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Abstract

Conversational KBQA is about answering a se-
quence of questions related to a KB. Follow-up
questions in conversational KBQA often have
missing information referring to entities from
the conversation history. In this paper, we pro-
pose to model these implied entities, which we
refer to as the focal entities of the conversation.
We propose a novel graph-based model to cap-
ture the transitions of focal entities and apply
a graph neural network to derive a probability
distribution of focal entities for each question,
which is then combined with a standard KBQA
module to perform answer ranking. Our exper-
iments on two datasets demonstrate the effec-
tiveness of our proposed method.

1 Introduction

Recently, conversational Knowledge Base Ques-
tion Answering (KBQA) has started to attract peo-
ple’s attention (Saha et al., 2018; Christmann et al.,
2019; Guo et al., 2018; Shen et al., 2019). Mo-
tivated by real-world conversational applications,
particularly personal assistants such as Apple Siri
and Amazon Alexa, the task aims to answer ques-
tions over KBs in a conversational manner.

Figure 1 shows an example of conversational
KBQA. As we can see, the conversation can be
roughly divided into two parts: Q1, Q2 and Q3
revolve around the book “The Great Gatsby,” while
Q4 and Q5 revolve around its author, “F. Scott
Fitzgerald”. Although these entities are not explic-
itly mentioned in the questions, they are implied by
the conversation history, and they are critical for
answering the questions. For example, Q3, when
taken out of context, cannot be answered because
Q3 itself does not state the title of the book being
discussed. But since Q3 is a follow-up question
of Q1, humans can easily infer that the book of
interest here is “The Great Gatsby” and can hence
answer the question correctly. We therefore can

Conversation Based KBQA
𝐐𝟏: Which actor voiced the Unicorn in The last Unicorn?
𝐑𝟏: Mia Farrow
𝐐𝟐: And Alan Arkin was behind …?
𝐑𝟐: Schmendrick
𝐐𝟑: So, who sang for the film?
R𝟑: America
𝐐𝟒: Genre of this band’s music?
R𝟒: Folk rock, Soft rock
𝐐𝟓: By the way, who was the director?
R𝟓: Jules Bass

𝐐𝟏: What novel has the character named Nick Carraway?
𝐑𝟏: The Great Gatsby
Q2: Where is Jay Gatsby born? The Great Gatsby
R2: North Dakota
𝐐𝟑: What is the name of the author? The Great Gatsby
𝐑𝟑: F. Scott Fitzgerald
𝐐𝟒: What’s his first novel? F. Scott Fitzgerald
R𝟒: This Side of Paradise
𝐐𝟓: Who was his child? F. Scott Fitzgerald
R𝟓: Frances Scott Fitzgerald

Figure 1: An example conversation in conversational
KBQA. The entities shown in blue are what we call
the focal entities, which are implicit but important for
answering the questions.

regard the entity “The Great Gatsby” as the focus
of the conversation at this point. When we move
on to Q4, again, if the question is taken out of con-
text, we cannot answer it. But by following the
conversation flow, humans can guess that at this
point the focus of the conversation has shifted to be
“F. Scott Fitzgerald” (the answer to Q3), and based
on this understanding, humans would have no prob-
lem answering Q4. We refer to “The Great Gatsby”
and “F. Scott Fitzgerald” as the focal entities of the
conversation.

Based on the observation above, we hypothesize
that it is important to explicitly model how a con-
versation transits from one focal entity to another
in order to effectively address the conversational
KBQA task. There are at least two scenarios where
knowing the current focal entity helps answer the
current question. (1) The current focal entity is the
unspecified topic entity1 of the current question.
E.g., “The Great Gatsby” is the unspecified topic
entity for Q3, which effectively should be “what
is the name of the author of The Great Gatsby?”
(2) The current focal entity is closely related to the

1In KBQA, a topic entity is an entity mentioned in the
question and the starting point in the KB to search for answers.
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topic entity of the current question and can help
narrow down the search space in case of ambigu-
ity. E.g., knowing the focal entity is “The Great
Gatsby” for Q2, the system can identify the correct
subgraph of the KB that contains both “Jay Gatsby”
(the topic entity) and “The Great Gatsby” for an-
swer prediction, which is critical if there are more
than one entities in the KB named “Jay Gatsby.”
We can also see that simple entity coreference res-
olution techniques (e.g., Lee et al. (2017)) may
not always help for conversational KBQA as no
pronouns are used in many cases.

