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Abstract

To date, most of recent work under the
retrieval-reader framework for open-domain
QA focuses on either extractive or generative
reader exclusively. In this paper, we study a
hybrid approach for leveraging the strengths
of both models. We apply novel techniques to
enhance both extractive and generative readers
built upon recent pretrained neural language
models, and find that proper training meth-
ods can provide large improvements over pre-
vious state-of-the-art models. We demonstrate
that an hybrid approach by combining answers
from both readers can effectively take advan-
tages of extractive and generative answer in-
ference strategies and outperform single mod-
els as well as homogeneous ensembles. Our
approach outperforms previous state-of-the-art
models by 3.3 and 2.7 points in exact match on
NaturalQuestions and TriviaQA respectively.

1 Introduction

Open-domain question answering (QA) has been a
long standing problem in natural language under-
standing, information retrieval, and related fields
(Chen and Yih, 2020). An typical open-domain
QA system follows the retrieval-reader framework
(Chen et al., 2017; Guu et al., 2020; Karpukhin
et al., 2020), where the relevant passages are first
retrieved from a large text corpus, and a reader mod-
ule then navigates multiple passages for answer
inference. In this work, we study two paradigms
of reader modules, i.e. extractive (Karpukhin et al.,
2020; Guu et al., 2020) and generative (Lewis et al.,
2020; Izacard and Grave, 2021) readers. The ex-
tractive reader extracts contiguous spans from the
retrieved passages whereas the generative reader
sequentially decodes the answer string which might
not be contained in the retrieved passages.

∗Equal Contribution

Recent work on open-domain QA (Karpukhin
et al., 2020; Guu et al., 2020; Lewis et al., 2020;
Izacard and Grave, 2021) explores either an extrac-
tive reader or a generative reader exclusively. We
hypothesize that extractive and generative readers
adopt different answer inference strategies, thus a
hybrid extractive/generative reader can be a bet-
ter option for open-domain QA tasks. As shown
in Figure 1, compared with prediction agreement
among only generative or extractive readers (top-
left and bottom-right), the cross prediction agree-
ment between extractive and generative readers
(bottom-left) is relatively low (<50%). It indicates
that answers produced by those two types of mod-
els are different and they can be complementary to
each other. Therefore, we propose a hybrid reader
approach, UnitedQA, which is a simple ensemble
approach to combine the predictions from extrac-
tive and generative readers. It achieves state-of-the-
art results on NaturalQuestions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017).

In UnitedQA, the extractive reader (UnitedQA-
E) and generative reader (UnitedQA-G) are built
upon the pretrained language models, ELECTRA
(Clark et al., 2020) and T5 (Raffel et al., 2020),
respectively. For the UnitedQA-E, we adopt a
weakly-supervised training objective to address the
noisy supervision issue caused by the heuristics-
based labeling and incorporate the posterior differ-
ential regularization (PDR) (Cheng et al., 2021) to
improve the model robustness. The UnitedQA-G
follows the T5 Fusion-in-Decoder (FID) (Izacard
and Grave, 2021) and we make two improvements:
first, we add a group of attention bias parameters
into the decoder cross-attention block to feature
the ranking information of retrieved contexts; sec-
ond, we add the adversarial training (Ju et al., 2019;
Jiang et al., 2020; Pereira et al., 2021) to improve
the model generalization ability.

The experimental results highlight the effec-
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Figure 1: Pairwise prediction agreement ratio. G-1,
G-2, G-3 and E-1, E-2, E-3 are three different
generative and extractive readers respectively. All read-
ers achieve similar performance (≈ 52% exact match)
on NaturalQuestions. Higher agreement (>50%) in
red and lower agreement (<50%) in gray. The agree-
ment is calculated based on exact string match.

tiveness of the simple hybrid approach of Unit-
edQA. With both improved extractive and genera-
tive readers, UnitedQA sets new state-of-the-art re-
sults on two popular open-domain QA datasets, i.e.
54.7 and 70.3 in exact match on NaturalQuestions
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017), respectively. It is worth noting that
our UnitedQA model not only outperforms each
single model but also brings more pronounced im-
provements over homogeneous ensembles of either
extractive or generative readers. Last, based on
our analyses, UnitedQA-E and UnitedQA-G have
advantages in different cases, suggesting they may
use different reasoning strategies.

