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Abstract

Chinese spelling correction (CSC) is a task
to detect and correct spelling errors in texts.
CSC is essentially a linguistic problem, thus
the ability of language understanding is cru-
cial to this task. In this paper, we propose
a Pre-trained masked Language mOdel with
Misspelled knowledgE (PLOME) for CSC,
which jointly learns how to understand lan-
guage and correct spelling errors. To this end,
PLOME masks the chosen tokens with sim-
ilar characters according to a confusion set
rather than the fixed token “[MASK]” as in
BERT. Besides character prediction, PLOME
also introduces pronunciation prediction to
learn the misspelled knowledge on phonic
level. Moreover, phonological and visual sim-
ilarity knowledge is important to this task.
PLOME utilizes GRU networks to model such
knowledge based on characters’ phonics and
strokes. Experiments are conducted on widely
used benchmarks. Our method achieves su-
perior performance against state-of-the-art ap-
proaches by a remarkable margin. We release
the source code and pre-trained model for fur-
ther use by the community1.

1 Introduction

Chinese spelling correction (CSC) aims to detect
and correct spelling errors in texts (Yu and Li,
2014). It is a challenging yet important task in
natural language processing, which plays an im-
portant role in various NLP applications such as
search engine (Martins and Silva, 2004) and opti-
cal character recognition (Afli et al., 2016). In Chi-
nese, spelling errors can be mainly divided into two
types: phonological errors and visual errors, which
are separately caused by the misuse of phonologi-
cally similar characters and visually similar char-
acters. According to Liu et al. (2010), about 83%

1https://github.com/liushulinle/PLOME

Figure 1: Examples of Chinese spelling errors. Mis-
spelling characters are marked in red, and the corre-
sponding phonics are given in brackets.

of errors are phonological and 48% are visual. Fig-
ure 1 illustrates examples of such errors. The first
case is caused by the misuse of “没(gone)” and
“美(beautiful)” with the same phonics, and the sec-
ond case is caused by the misuse of “人(human)”
and “入(enter)” with very similar shape.

Chinese spelling correction is a challenging task
because it requires human-level language under-
standing ability to completely solve this problem
(Zhang et al., 2020). Therefore, language model
plays an important role in CSC. In fact, one of
the mainstream solutions to this task is based on
language models (Chen et al., 2013; Yu and Li,
2014; Tseng et al., 2015). Currently, the latest ap-
proaches (Zhang et al., 2020; Cheng et al., 2020)
are based on BERT (Devlin et al., 2019), which
is a masked language model. In these approaches,
(masked) language models are independently pre-
trained from the CSC task. As a consequence, they
did not learn any task-specific knowledge during
pre-training. Therefore, language models in these
approaches are sub-optimal for CSC.

Chinese spelling errors are mainly caused by
the misuse of phonologically or visually similar
characters. Thus, knowledge of the similarity be-
tween characters is crucial to this task. Some work
leveraged the confusion set, i.e. a set of similar
characters, to fuse such information (Wang et al.,
2018, 2019; Zhang et al., 2020). However, confu-

https://github.com/liushulinle/PLOME
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sion set is usually generated by heuristic rules or
manual annotations, thus its coverage is limited. To
circumvent this problem, Hong et al. (2019) com-
puted the similarity based on character’s strokes
and phonics. The similarity was measured via rules
rather than learned by the model, therefore such
knowledge was not fully utilized.

In this paper, we propose PLOME, a Pre-trained
masked Language mOdel with Misspelled knowl-
edgE, for Chinese spelling correction. The fol-
lowing characteristics make PLOME more effec-
tive than vanilla BERT for CSC. First, we pro-
pose the confusion set based masking strategy,
where each chosen token is randomly replaced by
a similar character according to a confusion set
rather than the fixed token “[MASK]” as in BERT.
Thus, PLOME jointly learns the semantics and mis-
spelled knowledge during pre-training. Second, the
proposed model takes each character’s strokes and
phonics as input, which enables PLOME to model
the similarity between arbitrary characters. Third,
PLOME learns the misspelled knowledge on both
character and phonic level by jointly recovering the
true character and phonics for masked tokens.