Although existing work on conversational
KBQA has tried to address the challenges of miss-
ing information in follow-up questions by modeling
conversation history, most of it simply includes ev-
erything in the conversation history without consid-
ering focal entities. For example, Saha et al. (2018)
leveraged a hierarchical encoder to encode all the
questions and responses in the conversation history,
but there was no explicit modeling of anything sim-
ilar to focal entities. Guo et al. (2018) concatenated
previous questions with the current question to fill
in the missing information, but again there was
no special treatment of entities. A more recent
work (Christmann et al., 2019) believed that the an-
swers to sequential questions should be closely con-
nected to each other in the KB. Thus, they proposed
an algorithm to keep a context graph in memory,
expanding it as the conversation evolves to increase
the connections between the questions. However,
their method is inefficient in capturing the most
significant information related to focal entities in a
conversation history.

In this paper, we explicitly model the focal enti-
ties and their transitions in a conversation in order
to improve conversational KBQA. Based on several
observations we have with focal entities, such as
their tendencies to be topic entities or answer enti-
ties in the conversation history and their stickiness
in a conversation, we propose to construct an En-
tity Transition Graph to elaborately model entities
involved in the conversation as well as their inter-
actions, and apply a graph-based neural network
to derive a focal score for each entity in the graph,
which represents the probability of this entity being
the focal entity at the current stage of the conver-
sation. The key intuition behind the graph neural
network is to propagate an entity’s focal score in
the i-th turn of the conversation to its neighboring
entities in the (i + 1)-th turn of the conversation.

This derived focal entity distribution is then incor-
porated into a standard single-turn KBQA system
to handle the current question in the conversation.

We evaluate our proposed method on two conver-
sational KBQA datasets, ConvQuestions (Christ-
mann et al., 2019) and ConvCSQA (which is a
subset we derived from CSQA (Saha et al., 2018)).
Experiment results show that compared with either
a single-turn KBQA system or a system that sim-
ply encodes the entire conversation history without
handling focal entities in a special way, our method
can clearly perform better on both datasets. Our
method also outperforms several existing systems
that represent the state of the art on these bench-
mark datasets. We also conduct error analysis that
sheds light on where further improvement is de-
sired.

We summarize our contributions of this paper
as follows: (1) We propose to explicitly model the
focal entities of a conversation in order to improve
conversational KBQA. (2) We propose a graph-
based neural network model to capture the tran-
sitions of focal entities and derive a focal entity
distribution that can be plugged into a standard
single-turn KBQA system. (3) We empirically
demonstrate the effectiveness of our method on
two datasets. Our method can outperform the state
of the art by 9.5 percentage points on ConvQues-
tions and 14.3 percentage points on ConvCSQA2.

2 Background

2.1 Problem Formulation
A KB K consists of a large nubmer of triplets
〈es, r, eo〉, where es and eo are entities and r in-
dicates their relation.

We first define single-turn KBQA as fol-
lows. Given a KB K and a question q, the
system is supposed to return one or more en-
tities from K as the answer to q. In single-
turn KBQA, different question-answer pairs D =
{(q1, a1), (q2, a2), . . .} are independent.

Conversational KBQA is a multiple-turn KBQA
problem, where a sequence of question-answer
pairs c = ((q1, a1), (q2, a2), ..., (qm, am)) forms
a complete conversation and a set of independent
conversations D = {c1, c2, . . .} forms a conversa-
tional KBQA dataset. We refer to each question-
answer pair as one turn of the conversation. A
conversational KBQA system is supposed to return

2Our code is available at https://github.com/
lanyunshi/ConversationalKBQA.

https://github.com/lanyunshi/ConversationalKBQA
https://github.com/lanyunshi/ConversationalKBQA
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the correct answer to the current question qt based
on not only qt but also the preceding questions
(q1, q2, ..., qt−1) in the same conversation.

2.2 Pipeline for Single-turn KBQA

A standard single-turn KBQA includes two main
components: a Query Generator and an Answer
Predictor. The Query Generator generates a set of
candidate query graphs C for a given q. Specifi-
cally, we first assume that some entities relevant to
q are first identified. These can be entities directly
mentioned in q or other entities relevant to q but
implicitly mentioned, such as the focal entities we
introduced earlier. Starting from these entities, the
Query Generator generates a set of candidate query
graphs (Yih et al., 2016) from K, which lead to
some candidate answers to the question. The sec-
ond component of a single-turn KBQA system, the
Answer Predictor, is a neural-network-based ranker
that takes in the question as well as the generated
query graphs as input and outputs a predicted an-
swer â.

