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Abstract

This paper presents a novel method for nested
named entity recognition. As a layered
method, our method extends the prior second-
best path recognition method by explicitly ex-
cluding the influence of the best path. Our
method maintains a set of hidden states at each
time step and selectively leverages them to
build a different potential function for recogni-
tion at each level. In addition, we demonstrate
that recognizing innermost entities first results
in better performance than the conventional
outermost entities first scheme. We provide
extensive experimental results on ACE2004,
ACE2005, and GENIA datasets to show the
effectiveness and efficiency of our proposed
method.

1 Introduction

Named entity recognition (NER), as a key tech-
nique in natural language processing, aims at de-
tecting entities and assigning semantic category
labels to them. Early research (Huang et al., 2015;
Ma and Hovy, 2016; Lample et al., 2016) proposed
to employ deep learning methods and obtained
significant performance improvements. However,
most of them assume that the entities are not nested
within other entities, so-called flat NER. Inherently,
these methods do not work satisfactorily when
nested entities exist. Figure 1 displays an example
of the nested NER task.

Recently, a large number of papers proposed
novel methods (Fisher and Vlachos, 2019; Wang
et al., 2020) for the nested NER task. Among them,
layered methods solve this task through multi-level
sequential labeling, in which entities are divided
into several levels, where the term level indicates
the depth of entity nesting, and sequential labeling
is performed repeatedly. As a special case of lay-
ered method, Shibuya and Hovy (2020) force the
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Figure 1: An example of nested NER.

next level entities to locate on the second-best path
of the current level search space. Hence, their algo-
rithm can repeatedly detect inner entities through
applying a conventional conditional random field
(CRF) (Lafferty et al., 2001) and then exclude the
obtained best paths from the search space. To accel-
erate computation, they also designed an algorithm
to efficiently compute the partition function with
the best path excluded. Moreover, because they
search the outermost entities first, performing the
second-best path search only on the spans of ex-
tracted entities is sufficient, since inner entities can
only exist within outer entities.

However, we claim that the target path at the
next level is neither necessary nor likely to be the
second-best path at the current level. Instead, those
paths sharing many overlapping labels with the cur-
rent best path are likely to be the second-best path.
Besides, Shibuya and Hovy (2020) reuse the same
potential function at all higher levels. Thus, even
though they exclude the best path, the influence of
the best path is still preserved, since the emission
scores of labels on the best path are used in the next
level recognition. Moreover, these best path labels
are treated as the target labels at the current level.
However, if they are not on the best path of the next
level, they will be treated as non-target labels at
the next level, hence these adversarial optimization
goals eventually hurt performance.

In this paper, we use a different potential func-
tion at each level to solve this issue. We propose
to achieve this by introducing an encoder that pro-
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duces a set of hidden states at each time step. At
each level, we select some hidden states for en-
tity recognition, then, remove these hidden states
which have interaction with the best path labels
before moving to the next level. In this way, the
emission scores of these best path labels are com-
pletely different, so we can explicitly exclude the
influence of the best path. Furthermore, we also
propose three different selection strategies for fully
leveraging information among hidden states.

Besides, Shibuya and Hovy (2020) proposed to
recognize entities from outermost to inner. We
empirically demonstrate that extracting the inner-
most entities first results in better performance.
This may due to the fact that some long entities do
not contain any inner entity, so using outermost-
first encoding mixes these entities with other short
entities at the same levels, therefore leading en-
coder representations to be dislocated. In this paper,
we convert entities to the IOBES encoding scheme
(Ramshaw and Marcus, 1995), and solve nested
NER through applying CRF level by level.

Our contributions are considered as fourfold,
(a) we design a novel nested NER algorithm to
explicitly exclude the influence of the best path
through using a different potential function at each
level, (b) we propose three different selection strate-
gies for fully utilizing information among hidden
states, (c) we empirically demonstrate that recog-
nizing entities from innermost to outer results in
better performance, (d) and we provide extensive
experimental results to demonstrate the effective-
ness and efficiency of our proposed method on the
ACE2004, ACE2005, and GENIA datasets.