2 Method

In this section, we present the overall pipeline of
the UnitedQA system, which consists of three com-
ponents: Retrieval, Reading, and Re-ranking.
First, the retrieval module fetches a list of rele-
vant passages from a Wikipedia dump for a given
question. Then, the module of hybrid readers pro-
duces answer candidates from the set of retrieved
passages. Last, the re-ranking module combines
the answer candidates with linear interpolation and
produce the final answer.
Retrieval Following Karpukhin et al. (2020), we
consider two methods, BM25 and dense passage
retrieval (DPR), for retrieving the support passages

for a given question. For BM25, passages are en-
coded as bag of words (BOW), and inverse docu-
ment frequencies are used as the ranking function.
For DPR, passages and questions are represented
as dense vectors based on two BERT (Devlin et al.,
2019) models. The relevance score is then com-
puted based on the dot production between the
query and passage vectors. In this paper, we adopt
the same implementation as Karpukhin et al. (2020)
for retrieving passages. Specifically, the English
Wikipedia dump from Dec. 20, 2018 is used as the
source documents for retrieval, with the removal of
semi-structured data, such as tables or lists. Each
document is split into disjoint 100-word passages
as the basic retrieval unit. The top-100 passages
are then passed for reading.
Reading We combine the generative reader and the
extractive reader to produce answer candidates over
the retrieved passages. Here, we only give a high-
level description of our approach. More details
regarding our improved extractive and generative
models are presented in §2.1 and §2.2 respectively.

The generative reader is based on a sequence-
to-sequence model pre-trained in a forward-
generation fashion on a large corpus, i.e. T5 (Raffel
et al., 2020). Similar to Izacard and Grave (2021),
the model takes the question and its relevant pas-
sages as input, and then generates the answer string
token by token. Specifically, the concatenation of
all retrieved passages and the corresponding ques-
tion is used as the encoder input. Then, the decoder
performs reasoning over the concatenation of all
evidence through an attention mechanism.

Following state-of-the-art extractive QA mod-
els (Devlin et al., 2019; Karpukhin et al., 2020),
our extractive reader is based on a Transformer
neural network pre-trained with a cloze style self-
supervised objective, i.e. ELECTRA (Clark et al.,
2020). Here, a pair of a given question and a sup-
port passage is jointly encoded into neural text rep-
resentations. These representations are then used
to define scores or probabilities of possible answer
begin and end positions, which are in turn used
to define probabilities over possible answer spans.
Finally, the answer string probabilities are based
on the aggregation over all possible answer spans
from the entire set of support passages.

2.1 UnitedQA-E

In §2.1.2, we give the problem definition of open-
domain QA for extractive reader. Then, we detail
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the improvements of UnitedQA-E in §2.1.2.

2.1.1 Extractive Reader
Given a question q and a set of K retrieved pas-
sages p1, . . . , pK , a text encoder produces con-
textualized representations: hk1, ...h

k
T ∈ Rn for

the question-passage pair (q, pk) in the form of
“[CLS]question [SEP]passage [SEP]”, where
[CLS]and [SEP]are special tokens for encoding
inputs, T is the maximum sequence length of the
input text, and hki indicates the contextualized em-
bedding of the i-th token in (q, pk).

The extractive reader computes the span-begin
score of the i-th token as sb(ik) = wT

b h
k
i using

a weight vector wb ∈ Rd. The span-end score
se(j

k) is defined in the same way. Thus, the prob-
abilities of a start position ik and an end position
jk are Pb(ik) = exp(sb(i

k))
Zb

, Pe(j
k) = exp(se(jk))

Ze
,

where Zb, Ze are normalizing factors defined by
the corresponding probability space. The probabil-
ity of an answer span from ik to jk is defined as
Ps(i

k, jk) = Pb(i
k)Pe(j

k).
Here, we consider two probability spaces, pas-

sage level and multi-passage level, with the only
difference in the computing of Zb, Ze. Specif-
ically, the passage-level probability of each an-
swer begin and end is computed by normalizing
all possible positions in the respective passage, i.e.
Zb = Zkb =

∑
Ik∪NULL exp(sb(i)), Ze = Zke =∑

Ik∪NULL exp(se(j)), where Ik is the set of all
possible positions from the k-th passage and NULL

indicates special positions if pk does not support an-
swering the question. Similarly, the multi-passage
level probability is computed by normalizing over
each answer positions across all K relevant pas-
sages, i.e. Zb = Z∗b =

∑
k

∑
Ik exp(sb(i)), Ze =

Z∗e =
∑

k

∑
Ik exp(se(j)), respectively.