For conversational KBQA, the initial question q0
in a conversation c can be answered directly using
an existing single-turn KBQA approach (Yu et al.,
2017; Luo et al., 2018; Yih et al., 2016; Lan et al.,
2019). When the single-turn KBQA system is used
for answering follow-up questions, we make the
following modifications: First, we assume that a
focal entity distribution (which is the core of our
method and will be presented in detail below) is
derived from the conversation history. Then each
focal entity is considered relevant to the current
question and will be used to generate candidate
query graphs by the Query Generator. Meanwhile,
the probabilities of these focal entities (i.e., their
focal scores) will be used by the Answer Predictor
when it ranks the candidate query graphs.

3 Our Method

3.1 Overview

Our proposed method hinges on the notion of focal
entities that we introduced in Section 1. Recall that
a focal entity is the focus of the conversation at its
current stage. To model focal entities, we propose
to first use an Entity Transition Graph to model
all the entities involved in the conversation so far
and their interactions. These entities are candidate
focal entities. The edges of the graph reflect how
the conversation has shifted from one entity to an-
other, and such transitions can help us estimate how

likely an entity is the current focal entity, as we will
explain in Section 3.2. This graph is incrementally
constructed by a Graph Constructor after each turn
of the conversation. To derive a focal score (i.e., a
probability) for each entity in this graph, a Focal
Entity Predictor employs a graph-based neural net-
work and generates a new focal entity distribution
based on the previous focal entity distribution as
well as the conversation history, which is encoded
by a Conversation History Encoder using a stan-
dard sequence model. Finally, the derived focal en-
tity distribution is incorporated into the single-turn
KBQA module presented in Section 2.2 to perform
answer prediction. The overall architecture of our
method is illustrated in Figure 2.

3.2 Entity Transition Graph and Graph
Constructor

Our Graph Constructor builds the Entity Transi-
tion Graph as follows. The initial Entity Transition
Graph G(0) is set to be an empty graph. Let G(t−1)
denote the Entity Transition Graph before the t-
th turn of the conversation, and suppose we have
processed the t-th question and obtained the an-
swer entity ât (which is predicted) with the help of
G(t−1). We now need to construct Gt, which will
be used to help answer qt+1. Recall that the An-
swer Predictor presented in Section 2.2 obtains the
answer entity ât by identifying a top-ranked query
graph, which starts from either an entity in G(t−1)
or a topic entity mentioned in qt. Let St denote
all the entities except ât in this top-ranked query
graph. The Graph Constructor adds the following
nodes and edges to G(t−1) in order to build Gt.

• For each entity e ∈ St, add e to the graph as a
node if it does not exist in the graph yet. Also
add ât to the graph as a node if it does not
exist yet.

• For each newly added node e, add a “self-loop”
edge from e to itself.

• For each entity e ∈ St, add a “forward” edge
from e to ât.

• For each entity e ∈ St, add a “backward” edge
from ât to e.

• For each entity e ∈ S1, i.e., the entities rel-
evant to the first question, add a “backward”
edge from ât to e.

The way we construct the Entity Transition
Graph as described above is based on the following
observations with focal entities: (1) A focal entity
is often an answer entity to a previous question.



3291

𝑞" 𝑎$" 𝑞% 𝑞&𝑎$%

North Dakota

The Great
Gatsby

Nick CarrawayJay Gatsby

6

5

20

10

Entity Transition Graph Focal Entity Distribution

Nick
Carraway

The Great
Gatsby

North
Dakota

Jay
Gatsby

Conversation History Question

𝑎$&

Data

KB

Model

Focal Entity
Predictor

Graph
Constructor

Conversation History Encoder

Answer
Predictor

Query
Generator

Figure 2: Architecture of our method. q1, â1, q2 and â2 correspond to the example conversation in Figure 1.
Specifically, we show the prediction procedure for q3, where the entities “Nick Carraway”, “The Great Gatsby”,
“Jay Gatsby” and “North Dakota” form the Entity Transition Graph. After predicting the focal entity distribution at
that stage, we leverage both the distribution and q3 to generate â3. The single-turn KBQA system is shown inside
the rectangle on the right and our proposed component is shown inside the rectangle on the left.

Therefore we include all previous answer entities
in the graph. (2) A focal entity is also likely to be
an entity relevant to a previous question that has
led to the answer entity. We therefore also include
those entities in the query graphs into the Entity
Transition Graph. (3) The focal entity tends to stay
unchanged and thus has a “stickiness” property in
a conversation. Thus we add a self-loop edge for
each node. (4) The focal entity may often go back
to some entity relevant to the first question. There-
fore, we always add an edge from the latest answer
entity to entities relevant to the first question. (5) If
an entity is frequently discussed in the conversation
history, it might be more likely to be a focal entity.
We thus give such entities more connectivities in
the graph.

