correct classification
−p(c′|s; θI) Otherwise,

(1)

where θI is the parameter of I, p(c′|s; θI) denotes
the probability of relation classification, s denotes
the input sentence and c′ is the classified relation.

Semantic Alignment Reward (Rs) We hope
that the semantic of the generated sentence can
be consistent with the relation of the input event
pair. Additionally, if the relation of the input event
pair can be more accurately classified, the semantic
of the new generated sentence can be considered
more consistent with it. Therefore, we measure the
semantic alignment by means of the probability of
constructing a sentence with similar semantic to
the input relation, and the reward is:

Rs(ep, c) = p(s′|c; θG) =
1

|Ts|
∑
t∈Ts

p(t|c; θG), (2)

where θG is the parameter of G, c is the input re-
lation, t is one of the generated tokens Ts of the
generated sentence s′, and p(t|c; θG) is the gener-
ated probability of t. Specifically, there are two
independent G with different θG. In detail, θcG is
employed to generated causal sentence when the
input c is causal relation, and non-causal sentence
is generated via θncG when c is non-causal relation.

3.2 Knowledge Guided Sentence Generator
As shown in Figure 4, knowledge guided sentence
generator (KSG) first introduces diverse causal
and non-causal event pairs from KBs for causal-
ity. Then, given an event pair and its causal or
non-causal relation, it employs a constrained gen-

Ncausal-Generator

Causal-Generator

event pair: <hurt,onrush>
relation: causal Knowledge

Kimani Gray, a young man who likes football, was
killed in a police attack shortly after a tight match.

event pair: <killed,attack>
relation: causal

John Henderson who is a baseball fanatic,  was
hurt in a gang onrush before Friday’s game.

Generated 
 sentence:

Original 
sentence:

words:events
words:entities
words:cohesive 
            words

Figure 4: Flow diagram of the knowledge guided sen-
tence generator (KSG). We take causal sentence gener-
ation via lexical knowledge expanding as an example.

erative architecture to generate new well-formed
causal/non-causal sentences that contain them.

Knowledge Guiding KSG introduces event
pairs that are probabilistic causal or non-causal
from multiple knowledge bases in two ways. (1)
Lexical knowledge expanding: expanding anno-
tated event pairs via external dictionaries, such
as WordNet (Miller, 1995) and VerbNet (Schuler,
2005). (2) Connective knowledge introducing: in-
troducing event pairs from external event-annotated
documents (KBP corpus) assisted with FrameNet
(Baker et al., 1998) and Penn Discourse Treebank
(PDTB2) (Group et al., 2008). As shown in Ta-
ble 1, we illustrate how to extract event pairs from
multiple knowledge bases. Then, inspired by Bor-
des et al. (2013), we filter the extracted event pairs
by converting them into triples <ei, causal/non-
causal, ej> and calculating the causal-distance by
maximizing L in a causal representation space:

L =
∑

(ei,ej)∈T

∑
(e′i,e

′
j)∈T

′

[λ+ d(e′i, e
′
j)− d(ei, ej)]+, (3)

where T and T ′ are the causal and non-causal
triples set respectively, and e is the representation
of event. After that, the higher probability of causal
relation, the shorter distance between two events,
and we sort event pairs in ascending order by their
distances. Finally, we keep the top and bottom
α% sorted event pairs to obtain the causal and non-
causal event pairs sets for generation.

Constrained Sentence Generator Given an
event pair, constrained sentence generator produces
a well-formed sentence that expresses its causal or
non-causal relation in three stages: (1) assigning
event-related entities ensures the logic of the se-
mantic roles of events, (2) completing sentences
ensures the completeness of causal or non-causal



3562

Knowledge How to extract event pair Why causal or non-causal
Lexical knowledge expanding

WordNet
1) Extracting the synonyms and hypernyms from WordNet of each event
in ep. 2) Assembling the items from the two groups of two events to
generate causal/non-causal event pairs.

Items in each group are the synonyms and
hypernyms of the annotated causal/non-
causal event pairs.