Since there are usually multiple plausible men-
tions for open-domain QA, during training, it is typ-
ical to maximize either the marginal log-likelihood
(MML) of all correct spans (Karpukhin et al., 2020)
or the log-likelihood of the most likely correct
span (HardEM) (Min et al., 2019). During infer-
ence, the prediction is made based on the candi-
date answer string score, obtaining as Pa(y) =∑

(i,j)∈Y Ps(i, j), where Y is the set of spans cor-
responding to the answer string y.

2.1.2 Improvement Method
In addition to better text representations from Clark
et al. (2020), we consider two methods for improv-
ing the training of the extractive reader.

Multi-objective for Weakly-supervised QA The
multi-objective formulation is introduced in Cheng
et al. (2020) for improving weakly supervised
document-level QA. Different from Cheng et al.
(2020) where only MML is considered for the
multi-objective formulation, we found combin-
ing HardEM with MML is more effective for
open-domain QA based on our experiments (§4.1).
Specifically, we combine a multi-passage HardEM
loss withK passage-level MML losses over a batch
of K passages

LEXT = log max
(i,j)

PMs (i, j) +

1

K

∑
k

log
∑

(ik,jk)

PPs (ik, jk), (1)

where PMs , PPs is the multi-passage level and pas-
sage level span probabilities respectively.
Posterior Differential Regularization Due to the
noisy supervision for open-domain QA (Chen et al.,
2017), we investigate the posterior differential reg-
ularization (PDR) (Cheng et al., 2021) to improve
the robustness of the extractive reader. Different
from Cheng et al. (2021) where only clean supervi-
sion setting is considered, in this work, we apply
PDR to the weakly supervised open-domain QA
scenario. Given it is computationally expensive to
enumerate all possible spans, we apply two sepa-
rate regularization terms for the begin and end prob-
abilities at the multi-passage level, respectively,

LPDR = D(Pb(i)|P ′b(i)) +D(Pe(j)|P ′e(j)), (2)

where D(·|·) is the squared Hellinger distance,
and P ′b, P

′
e are the probabilities of start and end

positions with additive input noise to the token
embeddings. Specifically, we sample noise vec-
tors ε1, . . . , εT from N (0, c2I), and add them
to the token embeddings as the noisy input, i.e.
v1 + ε1, . . . ,vT + εT , where c is fixed to 1e−3
throughout our experiments.

Based on this, the overall training objective for
the extractive reader is

L1 = LEXT + γLPDR, (3)

where γ is a regularization scalar hyperparameter.

2.2 UnitedQA-G
Here, we first formally define the setup of genera-
tive reader for open-domain QA in § 2.2.1 and then
present our improvements in § 2.2.2.
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2.2.1 Generative Reader
Given a question q and a set of K retrieved pas-
sages p1, . . . , pK , the encoder model encodes each
(q, pk) pair independently, and produces contextu-
alized representation for each token: hki ∈ Rd for
the i-th token of the k-th pair. The decoder then
performs attention over the concatenation of the
representations of all the retrieved passages, and
generates the answer string.

Let x denote the input of the question and all re-
trieved passages x =

(
(q, p1), ..., (q, pK)

)
, and y

the answer string with its tokens as (y1, ..., yN ).
The generative reader is trained to maximize a
sequence-to-sequence objective for a given (x,y),

L(x,y; θ) =
N∑
i

logPθ(yi|x, y1:i−1), (4)

where θ is the model parameter. During inference,
a greedy decoding is used to produce the answer.