To give a concrete example of the Entity Tran-
sition Graph, let us take a look at Figure 3. When
we answer Q2, “Nick Carrayway” and “The Great
Gatsby” are included in the graph because the
top-ranked query graph of Q1 contains the entity
“Nick Carrayway” and returns the entity “The Great
Gatsby”. As the conversation proceeds, the Entity
Transition Graph grows dynamically and we even-
tually obtain Figure 3 (d) when we answer Q5.

3.3 Conversation History Encoder

The objective of the Conversation History Encoder
is to encode the textual context of the previous
questions and their predicted answers, particularly
information other than the entities (which is already
captured by the Entity Transition Graph). The out-
put of the Conversation History Encoder is a single
vector and it will be fed into the Focal Entity Pre-
dictor as an additional input.

(a)
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Figure 3: An example of the construction process of
the Entity Transition Graph. (a) to (d) show the graph
when we answer Q2 to Q5, respectively. The nodes
in gray are the most recently added entities. The num-
bers in blue are the out-degrees of the entities in the
KB, which are used in Section 3.4. The edges shown in
solid, dashed or dotted lines indicate “forward”, “back-
ward” and “self-loop”, respectively. The nodes high-
lighted with thick borders are the actual focal entities
of the current questions.

Similar to previous methods (Serban et al., 2017;
Saha et al., 2018), we leverage a hierarchical en-
coder to encode the conversation history, where a
lower layer encodes individual questions and pre-
dicted answers independently and an upper layer
connects the sequence of questions and answers
to derive a single vector. Specifically, suppose we
have completed (t − 1) turns of the conversation.
The lower-layer encoder employs a standard se-
quence encoder (in our case a BiLSTM) to encode
each question and each predicted answer so far.
Let qi ∈ Rd (1 ≤ i ≤ (t − 1)) denote the en-
coded vector representation of qi, and similarly, let
âi ∈ Rd denote the encoded vector for âi. Next, the
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upper-layer encoder leverages a recurrent network
to encode the vector sequence q1, â1,q2, â2, . . .
and generate a sequence of hidden vectors. The
last hidden vector, which we denote as ht−1 ∈ Rd,
will be used as the representation of the conversa-
tion history.

It is worth noting that although our Conversation
History Encoder is similar to how previous work
encodes conversation history (Serban et al., 2017),
previous work uses the representation ht−1 directly
as part of the representation of the current question,
which introduces noise. In contrast, we use it to
help predict our focal entity distribution only.

3.4 Focal Entity Predictor
The Focal Entity Predictor employs a graph con-
volution network (GCN) (Kipf and Welling, 2017;
Schlichtkrull et al., 2018) to derive a focal score for
each node in the Entity Transition Graph at each
turn of the conversation. First, we assume that each
entity (i.e., node) e in the graph has a vector repre-
sentation, and this representation is updated at each
turn. Let us use et to represent this vector at the
t-th turn. For each interaction relation label (i.e.,
“forward”, “backward” and “self-loop”), we also
use a vector to represent it at each turn, which we
denote as rt.

At the t-th turn, the vector representations of
the entities and interaction relations are updated as
follows:

et =
∑

(r,e′)∈N (e)

αre
′
t−1, (1)

αr = softmax(r,e′)∈N (e)(h
ᵀ
t−1rt−1), (2)

whereN (e) is the set of nodes connect to e together
with the connecting edges, and ht−1 is the output
of the Conversation History Encoder as we have ex-
plained earlier. The formulas above show that the
representation of e will be aggregated from the rep-
resentations of its neighborhood entities from the
last turn of the conversation, and the aggregation
weights α are derived based on the conversation
history ht−1 as well as the nature of the interaction
relation.

For each node that is newly added to the Entity
Transition Graph and each of the interaction rela-
tion labels, we initialize its vector representation to
a random vector.

To derive the focal score of entity e at the current
turn, we make use of both et and two additional
features. Specifically, we obtain the out degree of

each entity from the entire KB as one additional
feature. We also assign a label to each entity to
indicate whether it is from St (as defined in Sec-
tion 3.2) or is ât. We denote these two features as
eout-degree and etemporal, where eout-degree is a scalar
and etemporal ∈ Rd is represented using embed-
dings.