VerbNet
1) Extracting the words from VerbNet under the same class as each event
in ep. 2) Assembling the items from the two groups of two events to
generate causal/non-causal event pairs.

Items in each group are in the same class of
the annotated causal/non-causal event pairs.

e.g. < (killed, attack), causal >=⇒ kill
Synonyms−→ hurt, attack

Synonyms−→ onrush =⇒< (hurt, onrush), causal >
Original sentence: Kimani Gray, a young man who likes football, was killed in a police attack shortly after a tight match.

Connective knowledge introducing

FrameNet
PDTB2

1) Extracting causal/non-causal connectives from FrameNet1 and
PDTB2. 2) Extracting any two events connected by causal/non-causal
connectives on KBP corpus to obtain causal/non-causal event pairs and
original sentences respectively.

Introduced event pairs are connected by
causal/non-causal connectives.

e.g. Looting because someone beat up someone, like the Travon Martin case. because=⇒ < (loot, beat up), causal >
Original sentence: Looting because someone beat up someone, like the Travon Martin case.

Table 1: Extracting causal and non-causal event pairs from multiple knowledge bases.

semantic expression, (3) filtering sentences ensures
the quality and diversity of generated sentences.

Assigning Event-related Entities. Event related
entities play different semantic roles of events in
sentences, which is an important part of event-
semantic expression. Hence, as shown in Figure 4,
given an event pair, we firstly assign logical entities
for input events to guarantee the logic of semantic
roles in the new sentences, such as gang is a logical
entity as the body of the event onrush. Logically,
entities of the same type play the same semantic
roles in similar events. Moreover, as shown in Ta-
ble 1, there is a corresponding original sentence
for each extracted event pair. Therefore, in new
sentence, we assign the most similar entity in the
same type from candidate set2 for each entity in
the original sentence. For example, we assign gang
for onrush in new sentence which is similar with
the police related to attack in the original sentence.
Specifically, we put the candidate entities in the
same position in the original sentence to obtain
their BERT embeddings. Then we select entities
via the cosine similarity between their embeddings:
E(ent) = 1

|ent|
∑

w∈ent E(w), where ent is the en-
tity and E(w) is the BERT embedding of ent.

Completing Sentences. A well-formed sentence
requires a complete linguistic expression to express
the causal or non-causal semantics. Therefore, we
complete sentences by filling the cohesive words
between given events and assigned entities with
masked BERT (Devlin et al., 2019). All words
except events and entities are regarded as cohesive
words. Specifically, we insert a certain number
of the special token [MASK] between events and

2We collect entities from annotated data and KBP corpus.

entities, and then predict the [MASK]3 tokens as
new words. As shown in Figure 4, we fill cohesive
tokens via two independent generators to express
causal and non-causal semantic according to the
relation of given events. For example, in a guiding
a causal semantic filled by the causal generator.

Filtering Sentences. Inspired by Yang et al.
(2019), we design a filter to select new sentences
that are balanced between high quality and high di-
versity with two key factors: 1) Perplexity (PPL):
we take the average probability of the filled cohe-
sive words in the new sentence s′ as its perplexity:
PPL(s′) = 1

|T (s′)|
∑

t∈T (s′) P (t), where T is the
set of filled cohesive words. 2) Distance (DIS):
we calculate the cosine similarity between gener-
ated sentence s′ and annotated data Dm as its dis-
tance: DIS(s′, Dm) = 1

|Dm|
∑

s∈Dm
E(s′)·E(s)
E(s′)×E(s) ,

where Dm is m random selected annotated sen-
tences and E is the BERT sentence representation
of the [CLS] token. A new sentence should have
both appropriate high PPL which indicates the
quality of generation, and appropriate high DIS
which indicates the difference from the original
sentences. Therefore, we select the top β% of
the newly generated sentences according to Score
for the further training of identifier as following:
Score(s′) = µPPL(s′) + (1− µ)DIS(s′, Dm)),
where the µ is an hyper-parameter.