We conduct experiments on the widely used
benchmark dataset SIGHAN (Wu et al., 2013; Yu
et al., 2014; Tseng et al., 2015). Experimental re-
sults show that PLOME significantly outperforms
all the compared approaches, including the latest
Soft-masked BERT (Zhang et al., 2020) and Spell-
GCN (Cheng et al., 2020).

We summarize our contributions as follows: (1)
PLOME is the first task-specific language model
designed for Chinese spelling correction. The pro-
posed confusion set based masking strategy enables
our model to jointly learn the semantics and mis-
spelled knowledge during pre-training. (2) PLOME
incorporates phonics and strokes, which enables it
to model the similarity between arbitrary charac-
ters. (3) PLOME is the first to model this task on
both character and phonic level.

2 Related Work

Chinese spelling correction is a challenging task
in natural language processing, which plays im-
portant roles in many applications, such as search
engine (Martins and Silva, 2004; Gao et al., 2010),
automatic essay scoring (Burstein and Chodorow,
1999; Lonsdale and Strong-Krause, 2003), and op-
tical character recognition (Afli et al., 2016; Wang
et al., 2018). It has been an active topic, and vari-

ous approaches have been proposed in recent years
(Yu and Li, 2014; Wang et al., 2018, 2019; Zhang
et al., 2020; Cheng et al., 2020).

Early work on CSC followed the pipeline of
error identification, candidate generation and selec-
tion. Some researchers focused on unsupervised
approaches, which typically adopted a confusion
set to find correct candidates and employed lan-
guage model to select the correct one (Chang, 1995;
Huang et al., 2000; Chen et al., 2013; Yu and Li,
2014; Tseng et al., 2015). However, these meth-
ods failed to condition the correction on the input
sentence. In order to model the input context, dis-
criminative sequence tagging methods (Wang et al.,
2018) and sequence-to-sequence generative models
(Chollampatt et al., 2016; Ji et al., 2017; Ge et al.,
2018; Wang et al., 2019) were employed.

BERT (Devlin et al., 2019) is a bidirectional
language model based on Transformer encoder
(Vaswani et al., 2017). It has been demonstrated
effective in a wide range of applications, such as
question answering (Yang et al., 2019), information
extraction (Lin et al., 2019), and semantic match-
ing (Reimers and Gurevych, 2019). Recently, it
has dominated the researches on CSC (Hong et al.,
2019; Zhang et al., 2020; Cheng et al., 2020). Hong
et al. (2019) adopted the DAE-Decoder paradigm
with BERT as encoder. Zhang et al. (2020) intro-
duced a detection network to generate the mask-
ing vector for the BERT-based correction network.
Cheng et al. (2020) employed the graph convo-
lution network (GCN) (Kipf and Welling, 2016)
combined with BERT to model character inter-
dependence. However, BERT is designed and pre-
trained independently from the CSC task, thus it
is sub-optimal. To improve the performance, we
propose a task-specific language model for CSC.

3 Approach

We introduce PLOME and its detailed implementa-
tion in this section. Figure 2 illustrates the frame-
work of PLOME. Similar to BERT (Devlin et al.,
2019), the proposed model also follows the pre-
training&fine-tuning paradigm. In the following
subsections, we first introduce the confusion set
based masking strategy, then present the architec-
ture of PLOME and the learning objectives, finally
show the details of fine-tuning.
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Figure 2: The framework of the proposed PLOME, where the masked token is marked in red. Left: This compo-
nent illustrates the overall architecture of the proposed model. Input characters are processed by the transformer
encoder to obtain semantic representation vectors. Right: This component collects different types of embeddings
for each character to obtain the final embedding for the transformer encoder.