2.2.2 Improvement Method
Decoder Attention Bias The decoder in the T5
transformer model adopts a cross-attention mecha-
nism to compute attention scores between the de-
coding answer tokens and all the retrieved passage
tokens. Specifically, let yi ∈ Rd be the query
vector of the i-th decoding token1, and mk

j ∈ Rd
be the key vector of the j-th token in ((q), pk).
The multi-head cross-attention scores in T5 (Raffel
et al., 2020) ski,j is calculated as

ski,j = MultiHeadAtt(yi,mk
j ) ∈ R|Head| (5)

where |Head| is the number of attention heads.
However, it doesn’t capture the relevance informa-
tion of retrieved passages into the reader in (5). To
add the relevance feature into the attention block,
we revise (5) by incorporating the attention bias

ski,j = MultiHeadAtt(yi,mk
j ) + bk, (6)

where bk ∈ R|Head| is a trainable attention bias
vector for all the tokens in the k-th retrieved pas-
sage. In the experiments, the maximum retrieved
passages is by default set to 100. Thus, the decoder
attention bias introduces additional 100 ∗ |Head|
parameters for each layer.
Adversarial Training Adversarial training creates
adversarial examples by adding small perturba-
tions to the embedding layer. Assuming the word(-
piece) embedding layer is parameterized by a ma-
trix V ∈ R|V |×d, |V | is the vocabulary size, and d

1we omit the layer notation for simplification

Dataset Train Dev Test

NQ 79168 8757 3610
TriviaQA 78785 8837 11313
EffcientQA - 1800 -

Table 1: Number of questions in each QA dataset.

is the embed-dimension. The adversarial embed-
ding matrix V̂ can be obtained by

gV = −∇VL(x,y; θ), (7)

V̂ = V + SG(εgV/||gV||2), (8)

where SG(·) is the stop-gradient operation. We use
the adversarial embedding matrix V̂ to replace the
original V in model parameters θ, and obtain θ̂.
Thus the adversarial loss can be calculated as

LAT(x,y; θ) = L(x,y; θ̂). (9)

Therefore, the overall training objective of the
generative reader is

L2 = αL(x,y; θ) + βLAT(x,y; θ), (10)

where α = 0.5, β = 0.5 in all of the exepriments.

2.3 UnitedQA System
The UnitedQA system combines outputs from both
extractive and generative models for a given ques-
tion during inference. Since the output spaces of
extractive and generative models are different, we
use a simple linear interpolation based on best pre-
dictions from each model2. Denote the predicted
strings from M extractive and N generative mod-
els as yE1 , ..., y

E
M and yG1 , ..., y

G
N , respectively. The

hybrid prediction y∗ is obtained by

argmax
y∈Y

τ
M∑
m=1

1(y, yEm) + δ
N∑
n=1

1(y, yGn ), (11)

where Y is the set of all predicted strings, 1(y, y′)
is an indicator function and τ = 0.6, δ = 0.4.

3 Experiments

3.1 Experiment Setup
We use two representative QA datasets and adopt
the same training/dev/testing splits as in previous

2We have also tried a few more complex approaches for
combining the extractive and generative models. For example,
we first train an extractive model, and then append the top-k
answer strings from the extractive model at the end of the
input for training a generative model. None of them is as good
as the simple ensemble approach.



3084

Model Reader Type Reader Size (M) NQ TriviaQA

REALM(Guu et al., 2020) Extractive 110 40.4 N/A
RAG(Lewis et al., 2020) Generative 400 44.5 56.1

DPR(Karpukhin et al., 2020) Extractive 110 41.5 57.9
T5-FIDbase(Izacard and Grave, 2021) Generative 220 48.2 65.0
T5-FIDlarge(Izacard and Grave, 2021) Generative 770 51.4 67.6

UnitedQA-Ebase (Ours) Extractive 110 47.7 66.3
UnitedQA-Elarge (Ours) Extractive 330 51.8 68.9
UnitedQA-Glarge(Ours) Generative 770 52.3 68.6

UnitedQA-Elarge++ (Ours) Ensemble 3x330 52.4 69.6
UnitedQA-Glarge++ (Ours) Ensemble 3x770 53.3 69.2
UnitedQA (Ours) Hybrid 2x770+330 54.7 70.5

Table 2: Comparison to state-of-the-art models on the test sets of NaturualQuestions (NQ) and TriviaQA. Exact
match score is used for evaluation. The overall best model is in Box , the best single model is in bold, and the
best model with the smallest reader size is in underline.

work (Lee et al., 2019; Karpukhin et al., 2020).
Both datasets (see Table 1 for statistics) have been
heavily studied in recent work (Lee et al., 2019;
Min et al., 2019; Karpukhin et al., 2020; Guu et al.,
2020). We follow the standard evaluation protocol
and use exact match (EM) as the evaluation metric.