3.3 Training of LearnDA for ECI

We briefly describe the training processes of
LearnDA for ECI, including the pre-training of gen-
erator and identifier, the dual reinforcement train-
ing, and the further training of identifier.

3The inserted [MASK] is 1.2 times the number of words
between events and entities in the original sentence.
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Algorithm 1 Dual Reinforcement Training of G I.
Require: A set of knowledge guided event pairs {(ep,s,c)}

A pre-trained generator G and identifier I
Repeat: Early stop on the development set according to I.
1: Loop: PRIMAL CYCLE
2: for event pair (epi, si, ci) in batch do
3: Generator generates the sentence s′i of epi;
4: Identifier re-predicts the causality c∗i of epi;
5: Computing the reward as:
6: Rsprimal = λRs(epi, ci)+(1−λ)Rc(epi, s′i).
7: Computing the stochastic gradient of θG :
8: ∇G+ = Rsprimal · ∇θGLG(epi, ci).
9: end for

10: Model batch updates: θG ← θG + η · ∇G
11: end Loop:
12:
13: Loop: DUAL CYCLE
14: for event pair (epi, si, ci) in batch do
15: Identifier predicts the causality c′i of epi;
16: Generator re-generates the sentence s∗i of epi;
17: Computing the reward as:
18: Rsdual = γRc(epi, si) + (1− γ)Rs(epi, c′i).
19: Computing the stochastic gradient of θI :
20: ∇I+ = Rsdual · ∇θILI(epi, si).
21: end for
22: Model batch updates: θI ← θI + η · ∇I
23: end Loop:

Event Causality Identifier First of all, we for-
mulate event causality identification as a sentence-
level binary classification problem. Specifically,
we design a classifier based on BERT (Devlin et al.,
2019) to build our identifier. The input of the iden-
tifier is the event pair ep and its sentence s. Next,
we take the stitching of manually designed features
(same lexical, causal potential, and syntactic fea-
tures as Gao et al. (2019)) and two event representa-
tions as the input of top MLP classifier. Finally, the
output is a binary vector to predict the causal/non-
causal relation of the input event pair ep.

Pre-training We pre-train the identifier and gen-
erator on labeled data before dual reinforcement
training. On the one hand, we train identifier via
the cross-entropy objective function of the relation
classification. On the other hand, for generators, we
keep the events and entities in the input sentences,
replace the remaining tokens with a special token
[MASK], and then train it via the cross-entropy
objective function to re-predict the masked tokens.
Specifically, causal generator and non-causal gen-
erator are pre-trained on causal and non-causal la-
beled sentences respectively.

Dual Reinforcement Training As shown in Al-
gorithm 1, we interactively optimize the genera-
tor and identifier by dual reinforcement learning.
Specifically, we maximize the following objective

functions:

LG(ep, c) =

{
p(s′|c; θG) = 1

|Ts|
∑
t∈Ts

p(t|c; θG)
p(s′|c; θNG) = 1

|Ts|
∑
t∈Ts

p(t|c; θNG),
(4)

LI(ep, s) = p(c′|s; θI), (5)

where θG and θNG is the parameters of causal and
non-causal sentence generators respectively, Ts is
the masked tokens. Finally, after dual data aug-
mentation, we utilize generated sentences to fur-
ther train the dual-trained identifier via the cross-
entropy objective function of relation classification.

4 Experiments

4.1 Experimental Setup
Dataset and Evaluation Metrics Our experi-
ments are conducted on two main benchmark
datasets, including: EventStoryLine v0.9 (ESC)
(Caselli and Vossen, 2017) described above; and
(2) Causal-TimeBank (Causal-TB) (Mirza and
Tonelli, 2014) which contains 184 documents, 6813
events, and 318 causal event pairs. Same as pre-
vious methods, we use the last two topics of ESC
as the development set for two datasets. For eval-
uation, we adopt Precision (P), Recall (R), and
F1-score (F1) as evaluation metrics. We conduct
5-fold and 10-fold cross-validation on ESC and
Causal-TB respectively, same as previous meth-
ods to ensure comparability. All the results are the
average of three independent experiments.