3.1 Confusion Set based Masking Strategy

In order to train PLOME, we randomly mask some
percentage of the input tokens and then recover
them. Devlin et al. (2019) replaced the chosen to-
kens by a fixed token “[MASK]”, which is nonex-
istent in downstream tasks. On the contrast, we
remove this token and replace each chosen token
by a random character that is similar to it. Similar
characters are obtained from a publicly available
confusion set (Wu et al., 2013), which contains two
types of similar characters: phonologically similar
and visually similar. Since phonological errors are
two times more frequent than visual errors (Liu
et al., 2010), these two types of similar characters
are assigned different chance to be chosen during
masking. Following Devlin et al. (2019), we totally
mask 15% of tokens in the corpus. In addition, we
use dynamic masking strategy (Liu et al., 2019),
where the masking pattern is generated every time
a sequence is fed into the model.

Always replacing chosen tokens by characters
in a confusion set will cause two problems. (1).
The model tends to make correction decision for
all inputs since all the tokens to be predicted dur-
ing pre-training are “misspelled”. To circumvent
this problem, some percentage of the selected to-
kens are unchanged. (2). The size of confusion
set is limited, however misspelling may be caused
by the misuse of an arbitrary pair of characters in
real texts. To improve generalization ability, we
replace some percentage of chosen tokens by ran-
dom characters from the vocabulary. To sum up, if

Sentence
Original Sentence 他想明天去(qu)南京探望奶奶。

BERT Masking 他想明天[MASK]南京看奶奶。

Phonic Masking 他想明天曲(qu)南京看奶奶。

Shape Masking 他想明天丢(diu)南京看奶奶。

Random Masking 他想明天浩(hao)南京看奶奶。

Unchanging 他想明天去(qu)南京看奶奶。

Table 1: Examples of different masking strategies. The
chosen token is marked in red, and the corresponding
phonics is given in brackets.

the i-th token is chosen, we replace it with (i) a ran-
dom phonologically similar character 60% of the
time (ii) a random visually similar character 15%
of the time (iii) the unchanged i-th token 15% of
the time (iv) a random token in the vocabulary 10%
of the time. Table 1 presents examples of different
masking strategies.

3.2 Embedding Layer

As shown in Figure 2, the final embedding of each
character is the sum of character embedding, posi-
tion embedding, phonic embedding and shape em-
bedding. The former two are obtained via looking
up embedding tables, where the size of vocabulary
and embedding dimension are the same as that in
BERTbase (Devlin et al., 2019).

Phonic Embedding In Chinese, phonics (also
known as Pinyin) represents the pronunciation of a
character, which is a sequence of lowercase letters
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Figure 3: Illustration of phonic GRU network and
shape GRU network.

with a diacritic2. In this paper, we use the Unihan
Database3 to obtain the character-phonics mapping
(diacritic is removed). To model the phonological
relationship between characters, we feed the letters
of each character’s phonics to a 1-layer GRU (Bah-
danau et al., 2014) network to generate the phonic
embedding, where similar phonics are expected to
have similar embeddings. An example is given in
the middle part in Figure 3.

Shape Embedding We use the Stroke Order4

to represent the shape of a character, which is a
sequence of strokes indicating the order in which
the strokes of a Chinese character are written. A
stroke is a movement of a writing instrument on
a writing surface. In this paper, stroke data is ob-
tained via Chaizi Database5. In order to model the
visual relationship between characters, the Stroke
order of each character is fed into another 1-layer
GRU network to generate the shape embedding.
An example is given in the bottom part in Figure 3.

3.3 Transformer Encoder

The transformer encoder has the same architecture
as that in BERTbase (Devlin et al., 2019). The num-
ber of transformer layers (Vaswani et al., 2017) is
12, the size of hidden units is 768 and the number
of attention head is 12. For more detailed configu-
rations please refer to Devlin et al. (2019).