2 Proposed Method

Named entities recognition task aims to recognize
entities in a given sequence {xt}nt=1. For nested
NER some shorter entities may be nested within
longer entities, while for flat NER there is no such
case. Existing algorithms solve flat NER by ap-
plying a sequential labeling method, which assigns
each token a label yt ∈ Y to determine the span
and category of each entity and non-entity simul-
taneously. To solve nested NER, we follow the
previous layered method and extend this sequen-
tial labeling method with a multi-level encoding
scheme. In this encoding scheme, entities are di-
vided into several levels according to their depths,
we apply the sequential labeling method level by
level to recognize all entities.

2.1 Encoding Schemes

Shibuya and Hovy (2020) proposed to recognize
the outermost entities first and recursively detect
the nested inner entities. However, we find that de-
tecting from the innermost entities results in better
performance. We take the sentence in Figure 1 as
an example to illustrate the details of these two en-
coding schemes. The results of the outermost-first
encoding scheme look as follows.

(level 1) B-PER I-PER I-PER I-PER E-PER
(level 2) B-ROLE I-ROLE E-ROLE B-PER E-PER
(level 3) O B-ROLE E-ROLE O O
(level 4) O S-ORG S-ROLE O O
(level 5) O O O O O
(level 6) O O O O O

Labels B-, I-, E- indicate the current word
is the beginning, the intermediate, and the end of
an entity, respectively. Label S- means this is
a single word entity, and label O stands for non-
entity word. For example, the outermost entity
“Former Hogwarts headmaster Albus Dumbledore”
appears at the first level, while innermost entities
“Hogwarts” and “headmaster” appear at the fourth
level. Since there exists no deeper nested entity,
the remaining levels contain only label O.

In contrast, the innermost-first encoding scheme
converts the same example to the following label
sequences.

(level 1) O S-ORG S-ROLE B-PER E-PER
(level 2) O B-ROLE E-ROLE O O
(level 3) B-ROLE I-ROLE E-ROLE O O
(level 4) B-PER I-PER I-PER I-PER E-PER
(level 5) O O O O O
(level 6) O O O O O

In this encoding scheme, innermost entities
“Hogwarts”, “headmaster”, and “Albus Dumble-
dore” appear at the first level. Note that the
innermost-first encoding scheme is not the sim-
ple reverse of the outermost-first encoding scheme.
For example, the entity “Former Hogwarts head-
master” and the entity “Albus Dumbledore” appear
at the same level in the outermost-first scheme but
they appear at different levels in the innermost-first
scheme.

2.2 Influence of the Best Path

Although the second-best path searching algorithm
is proposed as the main contribution of Shibuya
and Hovy (2020), we claim that forcing the target
path at the next level to be the second-best path at
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Figure 2: The architecture of our model. The dotted lines mean these components are shared across levels.

the current level is not optimal. As the innermost-
first encoding example above, the best path
at level 3 is B-ROLE,I-ROLE,E-ROLE,O,O.
Therefore the second-best path is more likely
to be one of those paths that share as many
as possible labels with the best path, e.g.,
B-ROLE,I-ROLE,E-ROLE,O,S-ORG, rather
than the actual target label sequence at level 4,
i.e., B-PER,I-PER,I-PER,I-PER,E-PER,
which does not overlap with the best path at all.
In addition, Shibuya and Hovy (2020) reuse the
same potential function at all higher levels. This
indicates that, for instance, at level 3 and time step
1, their model encourages the dot product of the
hidden state and the label embedding h>1 vB-ROLE
to be larger than h>1 vB-PER, while at level 4, the re-
maining influence of the best path reversely forces
h>1 vB-PER to be larger than h>1 vB-ROLE. These
adversarial optimization goals eventually hurt per-
formance and result in sub-optimal performance.

Therefore, the crux of the matter is to introduce
different emission scores for different levels. For
example, encouraging h3>

1 vB-ROLE > h3>
1 vB-PER

at level 3 and encouraging h4>
1 vB-PER >

h4>
1 vB-ROLE at level 4 will not lead to adversar-

ial optimization directions anymore, where h3
1 and

h4
1 are two distinctive hidden states to be used at

levels 3 and 4, respectively.