Parameters Settings In implementations, both
the identifier and generators are implemented on
BERT-Base architecture4, which has 12-layers,
768-hiddens, and 12-heads. We set the learn-
ing rate of generator pre-training, identifier pre-
training/further training, and dual reinforcement
training as 1e-5, 1e-5, and 1e-7 respectively. We
set the ratio of the augmented data used for training
to the labeled data, α, β, µ, λ and γ as 1:2, 30%,
50%, 0.2, 0.5 and 0.5 respectively tuned on the de-
velopment set. And we apply early stop and SGD
gradient strategy to optimize all models. We also
adopt a negative sampling rate of 0.5 for training
the identifier, owing to the sparseness of positive
examples. (See Appendix D for more details.)

Compared Methods Same as previous state-of-
the-art work. For ESC, we prefer 1) LSTM
(Cheng and Miyao, 2017), a dependency path based

4https://github.com/google-research/
bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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sequential model that models the context between
events to identify causality; 2) Seq (Choubey and
Huang, 2017), a sequence model explores complex
human designed features for ECI; 3) LR+ and ILP
(Gao et al., 2019), document-level models adopt
document structures for ECI. For Causal-TB, we
prefer 1) RB, a rule-based system; 2) DD, a data
driven machine learning based system; 3) VR-C, a
verb rule based model with data filtering and gold
causal signals enhancement. These models are de-
signed by Mirza and Tonelli (2014); Mirza (2014)
for ECI.

Owing to our methods are constructed on BERT,
we build BERT-based methods: 1) BERT, a BERT-
based baseline, our basic proposed event causality
identifier. 2) MM (Liu et al., 2020), the BERT-
based SOTA method with mention masking gen-
eralization. 3) MM+Aug, the further re-trained
MM with our dual augmented data. 4) KnowDis
(Zuo et al., 2020) improved the performance of ECI
with the distantly labeled training data. We com-
pare with it to illustrate the quality of our generated
ECI-related training data. 5) MM+ConceptAug,
to make a fair comparison, we introduce causal-
related events from ConceptNet that employed by
MM, and generate new sentences via KonwDis and
LearnDA to further re-train MM (see Appendix
C for details). Finally, we use LearnDAFull in-
dicates our full model, which is the dual-trained
identifier further trained via dual augmented data.

4.2 Our Method vs. State-of-the-art Methods

Table 2 shows the results of ECI on EventStoryLine
and Causal-TimeBank. From the results:

1) Our LearnDAFull outperforms all baselines
and achieves the best performance (52.6%/51.9%
on F1 value), outperforming the no-bert (ILP/VR-
C) and bert (MM/KnowDis) state-of-the-art meth-
ods by a margin of 7.9%/8.7% and 2.5%/2.1% re-
spectively, which justifies its effectiveness. More-
over, BERT-based methods demonstrate high recall
value, which is benefited from more training data
and their event-related guided knowledge.

2) Comparing KnowDis with LearnDAFull, we
note that training data generated by LearnDA is
more helpful to ECI than distant supervision with
external knowledge (+2.9%/+2.1%). This shows
that LearnDA can generate more ECI-related data.

3) Comparing MM+ConceptNet with MM,
with the same knowledge base, our dual aug-
mented data can further improve the performance

Methods P R F1
ESC

LSTM (Cheng and Miyao, 2017) 34.0 41.5 37.4
Seq (Choubey and Huang, 2017) 32.7 44.9 37.8
LR+ (Gao et al., 2019) 37.0 45.2 40.7
ILP (Gao et al., 2019) 37.4 55.8 44.7
BERT 36.1 56.0 43.9
KnowDis (Zuo et al., 2020) 39.7 66.5 49.7
MM (Liu et al., 2020) 41.9 62.5 50.1
MM+ConceptAug (Ours) 41.2 66.5 50.9*
MM+Aug (Ours) 41.0 69.3 51.5*
LearnDAFull (Ours) 42.2 69.8 52.6*