3.4 Output Layer

As illustrated in Figure 2, our model makes two
predictions for each chosen character.

Character Prediction Similar to BERT,
PLOME predicts the original character for each

2https://en.wikipedia.org/wiki/Pinyin
3http://www.unicode.org/charts/unihan.html
4https://en.wikipedia.org/wiki/Stroke order
5https://github.com/kfcd/chaizi

masked token based on the embedding generated
by the last transformer layer. The probability of
the character predicted for the i-th token in a given
sentence is defined as:

pc(yi = j|X) = softmax(Wchi + bc)[j] (1)

where pc(yi = j|X) is the conditional probabil-
ity that the true character of the i-th token xi is
predicted as the j-th character in vocabulary, hi

denotes the embedding output from the last trans-
former layer for xi, Wc ∈ Rnc×768 and bc ∈ Rnc

are parameters for character prediction, nc is the
size of the vocabulary.

Pronunciation Prediction Chinese totally has
about 430 different pronunciations (represented by
phonics) but has more than 2,500 common used
characters. Thus, many characters share the same
pronunciation. Moreover, some pronunciations are
so similar that it is easy to be misused, such as
“jing” and “jin”. Therefore, phonological error dom-
inates Chinese spelling errors. In practice, about
80% of spelling errors are phonological (Zhang
et al., 2020). In order to learn the misspelled knowl-
edge on phonic level, PLOME also predicts the
true pronunciation for each masked token, where
pronunciation is presented by phonics without dia-
critic. The probability of pronunciation prediction
is defined as:

pp(gi = k|X) = softmax(Wphi + bp)[k] (2)

where pp(gi = k|X) is the conditional probability
that the correct pronunciation of the masked charac-
ter xi is predicted as the k-th phonics in the phonic
vocabulary, hi denotes the embedding output from
the last transformer layer for xi, Wc ∈ Rnp×768

and bp ∈ Rnp are parameters for pronunciation
prediction, np is the size of the phonic vocabulary.

3.5 Learning
The learning process is driven by optimizing two
objectives, corresponding to character prediction
and pronunciation prediction, respectively.

Lc = −
n∑

i=1

log pc(yi = li|X) (3)

Lp = −
n∑

i=1

log pp(gi = ri|X) (4)

where Lc is the objective for character prediction,
li is the true character for xi, Lp is the objective for

https://en.wikipedia.org/wiki/Pinyin
http://www.unicode.org/charts/unihan.html
https://en.wikipedia.org/wiki/Stroke_order
https://github.com/kfcd/chaizi
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pronunciation prediction, ri is the true pronuncia-
tion. The overall objective is defined as:

L = Lc + Lp (5)

3.6 Fine-tuning Procedure

Above subsections present the details of the pre-
training procedure. In this subsection, we introduce
the fine-tuning procedure. PLOME is designed for
the CSC task, which aims to detect and correct
spelling errors in Chinese texts. Formally, given
a character sequence X = {x1, x2, ..., xn} con-
sisting of n characters, the model is expected to
generate a target sequence Y = {y1, y2, ..., yn},
where errors are corrected.

Training The learning objective is exactly the
same as that in the pre-training procedure(see Sec-
tion 3.5). This procedure is similar to pre-training
except that: (1). the masking operation introduced
in Section 3.1 is eliminated. (2). all input charac-
ters require to be predicted rather than only chosen
tokens as in pre-training.

Inference As illustrated in Section 3.4, PLOME
predicts both the character distribution and pronun-
ciation distribution for each masked token. We
define the joint distribution as:

pj(yi = j|X) = pc(yi = j|X)× pp(gi = jp|X)
(6)

where pj(yi = j|X) is the probability that the orig-
inal character of xi is predicted as the j-th character
jointly considering the character and pronunciation
predictions, pc and pp are separately defined in
Equation 1 and Equation 2, jp is the pronunciation
of the j-th character. To this end, we construct an
indicator matrix I ∈ Rnc×np , where Ii,j is set to
1 if the pronunciation of the i-th character is the
j-th phonics, otherwise set to 0. Then the joint
distribution can be computed by:

pj(yi|X) = [pp(gi|X) · IT]� pc(yi|X) (7)

where � is the element-wise production.
We use the joint probability as the predicted dis-

tribution. For each input token, the character with
the highest joint probability is selected as the final
output: ŷi =argmax pj(yi|X). The joint distribu-
tion simultaneously takes the character and pronun-
ciation predictions into consideration, thus is more
accurate. We will verify it in Section 4.5.