To achieve this goal, we introduce a novel en-
coder which outputs m hidden states {hlt}ml=1,
where m is the number of levels, as an alternative
to the conventional encoder which can only output
a single hidden state ht ∈ Rdh at each time step.
To make a distinction between our m hidden states
and the conventional single hidden state, we use the
term chunk from now on to refer to these hidden
states hlt ∈ Rdh/m. We restrict chunk dimension to

be dh/m, so the total number of parameters remain
unchanged.

2.3 Chunk Selection
As we mentioned above, our algorithm maintains a
chunk set for each time step, through selecting and
removing chunks, to exclude the influence of the
best path. Naturally, how to select chunk becomes
the next detail to be finalized.

For clarity, we use notation Hlt to denote the
chunk set at level l, and use Hl to refer to all of
these chunk sets at level m across time steps, i.e.,
{Hlt}nt=1. Because we remove one and only one
chunk at each time step, |Hlt|+ l = m+ 1 always
holds.

An intuitive idea is to follow the original chunk
order and simply to select the l-th chunk for level l.
At level l, no matter to which label, the emission
score is calculated by using hlt. In this way, this
naive potential function can be defined as follow,

φ (ylt−1, y
l
t,Hlt) = Aylt−1,y

l
t
+ hl>t vylt

(1)

where A ∈ R|Y|×|Y| is the transition matrix, Y is
the label set, Aylt−1,y

l
t

indicates the transition score

from label ylt−1 to label ylt, and vylt
∈ Rdh/m is the

embedding of label ylt. In this case, the l-th chunk
hlt ∈ Hlt is just the chunk which have an interaction
with target label, thus should be removed fromHlt.

Hl+1
t = Hlt \ {hlt} (2)

One concern of the naive potential function is
that it implicitly assumes the outputs of the encoder
are automatically arranged in the level order instead
of other particular syntactic or semantic order, e.g.,
the encoder may encodes all LOC related informa-
tion at the first hd/m dimensions while remaining
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Algorithm 1: Training
input :first level chunk setsH1

input : target label sequences y1, · · · ,ym
output :negative log-likelihood L
L ← 0
for l = 1 to m do
L ← L− log p (y l | Hl)
for t = 1 to n do
Hl+1
t ← Hlt \ {argmax

h∈Hl
t

h>vylt
}

end
end

ORG relevant information to the final hd/m dimen-
sion. For instance, at level 3 time step 1, naive po-
tential function forces h3>

1 vB-ROLE > h3>
1 vB-PER.

But if there exists another chunk, say h5
1, which

is more similar to vB-PER, then directly selecting
h5
1 and forcing h3>

1 vB-ROLE > h5>
1 vB-PER is more

reasonable. Because it makes training harder than
the former one, due to h5>

1 vB-PER > h3>
1 vB-PER.

In other words, this selection strategy leads to
hσ1>t vy1t > hσ2>t vy2t > . . . > hσm>t vymt , where
σl is the index of selected chunk at level l, but for
naive potential function, the inequation above does
not always hold. From this aspect, our method can
also be considered as selecting the best path in the
second-best search space.

Therefore, instead of following the original
chunk orders, we propose to let each label yj select
the most similar chunk to it to obtain an emission
score. We denote this definition as max potential
function,

φ (ylt−1, y
l
t,Hlt) = Aylt−1,y

l
t
+ max

h∈Hl
t

h>vylt
(3)

In this case, we update chunk sets by removing
these chunks which are selected by the target labels.

Hl+1
t = Hlt \ {argmax

h∈Hl
t

h>vylt
} (4)

Furthermore, since the log-sum-exp operation
is a well known differentiable approximation of
the max operation, we also introduce it as the third
potential function,

φ (ylt−1, y
l
t,Hlt) = Aylt−1,y

l
t
+ log

∑
h∈Hl

t

exph>vylt

(5)

Algorithm 2: Decoding
input :first level chunk setsH1

output :recognized entity set E
E ← ∅
for l = 1 to m do

ŷl ← argmax
y′∈Yn

p (y′ | Hl)

for t = 1 to n do
Hl+1
t ← Hlt \ {argmax

h∈Hl
t

h>vŷlt
}

end
E ← E

⋃
label-to-entity (ŷl)

end

The chunk set is updated in the same way as Equa-
tion 4. We refer to this potential function definition
as logsumexp in the rest of this paper.