Causal-TB
RB (Mirza and Tonelli, 2014) 36.8 12.3 18.4
DD (Mirza and Tonelli, 2014) 67.3 22.6 33.9
VR-C (Mirza, 2014) 69.0 31.5 43.2
BERT 38.5 43.9 41.0
MM (Liu et al., 2020) 36.6 55.6 44.1
KnowDis (Zuo et al., 2020) 42.3 60.5 49.8
MM+ConceptAug (Ours) 38.8 59.2 46.9*
MM+Aug (Ours) 39.2 61.9 48.0*
LearnDAFull (Ours) 41.9 68.0 51.9*

Table 2: Results on event causality identification. * de-
notes a significant test at the level of 0.05.

(+0.8%/+2.8%), which illustrates that LearnDA can
make more effective use of external knowledge by
generating task-related training data.

4) Comparing MM+Aug with MM, we note that
training with our dual augmented data can improve
the performance by 1.4%/3.9%, even though MM is
designed on BERT-Large (LearnDA is constructed
on BERT-Base) and also introduces external knowl-
edge. This indicates that the augmented data gener-
ated by our LearnDA can effectively alleviate the
problem of data lacking on the ECI.

4.3 Effect of Learnable Dual Augmentation

We analyze the effect of the learnable dual aug-
mentation for event causality identification. 1) For
identifier. Comparing LearnDADual with BERT in
Table 3, we note that the performance of the pro-
posed identifier is improved (+2.6%) after the dual
training only with the same labeled data. This indi-
cates that the identifier can learn more informative
expressions of causal semantic from generation
with dual learning. 2) For generator. Compar-
ing BERTDualAug with BERTAug in Table 3, we
note that the dual augmented data is high quality
and more helpful to ECI (+2.6%). This indicates
generator can generate more ECI task-related data
learned from identifier with dual learning.

Figure 5 illustrates the learnability of our
LearnDA. Specifically, as the number of training
rounds of dual learning increases, the generated
data gradually learns task-related information, fur-
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Method P R F
BERT (Our basic identifier) 36.1 56.0 43.9
BERTOrgAug 36.6 59.7 45.4*
BERTDualAug 37.8 65.6 48.0*
LearnDADual 36.8 63.0 46.5*
LearnDADualAug−w/o.KB 37.5 67.0 48.1*
−LearnDADualAug−w/.intro 39.0 66.0 49.0*
−LearnDADualAug−w/.verbnet 39.4 66.7 49.5*
−LearnDADualAug−w/.wordnet 39.6 67.6 49.9*
LearnDAFull 42.2 69.8 52.6*

Table 3: Ablation results on event causality identifica-
tion on ESC. * denotes a significant test at the level
of 0.05. BERTOrgAug and BERTDualAug denote the
BERT is further trained on no-dual and dual augmented
data respectively; LearnDADual denotes our identifier
is only trained by dual learning without further training;
LearnDADualAug−w/o.KB denotes the LearnDADual

is further trained by dual augmented data without
knowledge guiding; LearnDADualAug−w/.<kb> de-
notes LearnDADual is further trained by dual aug-
mented data guided with knowledge base kb.

Figure 5: The impact of the training rounds of dual
learning on event causality identification on ESC. In
each round, we generate new training data by the gener-
ator at the current round. The performance is achieved
by further training the identifier at the current round
with the aforementioned newly generated data.

ther improving the performance accordingly.

4.4 Effect of Knowledge Guiding

Table 3 also illustrates the effect of knowledge
guiding on ECI depending on different knowl-
edge bases. 1) Comparing LearnDAFull with
LearnDADualAug−w/o.KB , we note that the aug-
mented data guided by external knowledge can
further improve the performance of ECI. 2) Specif-
ically, lexical expanding and connective introduc-
ing (Sec 3.2) can both make the representation of
causal relation more generalized, further making it
easier for the identifier to understand the causality.
3) Moreover, the expanding is more effective than
the introducing, because the former brings a wider
range of effective knowledge, thus the guidance of

Method P R F
BERT (Our identifier) 36.1 56.0 43.9
TextSurfaceBERT 37.0 57.5 45.0*
BackTranslationBERT 36.8 61.0 45.9*
EDABERT 36.6 62.4 46.1*
LearnDABERT 37.8 65.6 48.0*

Table 4: Results of different data augmentation meth-
ods on event causality identification on ESC dataset. *
denotes a significant test at the level of 0.05.