4 Experiments

In this section, we present the details for pre-
training PLOME and the fine-tuning results on the
most widely used benchmark dataset.

4.1 Pre-training

Dataset We use wiki2019zh6 as the pre-training
corpus, which consists of one million Chinese
Wikipedia7 pages. Moreover, we also collect
three million news articles from a Chinese news
platform. We split those pages and articles
into sentences and totally obtain 162.1 million
sentences. Then we concatenate consecutive
sentences to obtain text fragments with at most 510
characters, which are used as the training instances.

Parameter Settings We denote the dimen-
sion of character embeddings, letter (in phonics)
embeddings and stroke embeddings as dc, dl, ds, re-
spectively, the dimension of hidden states in phonic
and shape GRU networks as hp, and hs. Then we
have dc = 768, dl = ds = 32, hp = hs = 768.
The configuration of transformer encoder is
exactly the same as that in BERTbase (Devlin et al.,
2019), and the learning rate is set to 5e-5. These
parameters are set based on experience because of
the large cost of pre-training. Better performance
could be achieved if parameter tuning technique
(e.g. grid search) is employed. Moreover, instead
of training PLOME from scratch, we adopt the
parameters of Chinese BERT released by Google8

to initialize the Transformer blocks.

4.2 Fine-tuning

Training Data Following Cheng et al. (2020),
the training data is composed of 10K manually
annotated samples from SIGHAN (Wu et al., 2013;
Yu et al., 2014; Tseng et al., 2015) and 271K
automatically generated samples from Wang et al.
(2018).

Evaluation Data We use the latest SIGHAN test
dataset (Tseng et al., 2015) as in Zhang et al.
(2020) to evaluate the proposed model, which
contains 1100 texts and 461 types of errors.

Evaluation Metrics Following previous work
(Cheng et al., 2020; Zhang et al., 2020), we use the

6https://github.com/suzhoushr/nlp chinese corpus
7https://zh.wikipedia.org/wiki/
8https://github.com/google-research/bert

https://github.com/suzhoushr/nlp_chinese_corpus
https://zh.wikipedia.org/wiki/
https://github.com/google-research/bert
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Category Method

Character-level (%) Sentence-level (%)

Detection-level Correction-level Detection-level Correction-level

P R F P R F P R F P R F

SOTA

Hybrid (Wang et al., 2018) 54.0 69.3 60.7 - - 52.1 - - - - - -

PN (Wang et al., 2019) 66.8 73.1 69.8 71.5 59.5 69.9 - - - - - -

FASPell (Hong et al., 2019) - - - - - - 67.6 60.0 63.5 66.6 59.1 62.6

SKBERT (Zhang et al., 2020) - - - - - - 73.7 73.2 73.5 66.7 66.2 66.4

SpellGCN (Cheng et al., 2020) 88.9 87.7 88.3 95.7 83.9 89.4 74.8 80.7 77.7 72.1 77.7 75.9

Pretrain
cBERT-Pretrain 64.2 83.2 72.5 85.6 71.2 77.7 37.9 49.5 42.9 32.1 42.0 36.4