NaturalQuestions (Kwiatkowski et al., 2019) is
composed of questions by real users to Google
Search, each with answers identified by human an-
notators in Wikipedia. The open-domain version
of NaturalQuestions (Lee et al., 2019) only con-
sider questions with short answers, i.e. answers
with less than 5 tokens. In the NaturualQuestions,
the questions are considered to be more informa-
tion seeking given that the question askers didn’t
know the answer beforehand. In addition, we use
another evaluation set, i.e. the dev set introduced
recently by the EfficientQA competition (Min et al.,
2021), which is constructed in the same way as the
original NaturalQuestions dataset.

TriviaQA (Joshi et al., 2017) contains trivia
question-answer pairs that were scraped from the
web. Different from NaturalQuestions, the ques-
tions here are written with known answers in mind.
Specifically, the unfiltered set has been used for
developing open-domain QA models.

Implementation details For a fair comparison, we
use the same retrieval module as Karpukhin et al.
(2020) for NaturalQuestions and TriviaQA to mit-
igate the impact of retrieval difference. Specifi-
cally, we use DPR (single) for NaturalQuestions
and BM25+DPR (multi) for TriviaQA because of

their best end-to-end performance (Karpukhin et
al. 2020). For all the experiments, we use 8 and
16 V100-32GB for base and large model training
respectively. We train our models with Adam op-
timizer of a linear scheduler with a warmup raito
of 0.1. The extractive models are trained for up
to 8 epochs with a learning rate of 2e−5 and a
batch passage size per question of 16. The genera-
tive models are trained for up to 10 epochs with a
learning rate of 1e−4, a batch size of 64, and 100
retrieved passages per question for model training.
We select γ in {4, 8}. After the best configuration
is selected based on the dev set, we run our best
models 3 times independently with different ran-
dom seeds and report the median performance on
the test set. We also report ensemble results which
are based on the linear interpolation over answer
predictions from the 3 models.

3.2 Main results

Single Model Results: We first compare our mod-
els to two recent models, REALM (Guu et al.,
2020) and RAG (Lewis et al., 2020), which are
first pre-trained with different retrieval augmented
objectives and then fine-tuned for open-domain
QA. In addition, we include as baselines DPR
(Karpukhin et al., 2020) and T5-FID (Izacard and
Grave, 2021), both of which are based on the same
retriever as ours. As shown in Table 2, both our
extractive and generative models achieve new state-
of-the-art results for both studied datasets. Com-
pared with the recent state-of-the-art extractive
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model (DPR), our base model leads to pronounced
15% relative improvements for both NaturalQues-
tions (+6.2 absolute improvement) and TriviaQA
(+8.4 absolute improvement). More importantly,
UnitedQA-Ebase achieves comparable or even bet-
ter performance with regard to generative models
of larger size, i.e. RAG and T5-FIDbase. It high-
lights the importance of proper training strategies
for open-domain QA models.

Hybrid Model Results: In order to evaluate the
advantage of the hybrid of the extractive and gen-
erative models (UnitedQA), we include two ho-
mogeneous ensemble baselines, one consisting of
only extractive readers (UnitedQA-E++) and the
other ensemble of exclusively generative models
(UnitedQA-G++). For homogeneous ensemble
cases, the three-way majority prediction is used.
For the hybrid of extractive and generative read-
ers, we select a three-model combination from the
set of three generative and three extractive models
based on the dev set. We observed that combining
predictions from two generative models and one ex-
tractive model results in the best hybrid model for
both datasets. As expected, all ensemble models
show an improvement over their single model coun-
terparts. However, the two homogeneous ensem-
ble baselines, UnitedQA-E++ and UnitedQA-G++,
only provide marginal gains over the corresponding
best single models. The significant improvement
brought by our proposed hybrid approach indicates
the benefit of combining extractive and generative
readers for open-domain QA.