Gold EDA BackTrans LearnDA
Causality 3.80 3.20 3.70 3.60
Well-formedness 3.95 2.75 3.83 3.64
Diversity (Man/Auto) 0.0/1.0 3.08/0.70 2.80/0.85 3.51/0.66

Table 5: Manual (4-score rating (0, 1, 2, 3)) and
automatic (BLEU score) evaluation of the gener-
ated sentences via different methods from causality,
well-formedness and diversity. Causality and well-
formedness are assessed manually, while diversity is
assessed manually and automatically.

causal-related knowledge is better.

4.5 Our Augmentation vs. Other NLP
Augmentations

In this section, we conduct a comparison be-
tween our augmentation framework and other NLP-
related augmentation methods to further illustrate
the effectiveness of LearnDA.

Effectiveness of Our Augmentation We train
our identifier with augmented data produced by
different NLP-related augmentation methods. As
shown in Table 4, the augmented data generated by
our LearnDA is more efficient for ECI, which is
consistent with the previous analysis. The LearnDA
can generate well-formed task-related new sen-
tences that contain more event causal knowledge.
Specifically, 1) text surface transformation brings
a slight change to the labeled data, thus it has rel-
atively little impact on ECI; 2) Back translation
introduces limited new causal expressions by trans-
lation, thus it slightly increases the recall value on
ECI; 3) EDA can introduce new expressions via
substitution, but the augmented data is not canon-
ical and cannot accurately express the causality,
therefore, its impact on ECI is also limited.

Quantitative Evaluation of Task-relevance
We select five Ph.D. students majoring in NLP
to manual score the 100 randomly selected
augmented sentences given their corresponding
original sentences as reference (Cohen’s kappa
= 0.85). Furthermore, we calculate the BLEU
(Papineni et al., 2002) value to further evaluate the
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Generator

Identifier

<crash, target>
causal relation

A was crash by B 
as C targeted ...

non-causal 
relation

A was crash by B 
because C targeted ... Generator

Identifier

           <order, attack>
... A ordered B to attack ...

non-causal
  relation

... A order when
    B attack ...

causal relation

   Dual
 reward
feedback

   Dual
 reward
feedback

a) b)

Figure 6: The modification of dual learning.

diversity. As aforementioned, the task-relevance of
new sentences on ECI is manifested in causality
and well-formedness, while the diversity indicates
the degree of generalization. As shown in Table
5, we note the sentences generated by LearnDA
are equipped with the above three properties that
are close to the labeled sentences. Specifically,
the sentences produced by EDA has a certain
degree of causality and diversity due to the lexical
substitution assisted by external knowledge. How-
ever, they cannot well express the causality due to
the grammatical irregularities. Correspondingly,
new sentences generated via back translation are
very similar to the original sentences, while the
diversity is poor.

4.6 Case Study

We conduct a case study to further investigate the
effectiveness of our LearnDA. Figure 6 illustrates
the modification process of dual learning. For ex-
ample as a), given two causal events, the generator
is expected to generate a causal sentence. However,
the generator without dual learning produces a non-
causal sentence. Fortunately, with dual learning,
the identifier judges the generated sentence as a
non-causal one and guides the generator to produce
a causal sentence with the feedback. Similarly, as
shown in b), given a causal sentence, the identi-
fier is expected to output a causal relation, but no
dual-trained one cannot do. Correspondingly, the
generator constructs feedback of low confidence to
guide the identifier to output a causal relation.