2.4 Embedding Layer

Following previous work (Shibuya and Hovy,
2020), we convert words to word embeddings
wt ∈ Rdw and employ a character-level bidirec-
tional LSTM to obtain character-based word em-
beddings ct ∈ Rdc . The concatenation of them is
fed into the encoding layer as the token representa-
tion xt = [wt, ct] ∈ Rdx .

2.5 Encoding Layer

We employ a three-layered bidirectional LSTM to
encode sentences and leverage contextual informa-
tion,

{ht}nt=1 = LSTM({xt}nt=1) (6)

where ht ∈ Rdh is the hidden state. In contrast
to the encoders of previous work, which can only
output single hidden states at each time step, we
split ht into m chunks,

[h1
t , . . . ,h

m
t ] = ht (7)

where hjt ∈ Rdh/m, and use them as the first level
chunk set, i.e.,H1

t = {h
j
t}mj=1, to start recognition.

2.6 Decoding Layer

At each level, we run a shared conventional
CRF with its corresponding potential function
φ (ylt−1, y

l
t,Hlt) and update the chunk sets until

finishing all m levels. On the training stage, we
remove chunks according to the selections of the
target labels, while on the decoding stage, it de-
pends on the selections of the predicted labels.
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2.7 Training and Decoding

Following the definition of CRF, the conditional
probabilistic function of a given label sequence at
l-th level, i.e., yl = {ylt}nt=1, can be defined as,

p (y l | Hl) = 1

Z(Hl)
exp

n∑
t=1

φ (ylt−1, y
l
t,Hlt)

(8)

Z(Hl) =
∑

y′∈Yn

exp
n∑
t=1

φ (y′lt−1, y
′l
t ,Hlt) (9)

where Z(Hl) is the sum of all paths’ scores and is
commonly known as the partition function.

We optimize our model by minimizing the sum
of the negative log-likelihoods of all levels.

L = −
m∑
l=1

log p (y l | Hl) (10)

On the decoding stage, we iteratively apply the
Viterbi algorithm (Forney, 1973) at each level to
search the most probable label sequences.

ŷl = argmax
y′∈Yn

p (y′ | Hl) (11)

The pseudocodes of the training and the decod-
ing algorithms with max or logsumexp potential
function can be found in Algorithms 1 and 2, re-
spectively.

3 Experiments

3.1 Datasets

We conduct experiments on three nested named en-
tity recognition datasets in English, i.e., ACE2004
(Doddington et al., 2004), ACE2005 (Walker et al.,
2006) and GENIA (Kim et al., 2003). We divide all
these datasets into tran/dev/test split by following
Shibuya and Hovy (2020) and Wang et al. (2020).
The dataset statistics can be found in Table 1.

Dataset Sentences Mentions |Y| m

ACE2004 6,198 / 742 / 809 22,195 / 2,514 / 3,034 29 6
ACE2005 7,285 / 968 / 1,058 24,700 / 3,218 / 3,029 29 6
GENIA 15,022 / 1,669 / 1,855 47,006 / 4,461 / 5,596 21 4

Table 1: Sizes of the dataset shown in the train/dev/test
split. |Y| is the size of the label set, m is the maximal
depth of entity nesting.

3.2 Hyper-parameters Settings

For word embeddings initialization, we utilize 100-
dimensional pre-trained GloVe (Pennington et al.,
2014) for the ACE2004 and the ACE2005 datasets,
and use 200-dimensional biomedical domain word
embeddings1 (Chiu et al., 2016) for the GENIA
dataset. Moreover, we randomly initialize 30-
dimensional vectors for character embeddings. The
hidden state dimension of character-level LSTM
dc is 100, i.e., 50 in each direction, thus the di-
mension of token representation dx is 200. We
apply dropout (Srivastava et al., 2014) on token
representations before feeding it into the encoder.

The hidden state dimension of the three-layered
LSTM is 600 for ACE2004 and ACE2005, i.e., 300
in each direction, and 400 for GENIA. Choosing a
different dimension is because the maximal depth
of entity nesting m is different. We apply layer
normalization (Ba et al., 2016) and dropout with
0.5 ratio after each bidirectional LSTM layer.