We now concatenate et and etemporal as well as
eout-degree to derive focal scores as follows:

ẽt = [et ⊕ etemporal ⊕ eout-degree], (3)

FocalScoret(e) = softmaxe∈Gc(w
ᵀ
t ẽt + bt), (4)

where ⊕ denotes concatenation, both wt and bt
are parameters to be learned and they are specific
to the t-th turn. Here FocalScoret(e) denotes the
focal score, i.e., the probability that entity e would
be the focal entity for the t-th question.

3.5 Training Objectives
Our training objective comes from two parts: First,
we want to minimize the loss from incorrectly an-
swering a question. For this, we use a standard
cross entropy loss. Second, we want to supervise
the training of the Focal Entity Predictor, but we do
not have any ground truth for the focal entity distri-
butions. We therefore produce pseudo ground truth
as follows: If there is an entity that could generate
at least one query graph resulting in the correct
answer, we treat it as a correct focal entity for that
question and assign a value of 1 to the entry for
this entity in the distribution; otherwise, the value
remains 0. Finally, we normalize the distribution
and obtain a pseudo distribution. We then try to
minimize the KL-divergence between this pseudo
ground truth of focal entity distribution and our
predicted focal entity distribution.

4 Experiments

In this section, we first introduce two benchmark
datasets and our experiment settings in Section 4.1
and Section 4.2. Next, we discuss the main results
and analysis in Section 4.3 and Section 4.4. We
further show the comparison with SOTA systems in
Section 4.5 and some error analysis in Section 4.6.

4.1 Data Sets
We use two datasets to evaluate our proposed
method. The latest WikiData dump3 is used as
the KB for both datasets. Average accuracy and F1
score are employed to measure the performance.

3https://query.wikidata.org

https://query.wikidata.org
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ConvQuestions: This is a large-scale conversa-
tional KBQA dataset4 created via Amazon Me-
chanical Turk (Christmann et al., 2019). The ques-
tions cover topics in five domains. Each conver-
sation contains 5 sequential questions with anno-
tated ground truth answers. There are many ques-
tions with missing information in the conversations,
which makes the dataset very suitable for evaluat-
ing our method. The dataset contains 6K, 2K and
2K conversations for training, development and
testing, each evenly distributed across domains.

ConvCSQA: This dataset comes from the the
CSQA dataset5 (Saha et al., 2018), originally cre-
ated for a setting similar to conversational KBQA.
However, one of the focuses of the original CSQA
data was complex questions, which is not related
to our work. Also, the CSQA data contains many
questions in a conversation that do not have con-
nections with preceding questions. We therefore
elaborately selected conversational questions from
CSQA to suit our needs, using the following strate-
gies: 1) We collected the topic entities as well as
the answer entities in the conversation history. If
a follow-up question contains one of these entities,
we kept the question; otherwise, we omitted it. 2)
If the question type description did not explicitly
mention that this question contains an “indirect”
subject, we removed it. 3) We also filtered out the
conversations with a length smaller than 5. As a
result, we obtained a subset of CSQA that consists
of 7K, 0.5K and 1K conversations for training, de-
velopment and testing, respectively. The average
number of questions per conversation is 5.36. We
call this the ConvCSQA dataset.

4.2 Experiment Settings

To evaluate the effectiveness of our proposed Entity
Transition Graph and Focal Entity Predictor, we
mainly compare the following three methods:

SingleTurn: This is the method described in Sec-
tion 2.2. Specifically, we first recognize the named
entities in the questions via the AllenNLP NER
tool6 and retrieve the corresponding entities via
SPARQL. To generate candidate query graphs, we
consider all subgraphs that are 1 hop or 2 hops
away from the topic entities (or focal entities in

4https://convex.mpi-inf.mpg.de/
5https://amritasaha1812.github.io/

CSQA/
6https://demo.allennlp.org/

named-entity-recognition

the case when the SingleTurn system is used in
our method). Next, we employ the Answer Pre-
dictor that consists of two BiLSTMs to encode the
question as well as each candidate subgraph inde-
pendently. The final score is computed via the dot
product of these two vectors.

ConvHistory: This method follows a standard
way of encoding the conversational history using a
two-level hierarchical encoder (Serban et al., 2017).
It does not explicitly model any focal entity.

Our Method: This is our proposed method
where we model the focal entities through the En-
tity Transition Graph and the Focal Entity Predic-
tor. This method also uses the same hierarchical
encoder as above to encode the conversation his-
tory.