5 Conclusion

This paper proposes a new learnable knowledge-
guided data augmentation framework (LearnDA)
to solve the data lacking problem on ECI. Our
framework can leverage the duality between gener-
ation and identification via dual learning to gener-

ate task-related sentences for ECI. Moreover, our
framework is knowledge guided and learnable. Our
method achieves state-of-the-art performance on
EventStoryLine and Causal-TimeBank datasets.
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A Supplementary Experiment Results

A.1 Statistics of Dual Augmented Data

Annotated data Augmented data
#causal ep. 1170 3588
#causal sent. 1770 10442
#Ave sent. 1.5 2.9

Table 6: Statistics of causal event pairs and causal sen-
tences in labeled data (ESC) and dual augmented data.
(#causal ep. denotes the number of causal event pairs
after removing duplicates, #causal sent. denotes the
number of causal sentences, #Ave sent. denotes the av-
erage number of causal sentences containing the same
causal event pair.)

As shown in Table 6, our dual augmented data is
significantly more quantitative than the labeled data.
Specifically, the causal event pairs are increased
by 3.1 times, the causal sentences are increased
by 5.9 times and the average number of causal
sentences corresponding to each causal event pair
is also increased.

A.2 Effectiveness of Different Quantities of
Augmented Training Data

Ratio P R F1
1:1 37.3 64.7 47.3*
1:2 37.8 65.6 48.0*
1:3 37.0 64.8 47.1*
1:4 36.2 64.2 46.3*

Table 7: Performance of identifier (BERT) trained with
different ratios of labeled data and dual augmented data.
* denotes a significant test at the level of 0.05.

We change the quantity of dual augmented data
for training to explore the influence of augmenta-
tion ratio on ECI. As shown in Table 7, when the
ratio is 1:2, the effective knowledge brought by
dual augmented data is maximized. And as the ra-
tio increasing, the dual augmented data will bring
noises, which obstructs the model to identify event
causality and may change the data distribution from
original data (Xie et al., 2019a). This suggests that
too much augmented data is not better and that
there is a trade-off between introducing knowledge
and reducing noise.

A.3 Effectiveness of Extracting Event Pairs
with Different Filtering Ratios

Table 8 tries to show the effectiveness of extracting
event pairs with different filtering ratios on ECI.
With the ratio of retained event pairs increasing,
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α P R F1 ∇
30% 37.8 65.6 48.0* -
40% 37.0 65.7 47.3* -0.7
50% 36.2 65.0 46.5* -1.5

Table 8: Performance of identifier (BERT) trained with
different extracting event pairs filtered in different α. *
denotes a significant test at the level of 0.05.

the augmented data hurts ECI’s performance. This
proves the effectiveness of filtering, which further
improves the causality of the generated sentences.

A.4 Effectiveness of Generated sentences
with Different Filtering Ratios

β P R F1 ∇
50% 37.8 65.6 48.0* -
60% 37.3 65.3 47.5* -0.5
70% 36.9 64.9 47.0* -1.0
80% 36.6 64.5 46.7* -1.3

Table 9: Performance of identifier (BERT) trained with
new generated sentences filtered in different β. * de-
notes a significant test at the level of 0.05.

Table 9 tries to show the effectiveness of gener-
ated sentences with different filtering ratios. With
the ratio of retained generated sentences increas-
ing, the contribution of filtered generated sentences
for ECI decreases gradually. This proves the effec-
tiveness of filtering, which can balance the overall
quality of the sentences against diversity.

B Supplementary Related Work

B.1 Dual Learning
For many Natural Language Processing (NLP)
tasks, there exist many primal and dual tasks, such
as open information narration (OIN) and open in-
formation extraction (OIE) (Sun et al., 2018), nat-
ural language understanding (NLU) and natural
language generation (NLG) (Su et al., 2019, 2020),
semantic parsing and natural language generation
(Ye et al., 2019; Cao et al., 2019, 2020), link pre-
diction and entailment graph induction (Cao et al.,
2019), query-to-response and response-to-query
generation (Shen and Feng, 2020) and so on. The
duality between the primal task and the dual task is
considered as a constraint that both problems must
share the same joint probability mutually. Recently,
inspired by Xia et al. (2017) who implemented the
duality in a neural-based dual learning system, the
above primal-dual tasks are implemented in two
different ways: 1) providing additional labeled sam-
ples via bootstrapping, and 2) adding rewards at

the training stage for each agent. We observe that
the event causality identification and the sentence
generation are dual to each other. Therefore, we ap-
ply a dual learning framework in the second way to
optimize identification and generation interactively
for generating ECI-related data.