Different from Shibuya and Hovy (2020), we
use only one CRF instead of employing different
CRFs for different entity types. Besides, our CRF
is also shared across levels, which means we learn
and decode entities at all levels with the same CRF.

Our model is optimized by using stochastic gra-
dient descent (SGD), with a decaying learning rate
ητ = η0/(1 + γ · τ), where τ is the index of the
current epoch. For ACE2004, ACE2005, and GE-
NIA, the initial learning rates η0 are 0.2, 0.2, and
0.1, and the decay rates γ are 0.01, 0.02, and 0.02
respectively. We set the weight decay rate, the mo-
mentum, the batch size, and the number of epochs
to be 10−8, 0.5, 32, and 100 respectively, espe-
cially we use batch size 64 on the GENIA dataset.
We clip the gradient exceeding 5.

Besides, we also conduct experiments to evalu-
ate the performance of our model with contextual
word representations. BERT (Devlin et al., 2019)
and Flair (Akbik et al., 2018) are the most com-
monly used contextual word representations in pre-
vious work, and have also been proved that they
can substantially improve the model performance.
In these settings, contextual word representations
are concatenated with word and character repre-
sentations to form the token representations, i.e.,
xt = [wt, ct, et], where et is the contextual word
representation and it is not fine-tuned in any of our
experiments.

1https://github.com/cambridgeltl/
BioNLP-2016

https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
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Methods ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

Ju et al. (2018) 74.2 70.3 72.2 78.5 71.3 74.7
Wang et al. (2018) 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9
Wang and Lu (2018) 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1
Luo and Zhao (2020) 75.0 75.2 75.1 77.4 74.6 76.0
Lin et al. (2019) 76.2 73.6 74.9 75.8 73.9 74.8
Straková et al. (2019) 78.92 75.33 77.08 76.35 74.39 75.36 79.60 73.53 76.44
Shibuya and Hovy (2020) 79.93 75.10 77.44 78.27 75.44 76.83 78.70 75.74 77.19
Wang et al. (2020) 80.83 78.86 79.83 79.27 79.37 79.32 77.91 77.20 77.55
Our Method (naive) 81.12 77.71 79.38 (0.31) 79.45 77.22 78.32 (0.26) 78.83 75.32 77.03 (0.13)
Our Method (max) 81.90 78.05 79.92 (0.10) 80.68 77.03 78.81 (0.04) 78.80 75.71 77.22 (0.10)
Our Method (logsumexp) 81.24 78.96 80.08 (0.22) 79.49 77.65 78.55 (0.12) 78.58 76.21 77.37 (0.15)

Straková et al. (2019) [B] 84.71 83.96 84.33 82.58 84.29 83.42 79.92 76.55 78.20
Shibuya and Hovy (2020) [B] 85.23 84.72 84.97 83.30 84.69 83.99 77.46 76.65 77.05
Wang et al. (2020) [B] 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19
Our Method (naive)[B] 86.19 85.28 85.73 (0.24) 84.23 84.17 84.20 (0.30) 78.83 78.07 78.45 (0.32)
Our Method (max)[B] 86.27 85.09 85.68 (0.09) 85.28 84.15 84.71 (0.09) 79.20 78.16 78.67 (0.18)
Our Method (logsumexp)[B] 86.42 85.71 86.06 (0.10) 83.95 84.67 84.30 (0.13) 78.83 78.27 78.54 (0.02)

Straková et al. (2019) [B+F] 84.51 84.29 84.40 83.48 85.21 84.33 80.11 76.60 78.31
Shibuya and Hovy (2020) [B+F] 85.94 85.69 85.82 83.83 84.87 84.34 77.81 76.94 77.36
Wang et al. (2020) [B+F] 87.01 86.55 86.78 84.90 86.08 85.49 79.98 78.51 79.24
Our Method (naive)[B+F] 86.56 85.65 86.11 (0.24) 84.17 84.88 84.52 (0.21) 79.28 78.31 78.79 (0.17)
Our Method (max)[B+F] 86.96 85.45 86.19 (0.17) 84.70 84.76 84.73 (0.21) 79.51 78.25 78.87 (0.04)
Our Method (logsumexp)[B+F] 86.74 86.11 86.42 (0.31) 84.81 85.06 84.93 (0.24) 79.20 78.67 78.93 (0.26)