Implementation Details: We implement our
method by PyTorch on Nvidia V440.64.00-32GB
GPU cards. We employ GloVe7 as our initialized
word embeddings and set the maximum number of
GCN layers as 10. We apply grid search through
pre-defined hyper-parameter spaces, specifically,
hidden dimensionality amongst {200, 300, 400},
learning rate amongst {3e− 3, 3e− 4, 3e− 5} and
dropout ratio amongst {0.2, 0.1, 0.0}. The best
hyper-parameter configuration is based on the best
F1 score on the development set. Eventually, for
each neural network model, we set the hidden di-
mensionality to 300. A dropout layer is set before
each MLP with a ratio of 0.1. We use the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 3e− 5, and the batch size is 1. The training
epoch number is 100.

4.3 Main Results

Table 1 shows the overall results. As we can see,
our method clearly outperforms both SingleTurn
and ConvHistory on both datasets. This confirms
that with the additional components we added that
model the focal entities, the method is able to make
use of the conversation history more effectively
to answer the follow-up questions compared with
ConvHistory (which simply encode the entire his-
tory without specifically modeling focal entities).
Surprisingly, we find that simply modeling the con-
versation history through a standard two-level hi-
erarchical sequence model does not consistently

7https://nlp.stanford.edu/projects/
glove/

https://convex.mpi-inf.mpg.de/
https://amritasaha1812.github.io/CSQA/
https://amritasaha1812.github.io/CSQA/
https://demo.allennlp.org/named-entity-recognition
https://demo.allennlp.org/named-entity-recognition
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Methods ConvQuestions ConvCSQA
Dev Test Dev Test

SingleTurn 29.7 27.3/30.5 61.8 56.8/65.0
ConvHistory 29.1 27.2/30.2 62.0 57.0/65.1
Our Method 31.9 29.8/33.3 63.2 57.8/66.9

Table 1: F1 results on development and Acc/F1 results
on test of ConvQuestions and ConvCSQA.

Model Configuration Acc/F1

Our Method (full model) 29.8/33.3

- historical conversation 28.7/32.1
- entity transition graph 28.2/31.6
- entity property 28.3/31.7

Table 2: The ablation results on ConvQuestions.

improve the performance. It suggests that includ-
ing all the historical conversation information in
a brute-force manner may not capture the most
important conversation contexts effectively.

4.4 Further Analysis

Ablation Studies. Next, we remove the major
components in Our Method one at a time and show
the ablation results conducted on ConvQuestions
in Table 2. Specifically, we 1) remove the effect
of modeling conversation history by replacing αr

in Eqn. (1) with a uniform distribution; 2) remove
graph information by replacing et with ht−1 in
Eqn. (3); 3) remove entity property by omitting
eout-degree in Eqn. (3). The results in Table 2 show
that all the above information helps our method
to predict focal entities accurately and achieve the
best KBQA results.

Breakdown by Turns of Conversation. Our
method is specifically designed for follow-up ques-
tions. Therefore, it would be interesting to see how
the method fares for questions at different turns
of the conversation. Is it more difficult to answer
a question at a later turn of the conversation than
an earlier question? We therefore show the results
breakdown by turns of conversation in Table 3. We
observe that as expected, for questions at later turns
of a conversation, the performance drops for all
three methods. We believe that for both ConHis-
tory and Our Method, this is partially due to error
propagation. On the other hand, compared with
SingleTurn and ConvHistory, Our Method is still
more robust when handling the follow-up questions
at later turns of a conversation.

Methods Q1 Q2 Q3 Q4 Q5

SingleTurn 49.2 33.5 22.1 19.6 12.3
ConvHistory 50.1 31.7 23.5 19.2 9.2
Our Method 50.0 35.0 28.7 20.1 15.4

Table 3: Accuracy results breakdown by conversation
turns on ConvQuestions.

Case Studies. To verify if our predicted focal
entities are meaningful, we use two concrete exam-
ples to conduct a case study. Figure 4 displays two
example conversations from ConvQuestions. We
show the focal entity distributions for the sequence
of questions in bar charts. We can see that the pre-
dicted focal entity distribution indeed follows the
flow of the conversation. For example, the entity
with the largest focal score in the first conversation
transits from “F.Scott Fitzgerald” to “Zelda Fitzger-
ald,” and then to “St. Patrick’s Cathedral,” while
in the second conversation it remains as “Tupac
Shakur” throughout the conversation.