B.2 Data Augmentation for NLP

The scarcity of annotated data is a thorny problem
in machine learning. Unlike computer vision, the
augmentation of text data in NLP is pretty rare.
Existing text data augmentation methods for NLP
tasks are almost task-independent frameworks and
can be roughly summarized into the following cate-
gories (Chaudhary, 2020): (1) Lexical substitution
tries to substitute words without changing the mean-
ing (Zhang et al., 2015; Wei and Zou, 2019; Wang
and Yang, 2015; Xie et al., 2019b); (2) Back trans-
lation tries to paraphrase a text while retraining
the meaning (Xie et al., 2019b); (3) Text surface
transformation tries to match transformations us-
ing regex (Coulombe, 2018); (4) Random noise
injection tries to inject noise in the text to make the
model more robust (Wei and Zou, 2019); (5) Gen-
erative method tries to generate additional training
data while preserving the class label (Anaby-Tavor
et al., 2019; Yang et al., 2019); (6) Distantly su-
pervision and self-supervision try to introduce new
training data from unlabeled text (Chen et al., 2017;
Ruiter et al., 2019). As aforementioned, these
frameworks cannot directly produce new suitable
task-related examples for ECI. However, (1), (3),
and (4) cannot guarantee the causality and well-
formedness of new examples for ECI. Additionally,
(2) and (5) are not easy to directly use external
knowledge bases to generalize the event-related
causal commonsense. Furthermore, (6) needs to
design proprietary processing methods to generate
ECI task-related training data. Zuo et al. (2020)
solved the data lacking problem of ECI with the
distantly supervised labeled training data. How-
ever, including the distant supervision, most of the
existing text data augmentation methods for NLP
tasks are task-independent frameworks. Therefore,
we introduce a new learnable framework for aug-
menting task-related training data for ECI via dual
learning enhanced with external knowledge.

C Generation with ConceptNet

To make a fair comparison, we introduce causal-
related events from ConceptNet based on causal-
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related concepts, and obtain the causal sentence
via the method in KonwDis (Zuo et al., 2020) to
further re-train MM (Liu et al., 2020). Specifically,
firstly, we obtain triples based on cause-related se-
mantic relations from ConceptNet, such as Causes,
HasSubevent, HasFirstSubevent, HasLastSubevent,
MotivatedByGoal, and CausesDesire relations.
Secondly, we assemble any two events from ob-
tained causal triples to generate causal event pairs
set and filter them via the filter of KonwDis. Next,
we employ filtered causal event pairs to collect
preliminary noisy labeled sentences from external
documents via the DistantAnnotator of KonwDis.
Then, we use the CommonFilter of KnowDis as-
sisted with causal commonsense knowledge to pick
out labeled sentences that express causal seman-
tics between events. Finally, the refined causal
sentences are input into LearnDA to generated ECI-
related dual augmented training data and further
train the MM to obtain MM+ConceptAug.

D Main Experimental Environments and
Other Parameters Settings

D.1 Experimental Environments
We deploy all models on a server with 250GB
of memory and 4 TITAN Xp GPUs. Specifi-
cally, the configuration environment of the server is
ubuntu 16.04, and our framework mainly depends
on python 3.6.0 and PyTorch 1.0.

D.2 Other Parameters Settings
All the final hyper-parameters for evaluation are
averaged after 3 independent tunings on the devel-
opment set. Moreover, the whole dual learning
framework which includes event causality identi-
fier and knowledge guided sentence generator takes
approximately 5 minutes per epoch when training.
According to the early stop strategy, the training
rounds for different folds are different, and it takes
about 20-30 rounds.