Discussion: Although the proposed hybrid ap-
proach has been shown to be highly effective for
open-domain QA, we point out that the improved
performance comes with increased computational
cost. The best combination requires approximately
three times the computational cost of a single gen-
erative model. Therefore, it would be interesting
to explore more efficient hybrid methods, such as
effective parameter sharing strategies or unified for-
mulations. Another interesting future direction is
to explore customized compression approaches for
reducing the model size of retriever and reader sep-
arately or jointly through pruning (Han et al., 2016),
quantization (Hubara et al., 2018), and knowledge
distillation (Hinton et al., 2015). Specifically, given
that the hybrid model is more effective, it is likely
that a student model can learn more effectively
from a hybrid teacher model via knowledge distil-
lation for open-domain QA.

Model NQ TriviaQA

(Cheng et al., 2020) +PDR 43.3 60.1
BERTbase 44.2 62.2

-Multi-obj 43.5 61.3
-PDR 41.8 60.2
-Multi-obj & PDR 40.6 58.5

UnitedQA-Ebase 46.0 65.4
-Multi-obj 45.2 64.3
-PDR 43.1 63.8
-Multi-obj & PDR 42.5 61.2

Table 3: Ablation experiments of the extractive model
on the dev sets of NaturalQuestions (NQ) and Trivi-
aQA. Exact match score is reported. The top and bot-
tom models are built on BERTbase and ELECTRAbase,
respectively.

4 Analysis

In this section, we first carry out ablation study
on the extractive and generative model improve-
ments. Moreover, we aim to take a deeper look and
understand the difference between the two models.

4.1 Ablation Study

In Table 3, we present ablation experiments on the
effectiveness of different textual representations
and methods for improving the extractive model
UnitedQA-Ebase. Here, we focus on base models,
i.e. BERTbase and ELECTRAbase. Note that the
row UnitedQA-Ebase is the corresponding base
model reported in Table 2. Compared with the
MML-based multi-objective (Cheng et al., 2020),
we find that a new multi-objective with HardEM
at the multi-passage level and MML at the passage
level is more effective for open-domain QA. In ad-
dition to the multi-objective training, there is a no-
ticeable improvement brought by the regularization
method (PDR) which indicates the importance of
proper regularization for learning with noisy super-
vision. Last but not least, the large improvement of
ELECTRA over BERT indicates the importance of
deriving better text representations for weakly su-
pervised NLP problems. For the UnitedQA-G, we
present the ablation study on analyzing the effec-
tiveness of decoder attention bias component and
adversarial training mechanism in Table 4. Both
techniques contribute to decent improvements over
T5-FID with more pronounced gains brought by
adversarial training.
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Model NQ TriviaQA

T5-FIDlarge 51.4 67.6
UnitiedQA-Glarge 52.3 68.6

-Adv Training 52.0 68.2
-Attention Bias 51.8 68.1

Table 4: Ablation experiments of the generative model
on the test sets of NaturalQuestions (NQ) and Trivi-
aQA. Exact match score is reported.

Top-20 Top-100 ∆

NQ
Retrieval 78.4 85.4 +9%
United-E 49.8 51.8 +4%
United-G 49.3 52.3 +6%

TriviaQA
Retrieval 79.9 84.4 +6%
United-E 67.1 68.9 +3%
United-G 65.4 68.6 +5%

Table 5: Retieval top-k accuracy and end-to-end QA
extact match scores on the test sets of NaturalQuestions
(NQ) and TriviaQA. United-E and United-G stand for
our extractive and generative models respectively.

4.2 Impact of Retrieval Accuracy

Here, we vary the number of retrieved passages
during inference and report the evaluation results
in terms of end-to-end QA exact match score of
UnitedQA-E and UnitedQA-G along with the cor-
responding top-k retrieval accuracy. The results
are summarized in Table 5. As expected, when
the number of retrieved passages increases, both
top-k retrieval accuracy and the end-to-end QA per-
formance improve. However, there is a noticeable
gap between the improvement of retrieving more
passages (i.e., recall) and that of the correspond-
ing end-to-end QA performance, especially for the
extractive reader. This is likely caused by addi-
tional noise introduced with improved retrieval re-
call. Specifically, only half of the retriever improve-
ment can be effectively utilized by the extractive
model while the generative model can benefit more
from retrieving more passages. This suggests that
by concatenating all passages in vector space, the
generative model are more effective in de-noising
in comparison to the extractive model.