Table 2: Experimental results on the ACE2004, ACE2005 and GENIA datasets. Labels [B] and [F] stand for
BERT and Flair contextual word representations respectively. Bold and underlined numbers indicates the best and
the second-best results respectively. naive, max, and logsumexp refer to the three potential function definitions, i.e.,
Equations 1, 3, and 5, respectively. These numbers in parentheses are standard deviations.

BERT is a transformer-based (Vaswani et al.,
2017) pre-trained contextual word represen-
tation. In our experiments, for the ACE2004
and ACE2005 datasets we use the general do-
main checkpoint bert-large-uncased,
and for the GENIA dataset we use the biomed-
ical domain checkpoint BioBERT large
v1.1 2 (Lee et al., 2019). We average all
BERT subword embeddings in the last four
layers to build 1024-dimensional vectors.

Flair is a character-level BiLSTM-based pre-
trained contextual word representation. We
concatenate these vectors obtained from the
news-forward and news-backward
checkpoints for ACE2004 and ACE2005,
and use the pubmed-forward and
pubmed-backward checkpoints for
GENIA, to build 4096-dimensional vectors.

3.3 Evaluation

Experiments are all evaluated by precision, recall,
and F1. All of our experiments were run 4 times

2https://github.com/naver/
biobert-pretrained

with different random seeds and averaged scores
are reported in the following tables.

Our model 3 is implemented with PyTorch
(Paszke et al., 2019) and we run experiments on
GeForce GTX 1080Ti with 11 GB memory.

3.4 Experimental Results
Table 2 shows the performance of previous work
and our model on the ACE2004, ACE2005, and
GENIA datasets. Our model substantially outper-
forms most of the previous work, especially when
comparing with our baseline Shibuya and Hovy
(2020). When using only word embeddings and
character-based word embeddings our method ex-
ceeds theirs by 2.64 F1 score, and also achieves
comparable results with the recent competitive
method (Wang et al., 2020). In the case of utiliz-
ing BERT and further employing Flair, our method
consistently outperforms Shibuya and Hovy (2020)
by 1.09 and 0.60 by F1 scores, respectively.

On the ACE2005 dataset, our method improves
the F1 scores by 1.98, 0.72, and 0.59 respectively,
comparing with Shibuya and Hovy (2020). Al-
though our model performance is inferior to Wang

3https://github.com/speedcell4/nersted

https://github.com/naver/biobert-pretrained
https://github.com/naver/biobert-pretrained
https://github.com/speedcell4/nersted
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et al. (2020) at general, our max potential function
method is slightly superior to them by 0.05 in F1

score when employing BERT.
Furthermore, on the biomedical domain dataset

GENIA, our method constantly outperforms
Shibuya and Hovy (2020) by 0.18, 1.62, and
1.57 in F1 score, respectively. Although the low
scores of Shibuya and Hovy (2020) are due to
their usage of the general domain checkpoint
bert-large-uncased, instead of our biomed-
ical domain checkpoint, our model is still superior
to Straková et al. (2019) by 0.47 and 0.62 in F1

scores, who used the same checkpoint as us.
As for these three potential functions, we notice

the max and logsumexp potential functions gener-
ally works better than the naive potential function.
These results demonstrate that the chunk selection
strategy of the max and logsumexp can leverage
information from all remaining chunks and con-
strains hidden states of LSTM to be more semanti-
cally ordered. When we use BERT and Flair, the
advantage of the max and the logsumexp potential
function is less obvious compared with the case
when we only use word embeddings and character-
based word embeddings, especially on the GENIA
dataset. We hypothesize that BERT and Flair can
provide rich contextual information, then select-
ing chunks in the original order is sufficient, thus
our dynamic selecting mechanism can only slightly
improve the model performance.