PLOME-Pretrain 68.1 74.2 71.0 83.2 61.7 70.9 41.8 47.5 44.5 34.2 38.9 36.4

Finetune

BERT-Finetune 90.9 84.9 87.8 95.6 81.2 87.8 68.4 77.6 72.7 66.0 74.9 70.2

cBERT-Finetune 92.4 87.7 90.0 96.2 84.4 89.9 75.3 78.9 77.1 72.7 76.1 74.4

PLOME-Finetune 94.5 87.4 90.8 97.2 84.3 90.3 77.4 81.5 79.4 75.3 79.3 77.2

Table 2: The performance of our approach and baseline models. Results in the latter two groups are from our
implementation. Following Cheng et al. (2020), we run the experiments 4 times and report the average metrics.

precision, recall and F1 scores as the evaluation
metrics. Besides character-level evaluation, we
also report sentence-level metrics on the detection
and correction sub-tasks. We evaluate these
metrics using the script from Cheng et al. (2020)9.

Parameter Settings Following Cheng et al.
(2020), we set the maximum sentence length to
180, batch size to 32 and the learning rate to 5e-5.
All experiments are conducted for 4 runs and the
averaged metric is reported. The code and trained
models will be released (currently the code is
attached in the supplementary files).

4.3 Baseline Models
We use the following methods for comparison.
Hybird (Wang et al., 2018) uses a BiLSTM-
based model trained on an automatically generated
dataset.
PN (Wang et al., 2019) is a Seq2Seq model incor-
porating a pointer network.
FASPell (Hong et al., 2019) adopts the DAE-
Decoder paradigm and employs BERT as the de-
noising auto-encoder.
SKBERT (Zhang et al., 2020) introduces the Soft-
masKing strategy in BERT to improve the perfor-
mance of error detection.
SpellGCN (Cheng et al., 2020) combines a GCN
network with BERT to model the relationship be-
tween characters in the given confusion set.

Besides, we implement a baseline model cBERT
(confusion set based BERT), whose input and en-
coder layers are the same as that in BERTbase (De-

9https://github.com/ACL2020SpellGCN/SpellGCN

vlin et al., 2019). The output layer is similar to
PLOME, but only has the character prediction as
defined in Equation 1. cBERT is also pre-trained
via the confusion set based masking strategy.

4.4 Main Results

Table 2 illustrates the performance of the proposed
method and baseline models. The results of re-
cently proposed models are presented in the first
group. The results of pre-trained and fine-tuned
models are presented in the second and third group,
respectively. From this table, we observe that:

1) Without fine tuning, pre-trained models in
the middle group achieve relatively good results,
even outperform the supervised approach PN with
remarkable gains. This indicates that the confusion
set based masking strategy enables our model to
learn task-specific knowledge during pre-training.

2) Compared the fine-tuned models, cBERT out-
performs BERT on all metrics. Especially, the F
score of sentence-level evaluations are improved
by more than 4 absolute points. The improvement
is remarkable with such a large amount of training
data (281k texts), which indicates that the proposed
masking strategy provides essential knowledge and
it can not be learned from fine tuning.

3) With the incorporation of phonic and
shape embeddings, PLOME-Finetune outperforms
cBERT-Finetune by 2.3% and 2.8% absolute im-
provements in sentence-level detection and correc-
tion. This indicates that characters’ phonics and
strokes provide useful information and it can hardly
be learned from the confusion set.

4) SpellGCN and our approach use the same con-

https://github.com/ACL2020SpellGCN/SpellGCN
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Method

Character-level on Whole Set Sentence-level via Official Tool

Detection-level Correction-level Detection-level Correction-level

P R F P R F FPR A P R F A P R F

SpellGCN 77.7 85.6 81.4 96.9 82.9 89.4 13.2 83.7 85.9 80.6 83.1 82.2 85.4 77.6 81.3

BERT-Finetune 76.2 83.1 79.5 96.5 80.3 87.6 14.7 81.7 85.2 76.0 80.3 80.3 84.7 73.5 78.7

cBERT-Finetune 83.0 87.8 85.3 96.0 83.9 89.5 10.6 84.5 88.1 79.6 83.6 82.9 87.6 76.3 81.5

PLOME-Finetune 85.2 86.8 86.0 97.2 85.0 90.7 10.9 85.0 87.9 80.9 84.3 83.7 87.6 78.3 82.7

Table 3: Experimental results evaluated on the whole test set. FPR denotes the false positive rate and A denotes
the accuracy, which are evaluated by official tools on SIGHAN2015.