4.3 Breakdown Evaluation

Following Lewis et al. (2021), we carry out a break-
down evaluation of model performance over the
NaturalQuestions and TriviaQA test sets. Given

their superior performance, we again only con-
sider our improved extractive and generative mod-
els, i.e. UnitedQA-Elarge and UnitedQA-G respec-
tively. The evaluation is summarized in Table 6. In
comparison to their corresponding overall perfor-
mance, both the extractive and generative models
achieve much better performance on the “Overlap”
categories (i.e. “Question Overlap” and “Answer
Overlap”) for both NaturalQuestions and TrivaQA,
which indicates that both models perform well
for question and answer memorization. Different
from question and answer memorization, there is
a pronounced performance drop for both models
on the“Answer Overlap Only” category where cer-
tain amount of relevance inference capability is
required to succeed. Lastly, we see that both extrac-
tive and generative models suffer some significant
performance degradation for the “No Overlap” col-
umn which highlights model’s generalization eval-
uation. Nevertheless, the extractive model demon-
strate a better QA generalization by achieving a
better overall performance on the “No Overlap”
category for both datasets.

4.4 Error Analysis

Here, we conduct analyses into prediction errors
made by the extractive and generative models based
on automatic evaluation. For this study, we use the
EfficientQA dev set (Min et al., 2021) which is
constructed in the same way as the original Natu-
ralQuestions dataset. Specifically, we group pre-
diction errors into three categorizes: 1) common
prediction errors made by both the extractive and
generative models, 2) prediction errors made by
the extractive model, 3) prediction errors produced
by the generative model. In the following, we first
carry out a manual inspection into the common er-
rors. Then, we compare the prediction errors made
by extractive and generative models, respectively.

First of all, there is an error rate of 29% of those
consensus predictions made by both extractive and
generative models according to the automatic eval-
uation. Based on 30 randomly selected examples,
we find that around 30% of those predictions are
actually valid answers as shown in the top part of
Table 7. In addition to predictions that are answers
at different granularity or semantically equivalent
ones, some of those prediction errors are likely
caused by the ambiguity in questions. As the given
example in Table 7, based on the specificity, the
model prediction is also a valid answer. This high-
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Dataset Model Total
Question
Overlap

No
Question
Overlap

Answer
Overlap

Answer
Overlap

Only

No
Overlap

NQ
UnitedQA-G 52.3 72.2 40.5 62.7 45.4 34.0
UnitedQA-E 51.8 69.4 41.5 60.1 45.1 37.6

TriviaQA
UnitedQA-G 68.6 88.4 62.5 78.1 69.6 44.5
UnitedQA-E 68.9 89.3 62.7 78.6 70.6 44.3

Table 6: Breakdown evaluation on NaturalQuestions (NQ) and TriviaQA based on test splits defined in (Lewis
et al., 2021). Exact match scores are reported. UnitedQA-E and UnitedQA-G denote our extractive and generative
models respectively.

Valid Answers

Different granularity
Q: When was harry potter and the deathly hallows part 2 movie released
Prediction: 2011 / Gold: 15 July 2011

Semantically equivalent
Q: minimum age limit for chief justic of india
Prediction: 65 / Gold: 65 years

Ambiguity question
Q: who won her first tennis grand slam in 2018
Prediction: Carolin Wozniacki / Gold: Simona Halep

Wrong Answers

Part as whole error
Q: the official U.S. poverty line is based on the cost of what
Prediction: food / Gold: ICP purchasing power

Entity confusion
Q: actor who played tommy in terms of endearment
Prediction: Jeff Daniels / Gold: Troy Bishop

Event confusion
Q: when did the saskatchewan roughriders last won the grey cup
Prediction: 2007 / Gold: 2013

Table 7: Examples of prediction errors as judged by the automatic evaluation.

lights the limitation of the current evaluation met-
ric, which does not accurately estimate the existing
open-domain QA system capabilities. As shown in
the bottom part of Table 7, most of representative
errors are due to the confusion of related concepts,
entities or events that are mentioned frequently to-
gether with the corresponding gold answers.