3.5 Influence of the Encoding Scheme

We also conduct experiments on the ACE2004
dataset to measure the influence of the outermost-
first and innermost-first encoding schemes. As
shown in Table 3, the innermost-first encod-
ing scheme consistently works better than the
outermost-first encoding scheme with all potential
functions. We hypothesize that outermost entities
do not necessarily contain inner entities especially
for longer ones, and that putting those diversely

Encoding Scheme φ P R F1

Outermost First
naive 79.08 76.57 77.80 (0.26)
max 79.07 75.11 77.04 (0.20)

logsumexp 79.05 76.39 77.70 (0.32)

Innermost First
naive 81.12 77.71 79.38 (0.31)
max 81.90 78.05 79.92 (0.10)

logsumexp 81.24 78.96 80.08 (0.22)

Table 3: Influence of the two encoding schemes and the
three potential functions.

nested outermost entities at the same level would
dislocate the encoding representation. Furthermore,
even if we use the outermost-first encoding scheme,
our method is superior to Shibuya and Hovy (2020),
which further demonstrates the effectiveness of ex-
cluding the influence of the best path.

3.6 Time Complexity and Speed
The time complexity of encoder is O (n), and be-
cause we employ the same tree reduction accelera-
tion trick4 as Rush (2020), the time complexity of
CRF is reduced to O (log n), therefore the overall
time complexity is O (n+m · log n).

Even our model outperforms slightly worse than
Wang et al. (2020), the training and inference speed
of our model is much faster than them, as shown in
Table 4, since we do not need to stack the decod-
ing component to 16 layers. Especially, when we
increase the batch size to 64, the decoding speed is
more than two times faster than their model.

Method Batch Size Training Decoding

Wang et al. (2020)
16 1,937.16 3,626.53
32 3,632.64 4,652.05
64 6,298.85 5,113.85

Our Method
16 4,106.03 3,761.03
32 7,219.57 6,893.03
64 10,584.80 11,652.92

Table 4: Speed comparison on the ACE2005 dataset.
Numbers indicate how many words can be processed
per second on average.

3.7 Level-wise Performance
We display the performance on the dataset
ACE2005 at each level, as in Table 5. The max
potential function at the first three levels achieves
constantly higher precision scores than the naive
and logsumexp potential functions, while at the
same time obtains the lowest recall scores. The log-
sumexp potential function on the contrary achieves
the highest recall scores but fails to obtain satis-
factory precision scores. Because most entities are
located at the first two levels, the max and logsum-
exp achieves the best overall precision and recall
scores, respectively.

3.8 Chunk Distribution
We analyze the chunk distribution on the test split
of the dataset ACE2005 by plotting the heat maps

4https://github.com/speedcell4/
torchlatent

https://github.com/speedcell4/torchlatent
https://github.com/speedcell4/torchlatent
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Figure 3: Chunk distributions of the naive, max, and logsumexp potential functions, respectively. Each row displays
the chunk selection preferences with respect to levels, syntactic and semantic labels, respectively.

Level Naive Max LogSumExp
P R P R P R

1 80.83 80.12 82.14 79.51 80.98 80.12
2 73.91 68.67 74.76 70.76 73.85 70.76
3 60.09 48.80 65.26 49.10 60.17 53.01
4 100.00 16.67 37.50 10.42 66.67 14.58
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00

Overall 79.45 77.22 80.68 77.03 79.49 77.65

Table 5: Precision and recall scores at each level with
each potential functions.

in Figure 3, in which these numbers indicate the
percentages of each chunk being selected by a par-
ticular level or label. For example, the 35 at the
upper-right corner means when using logsumexp
potential function, 35% of predictions at the first
level are made by choosing the sixth chunk, while
the 78 at the lower-left corner shows 78% of WEA
are related to the first chunk with naive. To make it
easier to compare with the naive, we arranged the
chunk orders of max and logsumexp, without los-
ing generality, to make the level-chunk distribution
mainly concentrate on the diagonal.

The naive potential function simply selects the
l-th chunk at l-th level, therefore the heat map is

just diagonal. At the first level, the logsumexp po-
tential function also prefers to select the sixth and
the fourth chunks rather than the first chunk, we
hypothesis this is due to most of B- and S- labels
are located on the first level, and this can be con-
firmed according to the syntactic-chunk heat map
of logsumexp where 78% B- and 70% S- labels go
to the sixth and fourth chunks. Similarly, max also
has a high probability to select the second chunk.