Prediction

Character-level Sentence-level

Detection-level Correction-level Detection-level Correction-level

P R F P R F P R F P R F

pc (Equation 1) 83.5 86.8 85.1 96.4 84.7 90.2 76.5 81.1 78.7 74.0 78.5 76.2

pj (Equation 6) 85.2 86.8 86.0 97.2 85.0 90.7 77.4 81.5 79.4 75.3 79.3 77.2

Table 4: The performance of PLOME with the character prediction pc and the joint prediction pj as output.

fusion set from Wu et al. (2013), but adopt different
strategies to learn the knowledge contained in it.
SpellGCN built a GCN network to model this infor-
mation, whereas PLOME learned it from huge scale
data during pre-training. PLOME achieves better
performance on all metrics, indicating that our ap-
proach is more effective to model such knowledge.

Previous work (Wang et al., 2019; Cheng et al.,
2020) conducted the character-level evaluation on
positive sentences which contain at least one er-
ror (sentence-level metrics were evaluated on the
whole test set). Thus, the precision score is very
high. The character-level results in table 2 are also
evaluated in such manner for fair comparison. To
make more comprehensive evaluation, we report
the results evaluated on the whole test set in table
3. Moreover, following Cheng et al. (2020), we
also report the sentence-level results evaluated by
SIGHAN official tool. We observe that PLOME
consistently outperforms BERT and SpellGCN on
all metrics.

To make more comprehensive comparisons,
we also evaluate the proposed model on
SIGHAN13(Wu et al., 2013) and SIGHAN14(Yu
et al., 2014). Following Cheng et al. (2020),
we performed 6 additional fine-tuning epochs on
SIGHAN13 as its data distribution differs from
other datasets. Table5 illustrates the results, from
which we observe that PLOME consistently outper-
forms all the compared models.

Method
Detection-level Correction-level

P R F P R F

SIGHAN14
BERT 82.9 77.6 80.2 96.8 75.2 84.6

SpellGCN 83.6 78.6 81.0 97.2 76.4 85.5

PLOME 88.5 79.8 83.9 98.8 78.8 87.7
SIGHAN13

BERT 80.6 88.4 84.3 98.1 87.2 92.3

SpellGCN 82.6 88.9 85.7 98.4 88.4 93.1

PLOME 85.0 89.3 87.1 98.7 89.1 93.7

Table 5: The character-level performance of PLOME
on SIGHAN13 and SIGHAN14.

4.5 Effects of Prediction Strategy

As illustrated in Section 3.4 and 3.6, PLOME pre-
dicts three distributions for each character: the char-
acter distribution pc, the pronunciation distribution
pp and the joint distribution pj . The latter two dis-
tributions are related to pronunciation prediction,
which is first to be introduced in this work. In
this subsection, we investigate the performance of
PLOME with each of them as the final output. The
CSC task requires character prediction, thus we
only compare the effects of the character predic-
tion pc and the joint prediction pj .

Table 4 presents the experimental results, from
which we observe that the joint distribution outper-
forms the character distribution on all evaluation
metrics. Especially, the gap of precision scores
is more obvious. The joint distribution simultane-
ously takes the character and pronunciation predic-
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Method

Character-level Sentence-level

Detection-level Correction-level Detection-level Correction-level

P R F P R F P R F P R F

cBERT-Rand 81.8 86.2 83.9 96.3 83.0 89.2 73.7 77.0 75.3 70.0 73.9 71.9

cBERT-BERT 83.0 87.8 85.3 96.0 83.9 89.5 75.3 78.9 77.1 72.7 76.1 74.4

PLOME-Rand 83.4 86.6 84.9 96.8 83.9 89.9 75.9 80.7 78.2 73.6 78.3 75.9

PLOME-BERT 85.2 86.8 86.0 97.2 85.0 90.7 77.4 81.5 79.4 75.3 79.3 77.2

Table 6: The performance of cBERT and PLOME with different initialization strategies. *-Rand denotes that all
the parameters are randomly initialized and *-BERT denotes parameters are initialized by BERT.

tions into consideration, thus the predicted results
are more accurate.