4.5 Comparison with SOTA

We compare our proposed method with existing
state-of-the-art systems in Table 4. Our method
outperforms other systems on most questions and
achieves overall 9.5 and 14.3 percentage points
of improvement on ConvQuestions and ConvC-
SQA, respectively. CONVEX, Star and Chain
employ expansion-based or rule-based strategies
to identify the answer entities for follow-up ques-
tions. HRED+KVmem combines the hierarchical
encoder with a Key-Value Memory network. D2A
and MaSP are two seq2seq models to translate the
questions into logical forms. Our system is de-
veloped based on a standard single-turn KBQA
system. We strengthen it by modeling focal entity
transitions, and it shows outstanding capability in
answering co-referenced, ellipsis and verification
questions.

4.6 Error Analysis

To better understand where our method has failed,
we randomly sampled and analysed 100 questions
with wrong predictions and manually inspected
them. We find that the errors are mainly due to the
following reasons.
Mis-prediction of Relations (43%) The major er-
rors come from relation mis-predictions. In our
model, relation prediction is done by a simple an-
swer predictor. We expect that employing a more
advanced encoder could reduce this type of errors.
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𝐐𝟏: What was the birth name of Tupac 
Shakur?
𝐑𝟏: Lesane Parish Crooks
𝐐𝟐: Place of birth?
𝐑𝟐: East Harlem
𝐐𝟑: How did he die?
R𝟑: drive-by shooting
𝐐𝟒: Shakur's mother?
R𝟒: Afeni Shakur
𝐐𝟓: Date of death?
R𝟓: 13 September 1996

(a) (b)

𝐐𝟏 : Who is the author of The Great Gatsby?
𝐑𝟏: F. Scott Fitzgerald
𝐐𝟐: What year did Fitzgerald write The 
Great Gatsby?
𝐑𝟐: 1925
𝐐𝟑: Who was Fitzgerald married to?
R𝟑: Zelda Fitzgerald
𝐐𝟒: Where were the Fitzgeralds married?
R𝟒: St. Patrick's Cathedral
𝐐𝟓: Where is it?
R𝟓: New York City

Figure 4: Two conversations in ConvQuestions and our predicted focal entity distributions. Each stacked bar shows
the probabilities of the focal entity candidates for each question, where each entity is shown in its own color.

Methods ConvQuestions ConvCSQA
Movies TV series Music Books Soccer QT1 QT2 QT3 QT4

CONVEX (Christmann et al., 2019) 25.9 17.8 19.0 19.8 18.8 38.9 14.8 4.6 47.8
Star (Christmann et al., 2019) 25.7 19.4 24.1 24.1 17.9 - - - -
Chain (Christmann et al., 2019) 9.4 3.1 4.0 5.3 1.6 - - - -
HRED+KVmem (Saha et al., 2018) - - - - - 13.6 7.1 8.8 21.4
D2A (Guo et al., 2018) 9.0 6.7 7.2 12.1 10.7 61.0 43.4 4.7 45.8
MaSP (Shen et al., 2019) - - - - - 82.7 45.2 3.8 46.3

Our Method 29.0 30.4 30.1 30.1 29.6 81.2 64.6 23.1 58.0

Table 4: Comparison with other systems. ConvQuestions results (Acc) are shown with different domains and
ConvCSQA results (F1) are shown with different question types (“Simple”, “Co-referenced”, “Ellipsis” and “Veri-
fication”). Results of ConvQuestions are copied from (Christmann et al., 2019). Results of ConvCSQA are based
on our re-implementation using the official source code8.

Query Generation Failure (29%) There are many
cases where the correct query graphs are difficult to
be collected from the KB due to the incompleteness
of the KB or the limitation of the query generator.
Mis-linking of Topic Entities (22%) The errors
caused by wrong identification of the topic entities
of questions also lead to incorrectness of the final
answers, because if the entity linker links the ques-
tion to a wrong entity, it is unlikely to answer the
question correctly. This is a general challenge for
KBQA.

5 Related Work

Single-turn KBQA task has been studied for
decades. Traditional methods tried to retrieve the
correct answers from the KB via either embedding-
based methods (Bordes et al., 2014; Xu et al., 2019;
Sun et al., 2018, 2019; Qiu et al., 2020; He et al.,
2021) or semantic parsing-based methods (Berant
et al., 2013; Yih et al., 2015; Luo et al., 2018; Zhang
et al., 2019; Lan and Jiang, 2020). Conversational
KBQA is a relatively new direction that builds on
top of single-turn KBQA.

8Since the original D2A and MaSP codes leverage the
ground truth topic entities and relations to pre-train the entity
linker and relation predictor but we do not, we skip the pre-
training procedure in our re-implementation.