Generally, the chunk distribution of logsumexp
is more smooth than max. Besides, we find label O
almost uniformly select chunks, in both the syntac-
tic and semantic heat maps, while other meaningful
labels have their distinguished preferences.

Syntactic labels S- and B- mainly represent the
beginning of an entity, while I- and E- stands
for the continuation and ending of an entity. In
the syntactic-chunk heat map of naive, they are
indiscriminately distributed to the first chunk, be-
cause most of the entities are located on the first
level. However, max and logsumexp utilize differ-
ent chunks to represents these different syntactic
categories.

Likewise, the semantic label GPE, when using
logsumexp, also has a 61% probability to select the
sixth chunks other than concentrating on the first
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chunk as naive. These observations further demon-
strate our dynamic chunk selection strategies are
capable of learning more meaningful representa-
tions.

4 Related Work

Existing NER algorithms commonly employ vari-
ous neural networks to leverage more morpholog-
ical and contextual information to improve per-
formance. For example, to handle the out-of-
vocabulary issue through introducing morpholog-
ical features, Huang et al. (2015) proposed to em-
ploy manual spelling feature, while Ma and Hovy
(2016) and Lample et al. (2016) suggested introduc-
ing CNN and LSTM to build word representations
from character-level. Zhang et al. (2018) and Chen
et al. (2019) introduced global representation to
enhance encoder capability of encoding contextual
information.

Layered Model As a layered model, Ju et al.
(2018) dynamically update span-level representa-
tions for next layer recognition according to rec-
ognized inner entities. Fisher and Vlachos (2019)
proposed a merge and label method to enhance this
idea further. Recently, Shibuya and Hovy (2020)
designed a novel algorithm to efficiently learn and
decode the second-best path on the span of detected
entities. Luo and Zhao (2020) build two different
graphs, one is the original token sequence, and the
other is the tokens in recognized entities, to model
the interaction among them. Wang et al. (2020) pro-
posed to learn the l-gram representations at layer l
through applying a decoder component to reduce
a sentence layer by layer and to directly classify
these l-gram spans.

Region-based Model Lin et al. (2019) proposed
an anchor-region network to recognize nested en-
tities through detecting anchor words and entity
boundaries first, and then classify each detected
span. Exhaustive models simply enumerate all pos-
sible spans and utilize a maximum entropy tagger
(Byrne, 2007) and neural networks (Xu et al., 2017;
Sohrab and Miwa, 2018; Zheng et al., 2019) for
classification. Luan et al. (2019) additionally aims
to consider the relationship among entities and pro-
posed a novel method to jointly learn both entities
and relations.

Hypergraph-based Model Lu and Roth (2015)
proposed a hyper-graph structure, in which edges
are connected to multiple nodes to represents

nested entities. Muis and Lu (2017) and Wang
and Lu (2018) resolved spurious structures and
ambiguous issue of hyper-graph structure. And
Katiyar and Cardie (2018) proposed another kind
of hyper-graph structure.

Parsing-based Model Finkel and Manning
(2009) indicated all these nested entities are located
in some non-terminal nodes of the constituency
parses of the original sentences, thus they proposed
to use a CRF-based constituency parser to obtain
them. However, the cubic time complexity limits
its applicability. Wang et al. (2018) instead pro-
posed to use a transition-based constituency parser
to incrementally build constituency forest, its lin-
ear time complexity ensures it can handle longer
sentences.

5 Conclusion

In this paper, we proposed a simple and effec-
tive method for nested named entity recognition
by explicitly excluding the influence of the best
path through selecting and removing chunks at
each level to build different potential functions.
We also proposed three different selection strate-
gies to leverage information from all remaining
chunks. Besides, we found the innermost-first en-
coding scheme works better than the conventional
outermost-first encoding scheme. Extensive exper-
imental results demonstrate the effectiveness and
efficiency of our method. However, one of the
demerits of our method is the number of chunks,
i.e., the maximal depth of entity nesting, must be
chosen in advance as a hyper-parameter. We will
extend it to arbitrary depths as future work.
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