Next, all questions from the dev set are catego-
rized based the WH question word, i.e. what, which,
when, who, how, where. We then report the relative
performance change of each WH category for both
extractive and generative models over their corre-
sponding overall prediction accuracy in Figure 2.
First, it is easy to see that both extractive and gen-
erative models achieve the best performance for
entity related who questions, which is likely to be
the result of high ratio of samples of this type seen
during training. In contrast, the answers to what
questions can play a much richer syntactic role in
context, making it more difficult for both extractive

and generative models to perform well. Interest-
ingly, the generative model exhibits the strength for
temporal reasoning, whereas the extractive model
does not. This difference suggests that it is worth
exploring better temporal modeling strategies to
improve the extractive model in the future.

5 Related Work

Open-domain QA Open-domain QA requires a
system to answer questions based on evidence
retrieved from a large corpus such as Wikipedia
(Voorhees, 2000; Chen et al., 2017). Recent
progress has been made towards improving evi-
dence retrieval through both sparse vector models
like TF-IDF or BM25 (Chen et al., 2017; Min et al.,
2019), and dense vector models based on BERT
(Lee et al., 2019; Karpukhin et al., 2020; Guu et al.,
2020; Qu et al., 2021). Generally, the dense repre-
sentations complement the sparse vector methods
for passage retrieval as they can potentially give
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Figure 2: Relative accuracy of different WH questions.
The relative accuracy is the relative change of a WH
category accuracy to the overall model accuracy.

high similarity to semantically related text pairs,
even without exact lexical overlap. Unlike most
work focusing on a pipeline model, Lee et al. (2019)
propose a pre-training objective for jointly training
both the retrieval encoder and reader. It is fur-
ther extended by Guu et al. (2020) with a dynamic
update of the passage index during the training. In-
stead, in this work, we focus on a hybrid reader
approach for open-domain QA. By simply comb-
ing answer predictions from extractive and gener-
ative models, our UnitedQA achieves significant
improvements over state-of-the-art models.
Reading Comprehension with Noisy Labels
There has been a line of work on improving
distantly-supervised reading comprehension mod-
els by developing learning methods and model ar-
chitectures that can better use noisy labels. Most
of them focus on the document-level QA, where
all paragraphs share the same document context.
Clark and Gardner (2018) propose a paragraph-
pair ranking objective for learning with multiple
paragraphs so that the model can distinguish rele-
vant paragraphs from irrelevant ones. In (Lin et al.,
2018), a coarse-to-fine model is proposed to han-
dle label noise by aggregating information from
relevant paragraphs and then extracting answers
from selected ones. Min et al. (2019) propose a
hard EM learning scheme where only passage-level
loss is considered for document-level QA. More re-
cently, different probabilistic assumptions with cor-
responding training and inference methods are ex-
amined in (Cheng et al., 2020) again for document-
level QA with distant supervision. In our work,
we further extend the multi-objective formulation
proposed in (Cheng et al., 2020) with the hard EM
learning (Min et al., 2019) for enhancing extrac-

tive open-domain QA, where the input passages are
given by a retrieval model and are typically from
different documents.

6 Conclusion

In this study, we propose a hybrid model for open-
domain QA, called UnitedQA, which combines
the strengths of extractive and generative readers.
We demonstrate the effectiveness of UnitedQA on
two popular open-domain QA benchmarks, Natu-
ralQuestions and TriviaQA. Our results show that
the proposed UnitedQA model significantly outper-
forms single extractive and generative models as
well as their corresponding homogeneous ensem-
bles, and sets new state-of-the-art on both bench-
marks. We also perform a comprehensive empirical
study to investigate the relative contributions of dif-
ferent components of our model and the techniques
we use to improve the readers.

For future work, it would be interesting to ex-
plore model compression approaches for reducing
the model size of retriever and reader separately or
jointly through pruning, quantization, and knowl-
edge distillation.
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