Conversational KBQA is related to dialogue sys-
tems and conversational QA in general, which re-
quire techniques to sequentially generate responses
based on the interactions with users (Ghazvinine-
jad et al., 2018; Rajendran et al., 2018; Das et al.,
2017). A conversation history can be encoded via
different techniques such as a hierarchical neural
network (Serban et al., 2017; Reddy et al., 2019) or
modeling the flow of the conversation along with
a passage (Huang et al., 2019; Gao et al., 2019,
2020). Our work also intends to capture the flow
of the conversation but we specifically model the
transitions of focal entities.

Regarding conversational KBQA, Saha
et al. (2018) proposed a model consisting of
a hierarchical encoder, a key-value memory
network and a decoder. Guo et al. (2018) and
Shen et al. (2019) employed a seq2seq model
to encode the conversation history then output
a sequence of actions to form an executable
command. Some follow-up work (Guo et al., 2019;
Shen et al., 2020) focused on the meta-learning
setting or the effective search strategy under
weak supervision, which is beyond the focus of
this paper. Christmann et al. (2019) detected
frontier nodes by expanding a subgraph, which are
potential answer entities to the current question.
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Their motivation is relevant to ours but we target at
modeling the focal entities in the conversation.

6 Conclusion

In this paper, we present a method to model the
transitions of focal entities in a conversation in or-
der to improve conversational KBQA. Our method
can outperform two baselines and achieve state-of-
the-art performance on two benchmark datasets.
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Parikh, and Dhruv Batra. 2017. Visual Dialog. In
Proceedings of 2017 IEEE Conference on Computer
Vision and Pattern Recognition, pages 326–335.

Yifan Gao, Piji Li, Irwin King, and Michael R. Lyu.
2019. Interconnected question generation with
coreference alignment and conversation flow mod-
eling. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4853–4862.

Yifan Gao, Chien-Sheng Wu, Shafiq Joty, Caiming
Xiong, Richard Socher, Irwin King, Michael R. Lyu,
and Steven C.H. Hoi. 2020. Explicit memory tracker
with coarse-to-fine reasoning for conversational ma-
chine reading. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and

Michel Galley. 2018. A knowledge-grounded neu-
ral conversation model. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 5110–
5117.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2018. Dialog-to-action: Conversational
question answering over a large-scale knowledge
base. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
pages 2942–2951.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2019. Coupling retrieval and meta-
learning for context-dependent semantic parsing. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 855–
866.

Gaole He, Yunshi Lan, Jing Jiang, Xin Zhao, and Ji-
Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate su-
pervision signals. In Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining.

Hsin-Yuan Huang, Eunsol Choi, and Wen tau Yih.
2019. FlowQA: Grasping flow in history for conver-
sational machine comprehension. In Proceedings
of International Conference on Learning Represen-
tations.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of International Conference on Learning Represen-
tations.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of International Confer-
ence on Learning Representations.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 969–974.

Yunshi Lan, Shuohang Wang, and Jing Jiang. 2019.
Knowledge base question answering with topic units.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, pages
5046–5052.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197.

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Zhu.
2018. Knowledge base question answering via en-
coding of complex query graphs. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2185–2194.



3297

Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun
Zhang. 2020. Stepwise reasoning for multi-relation
question answering over knowledge graph with
weak supervision. In Proceedings of the 13th Inter-
national Conference on Web Search and Data Min-
ing, pages 474–482.

Janarthanan Rajendran, Jatin Ganhotra, Satinder Singh,
and Lazaros Polymenakos. 2018. Learning end-
to-end goal-oriented dialog with multiple answers.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3834–3843.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, pages 705–713.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In Proceedings of Euro-
pean Semantic Web Conference, pages 593–607.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, page 3295–3301.

Tao Shen, Xiubo Geng, Guodong Long, Jing Jiang,
Chengqi Zhang, and Daxin Jiang. 2020. Effec-
tive search of logical forms for weakly supervised
knowledge-based question answering. In Proceed-
ings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages
2227–2233.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451.

Haitian Sun, Tania Bedrax-Weiss, and William W. Co-
hen. 2019. Pullnet: Open domain question answer-
ing with iterative retrieval on knowledge bases and
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2380–2390.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W. Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4231–
4242.

Kun Xu, Yuxuan Lai, Yansong Feng, and Zhiguo Wang.
2019. Enhancing key-value memory neural net-
works for knowledge based question answering. In
Proceedings of The 17th Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 2937–2947.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321–1331.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos
Santos, Bing Xiang, and Bowen Zhou. 2017. Im-
proved neural relation detection for knowledge base
question answering. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 571–
581.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Complex question decomposition for seman-
tic parsing. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4477–4486.