4.6 Effects of Initialization Strategy

Generally speaking, initialization strategy has a
great influence on the performance for deep models.
In this subsection, we investigate the effects of
different initialization strategies in the pre-training
procedure. For comparison, we implement four
baselines based on cBERT and PLOME.

Table 6 illustrates the results, where methods
named with “*-Rand” initialize all the parameters
randomly and methods named with “*-BERT” ini-
tialize the transformer encoder by BERT released
by Google. From the table we observe that both
cBERT and PLOME initialized with BERT achieve
better performance. Especially, the recall score
improves significantly for all evaluations. We be-
lieve the following two reasons may explain this
phenomenon. 1) The rich semantic information in
BERT can effectively improves the generalization
ability. 2) PLOME is composed of two 1-layer
GRU networks and a 12-layer transformer encoder,
and totally contains more than 110M parameters.
It is easily trapped into local optimization when
training such a large-scale model from scratch.

4.7 Phonic/Shape Embedding Visualization

In this subsection, we investigate whether the
phonic and shape GRU networks learned mean-
ingful representations for characters. To this end,
we generate the phonic and shape embeddings for
each character by the GRU networks in Figure 2
and then visualize them.

Figure 4 illustrates 30 characters nearest to ‘锭’
according to the cosine similarity of the 768-dim
embeddings generated by GRU networks, which is
visualized via t-SNE (Maaten and Hinton, 2008).
On one hand, nearly all the characters similar to
‘锭’, such as ‘啶’ and ‘绽’, are included in this

Figure 4: The visualization of shape embeddings.

Figure 5: The visualization of phonic embeddings.

figure. On the other hand, similar characters are
very close to each other (labeled by circles). These
phenomena indicate that the learned shape embed-
ding well models the shape similarity. Figure 5
shows the same situation for the phonic embedding
related to ‘ding’ and also demonstrates its ability
in modeling phonic similarity.

4.8 Converging Speed of Various Models

In this subsection, we investigate the converg-
ing speed of various models in the fine-tuning
procedure. Figure 6 shows the test curves for
character-level detection metrics of BERT, cBERT
and PLOME. Thanks to the confusion set based
masking strategy, cBERT and PLOME learned task-
specific knowledge in the pre-training procedure,
therefore they achieve much better performance
than BERT at the beginning of the training. As the
training went on, the gap gradually narrowed dur-
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Figure 6: The test curves for character-level detection
metrics of various models in the fine-tuning procedure.

ing the first 35,000 steps and then remained stable
with a gap of 6%(86% vs. 80%). In addition, the
proposed model needs much less training steps to
achieve a relatively good performance. PLOME
needs only 7k steps to achieve the score of 80%,
whereas BERT needs 47k steps.

5 Conclusions

We propose PLOME, a pre-trained masked lan-
guage model with misspelled knowledge for CSC.
To the best of our knowledge, PLOME is the
first task-specific language model for CSC, which
jointly learns semantics and misspelled knowledge
thanks to the confusion set based masking strat-
egy. Previous work demonstrated that phonological
and visual similarity between characters is essen-
tial to this task. We introduce phonic and shape
GRU networks to model such features. Moreover,
PLOME is also the first model that makes deci-
sion via jointly considering the target pronunciation
and character distributions. Experimental results
showed that PLOME outperforms all the compared
models with remarkable gains.
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